Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Immunol ; 12: 769011, 2021.
Article in English | MEDLINE | ID: covidwho-1650341

ABSTRACT

Asthma patients may increase their susceptibility to SARS-CoV-2 infection and the poor prognosis of coronavirus disease 2019 (COVID-19). However, anti-COVID-19/asthma comorbidity approaches are restricted on condition. Existing evidence indicates that luteolin has antiviral, anti-inflammatory, and immune regulation capabilities. We aimed to evaluate the possibility of luteolin evolving into an ideal drug and explore the underlying molecular mechanisms of luteolin against COVID-19/asthma comorbidity. We used system pharmacology and bioinformatics analysis to assess the physicochemical properties and biological activities of luteolin and further analyze the binding activities, targets, biological functions, and mechanisms of luteolin against COVID-19/asthma comorbidity. We found that luteolin may exert ideal physicochemical properties and bioactivity, and molecular docking analysis confirmed that luteolin performed effective binding activities in COVID-19/asthma comorbidity. Furthermore, a protein-protein interaction network of 538 common targets between drug and disease was constructed and 264 hub targets were obtained. Then, the top 6 hub targets of luteolin against COVID-19/asthma comorbidity were identified, namely, TP53, AKT1, ALB, IL-6, TNF, and VEGFA. Furthermore, the enrichment analysis suggested that luteolin may exert effects on virus defense, regulation of inflammation, cell growth and cell replication, and immune responses, reducing oxidative stress and regulating blood circulation through the Toll-like receptor; MAPK, TNF, AGE/RAGE, EGFR, ErbB, HIF-1, and PI3K-AKT signaling pathways; PD-L1 expression; and PD-1 checkpoint pathway in cancer. The possible "dangerous liaison" between COVID-19 and asthma is still a potential threat to world health. This research is the first to explore whether luteolin could evolve into a drug candidate for COVID-19/asthma comorbidity. This study indicated that luteolin with superior drug likeness and bioactivity has great potential to be used for treating COVID-19/asthma comorbidity, but the predicted results still need to be rigorously verified by experiments.


Subject(s)
Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , Antiviral Agents/metabolism , Asthma/epidemiology , Asthma/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Immunologic Factors/metabolism , Luteolin/metabolism , SARS-CoV-2/metabolism , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Antiviral Agents/chemistry , Comorbidity , Computational Biology/methods , Drug Discovery/methods , Humans , Immunologic Factors/chemistry , Interleukin-6/metabolism , Luteolin/chemistry , Molecular Docking Simulation , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Serum Albumin, Human/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/metabolism , Vascular Endothelial Growth Factor A/metabolism
2.
Lancet Oncol ; 23(2): 270-278, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616869

ABSTRACT

BACKGROUND: Endoscopic surveillance is recommended for patients with Barrett's oesophagus because, although the progression risk is low, endoscopic intervention is highly effective for high-grade dysplasia and cancer. However, repeated endoscopy has associated harms and access has been limited during the COVID-19 pandemic. We aimed to evaluate the role of a non-endoscopic device (Cytosponge) coupled with laboratory biomarkers and clinical factors to prioritise endoscopy for Barrett's oesophagus. METHODS: We first conducted a retrospective, multicentre, cross-sectional study in patients older than 18 years who were having endoscopic surveillance for Barrett's oesophagus (with intestinal metaplasia confirmed by TFF3 and a minimum Barrett's segment length of 1 cm [circumferential or tongues by the Prague C and M criteria]). All patients had received the Cytosponge and confirmatory endoscopy during the BEST2 (ISRCTN12730505) and BEST3 (ISRCTN68382401) clinical trials, from July 7, 2011, to April 1, 2019 (UK Clinical Research Network Study Portfolio 9461). Participants were divided into training (n=557) and validation (n=334) cohorts to identify optimal risk groups. The biomarkers evaluated were overexpression of p53, cellular atypia, and 17 clinical demographic variables. Endoscopic biopsy diagnosis of high-grade dysplasia or cancer was the primary endpoint. Clinical feasibility of a decision tree for Cytosponge triage was evaluated in a real-world prospective cohort from Aug 27, 2020 (DELTA; ISRCTN91655550; n=223), in response to COVID-19 and the need to provide an alternative to endoscopic surveillance. FINDINGS: The prevalence of high-grade dysplasia or cancer determined by the current gold standard of endoscopic biopsy was 17% (92 of 557 patients) in the training cohort and 10% (35 of 344) in the validation cohort. From the new biomarker analysis, three risk groups were identified: high risk, defined as atypia or p53 overexpression or both on Cytosponge; moderate risk, defined by the presence of a clinical risk factor (age, sex, and segment length); and low risk, defined as Cytosponge-negative and no clinical risk factors. The risk of high-grade dysplasia or intramucosal cancer in the high-risk group was 52% (68 of 132 patients) in the training cohort and 41% (31 of 75) in the validation cohort, compared with 2% (five of 210) and 1% (two of 185) in the low-risk group, respectively. In the real-world setting, Cytosponge results prospectively identified 39 (17%) of 223 patients as high risk (atypia or p53 overexpression, or both) requiring endoscopy, among whom the positive predictive value was 31% (12 of 39 patients) for high-grade dysplasia or intramucosal cancer and 44% (17 of 39) for any grade of dysplasia. INTERPRETATION: Cytosponge atypia, p53 overexpression, and clinical risk factors (age, sex, and segment length) could be used to prioritise patients for endoscopy. Further investigation could validate their use in clinical practice and lead to a substantial reduction in endoscopy procedures compared with current surveillance pathways. FUNDING: Medical Research Council, Cancer Research UK, Innovate UK.


Subject(s)
Adenocarcinoma/pathology , Barrett Esophagus/pathology , COVID-19 , Esophageal Neoplasms/pathology , Patient Selection , Watchful Waiting/methods , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/metabolism , Aged , Barrett Esophagus/diagnostic imaging , Barrett Esophagus/metabolism , Barrett Esophagus/therapy , Biomarkers/metabolism , COVID-19/prevention & control , Clinical Decision-Making , Clinical Trials as Topic , Cross-Sectional Studies , Decision Trees , Disease Progression , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/metabolism , Esophagoscopy , Feasibility Studies , Female , Humans , Male , Middle Aged , Pilot Projects , Prospective Studies , Retrospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2 , Trefoil Factor-3/metabolism , Tumor Suppressor Protein p53/metabolism
3.
Theranostics ; 11(14): 7005-7017, 2021.
Article in English | MEDLINE | ID: covidwho-1524524

ABSTRACT

The tumor suppressor protein p53 remains in a wild type but inactive form in ~50% of all human cancers. Thus, activating it becomes an attractive approach for targeted cancer therapies. In this regard, our lab has previously discovered a small molecule, Inauhzin (INZ), as a potent p53 activator with no genotoxicity. Method: To improve its efficacy and bioavailability, here we employed nanoparticle encapsulation, making INZ-C, an analog of INZ, to nanoparticle-encapsulated INZ-C (n-INZ-C). Results: This approach significantly improved p53 activation and inhibition of lung and colorectal cancer cell growth by n-INZ-C in vitro and in vivo while it displayed a minimal effect on normal human Wi38 and mouse MEF cells. The improved activity was further corroborated with the enhanced cellular uptake observed in cancer cells and minimal cellular uptake observed in normal cells. In vivo pharmacokinetic evaluation of these nanoparticles showed that the nanoparticle encapsulation prolongates the half-life of INZ-C from 2.5 h to 5 h in mice. Conclusions: These results demonstrate that we have established a nanoparticle system that could enhance the bioavailability and efficacy of INZ-C as a potential anti-cancer therapeutic.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Indoles/pharmacology , Lung Neoplasms/drug therapy , Nanoparticles/chemistry , Phenothiazines/pharmacology , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Biological Availability , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Humans , Indoles/chemistry , Indoles/pharmacokinetics , Indoles/therapeutic use , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Nanoparticles/toxicity , Nanoparticles/ultrastructure , Phenothiazines/chemistry , Phenothiazines/pharmacokinetics , Phenothiazines/therapeutic use , Spectroscopy, Fourier Transform Infrared , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
4.
J Virol ; 95(16): e0018721, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1486048

ABSTRACT

Subversion of the host cell cycle to facilitate viral replication is a common feature of coronavirus infections. Coronavirus nucleocapsid (N) protein can modulate the host cell cycle, but the mechanistic details remain largely unknown. Here, we investigated the effects of manipulation of porcine epidemic diarrhea virus (PEDV) N protein on the cell cycle and the influence on viral replication. Results indicated that PEDV N induced Vero E6 cell cycle arrest at S-phase, which promoted viral replication (P < 0.05). S-phase arrest was dependent on the N protein nuclear localization signal S71NWHFYYLGTGPHADLRYRT90 and the interaction between N protein and p53. In the nucleus, the binding of N protein to p53 maintained consistently high-level expression of p53, which activated the p53-DREAM pathway. The key domain of the N protein interacting with p53 was revealed to be S171RGNSQNRGNNQGRGASQNRGGNN194 (NS171-N194), in which G183RG185 are core residues. NS171-N194 and G183RG185 were essential for N-induced S-phase arrest. Moreover, small molecular drugs targeting the NS171-N194 domain of the PEDV N protein were screened through molecular docking. Hyperoside could antagonize N protein-induced S-phase arrest by interfering with interaction between N protein and p53 and inhibit viral replication (P < 0.05). The above-described experiments were also validated in porcine intestinal cells, and data were in line with results in Vero E6 cells. Therefore, these results reveal the PEDV N protein interacts with p53 to activate the p53-DREAM pathway, and subsequently induces S-phase arrest to create a favorable environment for virus replication. These findings provide new insight into the PEDV-host interaction and the design of novel antiviral strategies against PEDV. IMPORTANCE Many viruses subvert the host cell cycle to create a cellular environment that promotes viral growth. PEDV, an emerging and reemerging coronavirus, has led to substantial economic loss in the global swine industry. Our study is the first to demonstrate that PEDV N-induced cell cycle arrest during the S-phase promotes viral replication. We identified a novel mechanism of PEDV N-induced S-phase arrest, where the binding of PEDV N protein to p53 maintains consistently high levels of p53 expression in the nucleus to mediate S-phase arrest by activating the p53-DREAM pathway. Furthermore, a small molecular compound, hyperoside, targeted the PEDV N protein, interfering with the interaction between the N protein and p53 and, importantly, inhibited PEDV replication by antagonizing cell cycle arrest. This study reveals a new mechanism of PEDV-host interaction and also provides a novel antiviral strategy for PEDV. These data provide a foundation for further research into coronavirus-host interactions.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Nucleocapsid Proteins/chemistry , Host-Pathogen Interactions/drug effects , Porcine epidemic diarrhea virus/drug effects , Quercetin/analogs & derivatives , Tumor Suppressor Protein p53/chemistry , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Binding Sites , Cell Line , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Epithelial Cells/drug effects , Epithelial Cells/virology , Gene Expression Regulation , High-Throughput Screening Assays , Host-Pathogen Interactions/genetics , Molecular Docking Simulation , Nuclear Localization Signals , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/metabolism , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Quercetin/chemistry , Quercetin/pharmacology , S Phase Cell Cycle Checkpoints/drug effects , S Phase Cell Cycle Checkpoints/genetics , Signal Transduction , Swine , Swine Diseases/drug therapy , Swine Diseases/genetics , Swine Diseases/metabolism , Swine Diseases/virology , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Vero Cells , Virus Replication/drug effects
5.
Bioorg Chem ; 116: 105274, 2021 11.
Article in English | MEDLINE | ID: covidwho-1363884

ABSTRACT

Traditional Chinese herbal compound prescription in Xuanfei Baidu Tang (XBT) has obvious effects in the treatment of COVID-19. However, its effective compounds and targets for the treatment of COVID-19 remain unclear. Computer-Aided Drug Design is used to virtually screen out the anti-inflammatory or anti-viral compounds in XBT, and predict the potential targets by Discovery Studio 2020. Then, we searched for COVID-19 targets using Genecards databases and Protein Data Bank (PDB) databases and compared them to identify targets that were common to both. Finally, the target we screened out is: TP53 (Tumor Protein P53). This article also shows that XBT in the treatment of COVID-19 works in a multi-link and overall synergistic manner. Our results will help to design the new drugs for COVID-19.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antiviral Agents/pharmacology , COVID-19/drug therapy , Drugs, Chinese Herbal/pharmacology , SARS-CoV-2/drug effects , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antiviral Agents/chemistry , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/chemistry , Humans , Medicine, Chinese Traditional , Molecular Structure , SARS-CoV-2/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism
6.
Biomolecules ; 11(7)2021 07 19.
Article in English | MEDLINE | ID: covidwho-1328091

ABSTRACT

Proteins of the major histocompatibility complex (MHC) class I, or human leukocyte antigen (HLA) in humans interact with endogenous peptides and present them to T cell receptors (TCR), which in turn tune the immune system to recognize and discriminate between self and foreign (non-self) peptides. Of especial importance are peptides derived from tumor-associated antigens. T cells recognizing these peptides are found in cancer patients, but not in cancer-free individuals. What stimulates this recognition, which is vital for the success of checkpoint based therapy? A peptide derived from the protein p53 (residues 161-169 or p161) was reported to show this behavior. T cells recognizing this unmodified peptide could be further stimulated in vitro to create effective cancer killing CTLs (cytotoxic T lymphocytes). We hypothesize that the underlying difference may arise from post-translational glycosylation of p161 in normal individuals, likely masking it against recognition by TCR. Defects in glycosylation in cancer cells may allow the presentation of the native peptide. We investigate the structural consequences of such peptide glycosylation by investigating the associated structural dynamics.


Subject(s)
HLA-A24 Antigen/chemistry , HLA-A24 Antigen/metabolism , Receptors, Antigen, T-Cell/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylglucosamine/metabolism , Glycosylation , Human Immunodeficiency Virus Proteins/chemistry , Human Immunodeficiency Virus Proteins/metabolism , Humans , Hydrogen Bonding , Models, Molecular , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Conformation , Receptors, Antigen, T-Cell/chemistry , Tumor Suppressor Protein p53/chemistry
7.
Tissue Barriers ; 9(4): 1929787, 2021 10 02.
Article in English | MEDLINE | ID: covidwho-1276097

ABSTRACT

Endothelial barrier dysfunction (EBD) is the hallmark of Acute Respiratory Distress Syndrome (ARDS), a potentially lethal respiratory disorder associated with the COVID-19 - related deaths. Herein, we employed a cecal ligation and puncture (CLP) murine model of sepsis, to evaluate the effects of sepsis-induced EBD in the expression of the never in mitosis A (NIMA)-related kinases (NEKs). Members of that family of kinases regulate the activity and expression of the tumor suppressor P53, previously shown to modulate the actin cytoskeleton remodeling. Our results introduce the induction of NEK2, NEK3, NEK4, NEK7, and NEK9 in a CLP model of sepsis. Hence, we suggest that NEKs are involved in inflammatory processes and are holding the potential to serve as novel therapeutic targets for pathologies related to EBD, including ARDS and sepsis. Further studies will delineate the underlying molecular events and their interrelations with P53.


Subject(s)
Lung/metabolism , NIMA-Related Kinases/metabolism , Sepsis/metabolism , Alveolar Epithelial Cells/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , NIMA-Related Kinases/genetics , Tumor Suppressor Protein p53/metabolism
8.
Transl Res ; 233: 104-116, 2021 07.
Article in English | MEDLINE | ID: covidwho-1051128

ABSTRACT

The p53/p21 pathway is activated in response to cell stress. However, its role in acute lung injury has not been elucidated. Acute lung injury is associated with disruption of the alveolo-capillary barrier leading to acute respiratory distress syndrome (ARDS). Mechanical ventilation may be necessary to support gas exchange in patients with ARDS, however, high positive airway pressures can cause regional overdistension of alveolar units and aggravate lung injury. Here, we report that acute lung injury and alveolar overstretching activate the p53/p21 pathway to maintain homeostasis and avoid massive cell apoptosis. A systematic pooling of transcriptomic data from animal models of lung injury demonstrates the enrichment of specific p53- and p21-dependent gene signatures and a validated senescence profile. In a clinically relevant, murine model of acid aspiration and mechanical ventilation, we observed changes in the nuclear envelope and the underlying chromatin, DNA damage and activation of the Tp53/p21 pathway. Absence of Cdkn1a decreased the senescent response, but worsened lung injury due to increased cell apoptosis. Conversely, treatment with lopinavir and/or ritonavir led to Cdkn1a overexpression and ameliorated cell apoptosis and lung injury. The activation of these mechanisms was associated with early markers of senescence, including expression of senescence-related genes and increases in senescence-associated heterochromatin foci in alveolar cells. Autopsy samples from lungs of patients with ARDS revealed increased senescence-associated heterochromatin foci. Collectively, these results suggest that acute lung injury activates p53/p21 as an antiapoptotic mechanism to ameliorate damage, but with the side effect of induction of senescence.


Subject(s)
Acute Lung Injury/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Acids/administration & dosage , Acids/toxicity , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Animals , Apoptosis , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21/deficiency , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Damage , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Signal Transduction , Stress, Mechanical , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
Biochem Biophys Res Commun ; 553: 25-29, 2021 05 14.
Article in English | MEDLINE | ID: covidwho-1147359

ABSTRACT

The current COVID-19 pandemic is caused by infections with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A sex-bias has been observed, with increased susceptibility and mortality in male compared to female patients. The gene for the SARS-CoV-2 receptor ACE2 is located on the X chromosome. We previously generated TP53 mutant pigs that exhibit a sex-specific patho-phenotype due to altered regulation of numerous X chromosome genes. In this study, we explored the effect of p53 deficiency on ACE2 expression in pigs. First, we identified the p53 binding site in the ACE2 promoter and could show its regulatory effect on ACE2 expression by luciferase assay in porcine primary kidney fibroblast cells. Later, quantitative PCR and western blot showed tissue- and gender-specific expression changes of ACE2 and its truncated isoform in p53-deficient pigs. We believe these findings will broaden the knowledge on ACE2 regulation and COVID-19 susceptibility.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Gene Expression Regulation , Organ Specificity , Sex Characteristics , Sus scrofa/metabolism , Tumor Suppressor Protein p53/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , Base Sequence , Binding Sites , COVID-19/metabolism , COVID-19/virology , Disease Models, Animal , Female , Fibroblasts , Gene Deletion , Male , Promoter Regions, Genetic/genetics , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , X Chromosome/genetics
10.
Curr Opin Oncol ; 33(2): 149-158, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1066437

ABSTRACT

PURPOSE OF REVIEW: Virtually all viruses have evolved molecular instruments to circumvent cell mechanisms that may hamper their replication, dissemination, or persistence. Among these is p53, a key gatekeeper for cell division and survival that also regulates innate immune responses. This review summarizes the strategies used by different viruses and discusses the mechanisms deployed by SARS-CoV to target p53 activities. RECENT FINDINGS: We propose a typology for the strategies used by different viruses to address p53 functions: hit and run (e.g. IAV, ZIKV), hide and seek (e.g. HIV1), kidnap and exploit (e.g. EBV, HSV1), dominate and suppress (e.g. HR HPV). We discuss the mechanisms by which SARS nsp3 protein targets p53 for degradation and we speculate on the significance for Covid-19 pathogenesis and risk of cancer. SUMMARY: p53 may operate as an intracellular antiviral defense mechanism. To circumvent it, SARS viruses adopt a kidnap and exploit strategy also shared by several viruses with transforming potential. This raises the question of whether SARS infections may make cells permissive to oncogenic DNA damage.


Subject(s)
COVID-19/virology , SARS-CoV-2/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Humans
11.
Cell Mol Life Sci ; 77(22): 4725-4727, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-749426

ABSTRACT

P53 is a tumor suppressor protein, associated with strong anti-inflammatory activities. Recent evidence suggest that this transcription factor counteracts lung inflammatory diseases, including the lethal acute respiratory distress syndrome. Herein we provide a brief discussion on the relevant topic.


Subject(s)
Respiratory Distress Syndrome/metabolism , Tumor Suppressor Protein p53/metabolism , Cytokines/metabolism , Endothelium/metabolism , Humans , Inflammation/metabolism , Lung/metabolism , Permeability
12.
Curr Opin Oncol ; 33(2): 149-158, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1012871

ABSTRACT

PURPOSE OF REVIEW: Virtually all viruses have evolved molecular instruments to circumvent cell mechanisms that may hamper their replication, dissemination, or persistence. Among these is p53, a key gatekeeper for cell division and survival that also regulates innate immune responses. This review summarizes the strategies used by different viruses and discusses the mechanisms deployed by SARS-CoV to target p53 activities. RECENT FINDINGS: We propose a typology for the strategies used by different viruses to address p53 functions: hit and run (e.g. IAV, ZIKV), hide and seek (e.g. HIV1), kidnap and exploit (e.g. EBV, HSV1), dominate and suppress (e.g. HR HPV). We discuss the mechanisms by which SARS nsp3 protein targets p53 for degradation and we speculate on the significance for Covid-19 pathogenesis and risk of cancer. SUMMARY: p53 may operate as an intracellular antiviral defense mechanism. To circumvent it, SARS viruses adopt a kidnap and exploit strategy also shared by several viruses with transforming potential. This raises the question of whether SARS infections may make cells permissive to oncogenic DNA damage.


Subject(s)
COVID-19/virology , SARS-CoV-2/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Humans
13.
PLoS Pathog ; 17(1): e1009033, 2021 01.
Article in English | MEDLINE | ID: covidwho-1012135

ABSTRACT

The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs.


Subject(s)
Communicable Diseases, Emerging/virology , RNA Viruses/metabolism , Signal Transduction/genetics , Tumor Suppressor Protein p53/metabolism , Chikungunya virus/genetics , Chikungunya virus/metabolism , Coronavirus/genetics , Coronavirus/metabolism , Ebolavirus/genetics , Ebolavirus/metabolism , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Open Reading Frames , RNA Viruses/genetics , Tumor Suppressor Protein p53/genetics , Viral Nonstructural Proteins/metabolism , Zika Virus/genetics , Zika Virus/metabolism
14.
Science ; 369(6504): 712-717, 2020 08 07.
Article in English | MEDLINE | ID: covidwho-594812

ABSTRACT

Excessive cytokine signaling frequently exacerbates lung tissue damage during respiratory viral infection. Type I (IFN-α and IFN-ß) and III (IFN-λ) interferons are host-produced antiviral cytokines. Prolonged IFN-α and IFN-ß responses can lead to harmful proinflammatory effects, whereas IFN-λ mainly signals in epithelia, thereby inducing localized antiviral immunity. In this work, we show that IFN signaling interferes with lung repair during influenza recovery in mice, with IFN-λ driving these effects most potently. IFN-induced protein p53 directly reduces epithelial proliferation and differentiation, which increases disease severity and susceptibility to bacterial superinfections. Thus, excessive or prolonged IFN production aggravates viral infection by impairing lung epithelial regeneration. Timing and duration are therefore critical parameters of endogenous IFN action and should be considered carefully for IFN therapeutic strategies against viral infections such as influenza and coronavirus disease 2019 (COVID-19).


Subject(s)
Alveolar Epithelial Cells/pathology , Cytokines/metabolism , Interferon Type I/metabolism , Interferons/metabolism , Lung/pathology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Alveolar Epithelial Cells/immunology , Animals , Apoptosis , Bronchoalveolar Lavage Fluid/immunology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cytokines/administration & dosage , Cytokines/immunology , Female , Influenza A Virus, H3N2 Subtype , Interferon Type I/administration & dosage , Interferon Type I/pharmacology , Interferon-alpha/administration & dosage , Interferon-alpha/metabolism , Interferon-alpha/pharmacology , Interferon-beta/administration & dosage , Interferon-beta/metabolism , Interferon-beta/pharmacology , Interferons/administration & dosage , Interferons/pharmacology , Male , Mice , Orthomyxoviridae Infections/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL