Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
1.
J Intensive Care Med ; 37(12): 1614-1624, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2098205

ABSTRACT

Introduction: The appraisal of disease severity and prediction of adverse outcomes using risk stratification tools at early disease stages is crucial to diminish mortality from coronavirus disease 2019 (COVID-19). While lung ultrasound (LUS) as an imaging technique for the diagnosis of lung diseases has recently gained a leading position, data demonstrating that it can predict adverse outcomes related to COVID-19 is scarce. The main aim of this study is therefore to assess the clinical significance of bedside LUS in COVID-19 patients who presented to the emergency department (ED). Methods: Patients with a confirmed diagnosis of SARS-CoV-2 pneumonia admitted to the ED of our hospital between March 2021 and May 2021 and who underwent a 12-zone LUS and a lung computed tomography scan were included prospectively. Logistic regression and Cox proportional hazard models were used to predict adverse events, which was our primary outcome. The secondary outcome was to discover the association of LUS score and computed tomography severity score (CT-SS) with the composite endpoints. Results: We assessed 234 patients [median age 59.0 (46.8-68.0) years; 59.4% M), including 38 (16.2%) in-hospital deaths for any cause related to COVID-19. Higher LUS score and CT-SS was found to be associated with ICU admission, intubation, and mortality. The LUS score predicted mortality risk within each stratum of NEWS. Pairwise analysis demonstrated that after adjusting a base prediction model with LUS score, significantly higher accuracy was observed in predicting both ICU admission (DBA -0.067, P = .011) and in-hospital mortality (DBA -0.086, P = .017). Conclusion: Lung ultrasound can be a practical prediction tool during the course of COVID-19 and can quantify pulmonary involvement in ED settings. It is a powerful predictor of ICU admission, intubation, and mortality and can be used as an alternative for chest computed tomography while monitoring COVID-19-related adverse outcomes.


Subject(s)
COVID-19 , Humans , Middle Aged , COVID-19/complications , COVID-19/diagnostic imaging , SARS-CoV-2 , Point-of-Care Systems , Lung/diagnostic imaging , Ultrasonography/methods , Tomography, X-Ray Computed
2.
Ultrasound Med Biol ; 47(2): 214-221, 2021 02.
Article in English | MEDLINE | ID: covidwho-2096090

ABSTRACT

In this study, the utility of point-of-care lung ultrasound for clinical classification of coronavirus disease (COVID-19) was prospectively assessed. Twenty-seven adult patients with COVID-19 underwent bedside lung ultrasonography (LUS) examinations three times each within the first 2 wk of admission to the isolation ward. We divided the 81 exams into three groups (moderate, severe and critically ill). Lung scores were calculated as the sum of points. A rank sum test and bivariate correlation analysis were carried out to determine the correlation between LUS on admission and clinical classification of COVID-19. There were dramatic differences in LUS (p < 0.001) among the three groups, and LUS scores (r = 0.754) correlated positively with clinical severity (p < 0.01). In addition, moderate, severe and critically ill patients were more likely to have low (≤9), medium (9-15) and high scores (≥15), respectively. This study provides stratification criteria of LUS scores to assist in quantitatively evaluating COVID-19 patients.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Point-of-Care Systems , Ultrasonography/instrumentation , Ultrasonography/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prospective Studies , Severity of Illness Index
3.
Ann Cardiol Angeiol (Paris) ; 71(6): 345-349, 2022 Dec.
Article in French | MEDLINE | ID: covidwho-2085907

ABSTRACT

Technological advances over the past two decades have paved the way for the prehospital use of ultrasound. This practice was first developed in traumatology and then in a multitude of other indications, including cardiology. The development of pulmonary ultrasound is certainly the most visible illustration of this. Firstly, because it is an extra-cardiac examination that provides the answer to a cardiac question. Secondly because from a theoretical point of view this ultrasound indication was a bad indication for the use of ultrasound due to the air contained in the thorax. Thirdly, because this indication has become a 'standard of care' when caring for a patient with dyspnea - a practice that has become widespread during the COVID epidemic. In patients with heart failure, ultrasound has a high diagnostic power (including for alternative diagnoses) which is all the more precise since the technique is non-invasive, the response is obtained quickly, the examination can be repeated at desire to follow the evolution of the patient. The main other indications for prehospital ultrasound are cardiac arrest to search for a curable cause, identification of residual mechanical cardiac activity, monitoring of cerebral perfusion; chest pain, for both positive and negative diagnoses; shock for the search for an etiology and therapeutic follow-up or even pulmonary embolism or ultrasound for the search for dilation of the right ventricle which is now at the forefront of the recommendation algorithm.


Subject(s)
COVID-19 , Cardiology , Emergency Medical Services , Humans , Emergencies , COVID-19/diagnostic imaging , Ultrasonography/methods , Emergency Medical Services/methods
4.
PLoS One ; 17(10): e0276213, 2022.
Article in English | MEDLINE | ID: covidwho-2079761

ABSTRACT

INTRODUCTION: Bedside lung ultrasound has gained a key role in each segment of the treatment chain during the COVID-19 pandemic. During the diagnostic assessment of the critically ill patients in ICUs, it is highly important to maximize the amount and quality of gathered information while minimizing unnecessary interventions (e.g. moving/rotating the patient). Another major factor is to reduce the risk of infection and the workload of the staff. OBJECTIVES: To serve these significant issues we constructed a feasibility study, in which we used a single-operator technique without moving the patient, only assessing the easily achievable lung regions at conventional BLUE points. We hypothesized that calculating this 'BLUE lung ultrasound score' (BLUE-LUSS) is a reasonable clinical tool. Furthermore, we used both longitudinal and transverse scans to measure their reliability and assessed the interobserver variability as well. METHODS: University Intensive Care Unit based, single-center, prospective, observational study was performed on 24 consecutive SARS-CoV2 RT-PCR positive, mechanically ventilated critically ill patients. Altogether 400 loops were recorded, rated and assessed off-line by 4 independent intensive care specialists (each 7+ years of LUS experience). RESULTS: Intraclass correlation values indicated good reliability for transversal and longitudinal qLUSS scores, while we detected excellent interrater agreement of both cLUSS calculation methods. All of our LUS scores correlated inversely and significantly to the P/F values. Best correlation was achieved in the case of longitudinal qLUSS (r = -0.55, p = 0.0119). CONCLUSION: Summarized score of BLUE-LUSS can be an important, easy-to-perform adjunct tool for assessing and quantifying lung pathology in critically ill ventilated patients at bedside, especially for the P/F ratio. The best agreement for the P/F ratio can be achieved with the longitudinal scans. Regarding these findings, assessing BLUE-points can be extended with the BLUE-LUSS for daily routine using both transverse and longitudinal views.


Subject(s)
COVID-19 , COVID-19/diagnostic imaging , Critical Illness , Feasibility Studies , Humans , Lung/diagnostic imaging , Pandemics , Prospective Studies , RNA, Viral , Reproducibility of Results , Respiration, Artificial , SARS-CoV-2 , Ultrasonography/methods
5.
Sci Rep ; 12(1): 17581, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2077106

ABSTRACT

Our automated deep learning-based approach identifies consolidation/collapse in LUS images to aid in the identification of late stages of COVID-19 induced pneumonia, where consolidation/collapse is one of the possible associated pathologies. A common challenge in training such models is that annotating each frame of an ultrasound video requires high labelling effort. This effort in practice becomes prohibitive for large ultrasound datasets. To understand the impact of various degrees of labelling precision, we compare labelling strategies to train fully supervised models (frame-based method, higher labelling effort) and inaccurately supervised models (video-based methods, lower labelling effort), both of which yield binary predictions for LUS videos on a frame-by-frame level. We moreover introduce a novel sampled quaternary method which randomly samples only 10% of the LUS video frames and subsequently assigns (ordinal) categorical labels to all frames in the video based on the fraction of positively annotated samples. This method outperformed the inaccurately supervised video-based method and more surprisingly, the supervised frame-based approach with respect to metrics such as precision-recall area under curve (PR-AUC) and F1 score, despite being a form of inaccurate learning. We argue that our video-based method is more robust with respect to label noise and mitigates overfitting in a manner similar to label smoothing. The algorithm was trained using a ten-fold cross validation, which resulted in a PR-AUC score of 73% and an accuracy of 89%. While the efficacy of our classifier using the sampled quaternary method significantly lowers the labelling effort, it must be verified on a larger consolidation/collapse dataset, our proposed classifier using the sampled quaternary video-based method is clinically comparable with trained experts' performance.


Subject(s)
COVID-19 , Deep Learning , Humans , COVID-19/diagnostic imaging , Ultrasonography/methods , Algorithms , Lung/diagnostic imaging
6.
Respir Investig ; 60(6): 762-771, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2076679

ABSTRACT

BACKGROUND: The purpose of this study was to assess the diagnostic accuracy of lung ultrasound (LUS) in determining the severity of coronavirus disease 2019 (COVID-19) pneumonia compared with thoracic computed tomography (CT) and establish the correlations between LUS score, inflammatory markers, and percutaneous oxygen saturation (SpO2). METHODS: This prospective observational study, conducted at Târgu-Mureș Pulmonology Clinic included 78 patients with confirmed severe acute respiratory syndrome coronavirus-2 infection via nasopharyngeal real-time-polymerase chain reaction (RT-PCR) (30 were excluded). Enrolled patients underwent CT, LUS, and blood tests on admission. Lung involvement was evaluated in 16 thoracic areas, using AB1 B2 C (letters represent LUS pattern) scores ranging 0-48. RESULTS: LUS revealed bilateral B-lines (97.8%), pleural irregularities with thickening/discontinuity (75%), and subpleural consolidations (70.8%). Uncommon sonographic patterns were alveolar consolidations with bronchogram (33%) and pleural effusion (2%). LUS score cutoff values of ≤14 and > 22 predicted mild COVID-19 (sensitivity [Se] = 84.6%; area under the curve [AUC] = 0.72; P = 0.002) and severe COVID-19 (Se = 50%, specificity (Sp) = 91.2%, AUC = 0.69; P = 0.02), respectively, and values > 29 predicted the patients' transfer to the intensive care unit (Se = 80%, Sp = 97.7%). LUS score positively correlated with CT score (r = 0.41; P = 0.003) and increased with the decrease of SpO2 (r = -0.49; P = 0.003), with lymphocytes decline (r = -0.52; P = 0.0001). Patients with consolidation patterns had higher ferritin and C-reactive protein than those with B-line patterns (P = 0.01; P = 0.03). CONCLUSIONS: LUS is a useful, non-invasive and effective tool for diagnosis, monitoring evolution, and prognostic stratification of COVID-19 patients.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , SARS-CoV-2 , Lung/diagnostic imaging , Ultrasonography/methods , Tomography, X-Ray Computed/methods
7.
BMJ Open ; 12(10): e061332, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2053211

ABSTRACT

OBJECTIVES: Pulmonary disease is a significant cause of morbidity and mortality in adults and children, but most of the world lacks diagnostic imaging for its assessment. Lung ultrasound is a portable, low-cost, and highly accurate imaging modality for assessment of pulmonary pathology including pneumonia, but its deployment is limited secondary to a lack of trained sonographers. In this study, we piloted a low-cost lung teleultrasound system in rural Peru during the COVID-19 pandemic using lung ultrasound volume sweep imaging (VSI) that can be operated by an individual without prior ultrasound training circumventing many obstacles to ultrasound deployment. DESIGN: Pilot study. SETTING: Study activities took place in five health centres in rural Peru. PARTICIPANTS: There were 213 participants presenting to rural health clinics. INTERVENTIONS: Individuals without prior ultrasound experience in rural Peru underwent brief training on how to use the teleultrasound system and perform lung ultrasound VSI. Subsequently, patients attending clinic were scanned by these previously ultrasound-naïve operators with the teleultrasound system. PRIMARY AND SECONDARY OUTCOME MEASURES: Radiologists examined the ultrasound imaging to assess its diagnostic value and identify any pathology. A random subset of 20% of the scans were analysed for inter-reader reliability. RESULTS: Lung VSI teleultrasound examinations underwent detailed analysis by two cardiothoracic attending radiologists. Of the examinations, 202 were rated of diagnostic image quality (94.8%, 95% CI 90.9% to 97.4%). There was 91% agreement between radiologists on lung ultrasound interpretation among a 20% sample of all examinations (κ=0.76, 95% CI 0.53 to 0.98). Radiologists were able to identify sequelae of COVID-19 with the predominant finding being B-lines. CONCLUSION: Lung VSI teleultrasound performed by individuals without prior training allowed diagnostic imaging of the lungs and identification of sequelae of COVID-19 infection. Deployment of lung VSI teleultrasound holds potential as a low-cost means to improve access to imaging around the world.


Subject(s)
COVID-19 , Adult , COVID-19/diagnostic imaging , Child , Humans , Lung/diagnostic imaging , Pandemics , Peru/epidemiology , Pilot Projects , Reproducibility of Results , Ultrasonography/methods
8.
J Clin Ultrasound ; 50(9): 1271-1278, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2047672

ABSTRACT

PURPOSE: To evaluate the diagnostic performance of lung ultrasound (LUS) in screening for SARS-CoV-2 infection in patients requiring surgery. METHODS: Patients underwent a LUS protocol that included a scoring system for screening COVID-19 pneumonia as well as RT-PCR test for SARS-CoV-2. The receiver operator characteristic (ROC) curve was determined for the relationship between LUS score and PCR test results for COVID-19. The optimal threshold for the best discrimination between non-COVID-19 patients and COVID-19 patients was calculated. RESULTS: Among 203 patients enrolled (mean age 48 years; 82 males), 8.3% were COVID-19-positive; 4.9% were diagnosed via the initial RT-PCR test. Of the patients diagnosed with SARS-CoV-2, 64.7% required in-hospital management and 17.6% died. The most common ultrasound findings were B lines (19.7%) and a thickened pleura (19.2%). The AUC of the ROC curve of the relationship of LUS score with a cutoff value >8 versus RT-PCR test for the assessment of SARS-CoV-2 pneumonia was 0.75 (95% CI 0.61-0.89; sensitivity 52.9%; specificity 91%; LR (+) 6.15, LR (-) 0.51). CONCLUSION: The LUS score in surgical patients is not a useful tool for screening patients with potential COVID-19 infection. LUS score shows a high specificity with a cut-off value of 8.


Subject(s)
COVID-19 , Male , Humans , Middle Aged , SARS-CoV-2 , Lung/diagnostic imaging , COVID-19 Testing , Ultrasonography/methods
9.
Ultrasound Med Biol ; 48(12): 2398-2416, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2042183

ABSTRACT

Lung ultrasound (LUS) has been increasingly expanding since the 1990s, when the clinical relevance of vertical artifacts was first reported. However, the massive spread of LUS is only recent and is associated with the coronavirus disease 2019 (COVID-19) pandemic, during which semi-quantitative computer-aided techniques were proposed to automatically classify LUS data. In this review, we discuss the state of the art in LUS, from semi-quantitative image analysis approaches to quantitative techniques involving the analysis of radiofrequency data. We also discuss recent in vitro and in silico studies, as well as research on LUS safety. Finally, conclusions are drawn highlighting the potential future of LUS.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pandemics , Lung/diagnostic imaging , Ultrasonography/methods
10.
Intern Emerg Med ; 17(8): 2261-2268, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2027646

ABSTRACT

While lung ultrasonography (LUS) proved to be a useful diagnostic and prognostic tool in acute phase of COVID 19 pneumonia, its role in detecting long-term pulmonary sequelae has yet to be explored. In our prospective observational study we assessed the potential of LUS in detecting the presence of computed tomography (CT) fibrotic-like changes after 6 months from COVID-19 pneumonia. Patients who were discharged with a diagnosis of severe COVID-19 pneumonia were enrolled. After 6 months from hospital discharge they underwent LUS, chest CT scan and pulmonary function tests. A logistic regression analysis was performed to assess the association between presence of symptoms, LUS score and diffusing capacity for carbon monoxide (DLCO) at 6-month after hospital discharge and CT scan fibrotic-like changes. A second logistic model was performed to assess the value of some predefined baseline factors (age, sex, worst PaO2/FiO2, ventilator support, worst CRP value, worst D-dimer value and worst LUS score during hospitalization) to predict fibrotic-like changes on 6-month CT scan. Seventy-four patients were enrolled in the study. Twenty-four (32%) showed lung abnormalities suitable for fibrotic-like changes. At multivariate logistic regression analysis LUS score after 6 months from acute disease was significantly associated with fibrotic-like pattern on CT scan. The second logistic model showed that D-dimer value was the only baseline predictive variable of fibrotic-like changes at multivariate analysis. LUS performed after 6 months from severe COVID-19 pneumonia may be a promising tool for detection and follow-up of pulmonary fibrotic sequelae.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , Follow-Up Studies , Lung/diagnostic imaging , Ultrasonography/methods , Tomography, X-Ray Computed/methods
11.
PLoS One ; 17(7): e0271391, 2022.
Article in English | MEDLINE | ID: covidwho-1933386

ABSTRACT

Lung ultrasound (LUS), a rapid, bedside, goal-oriented diagnostic test, can be quantitatively assessed, and the scores can be used to evaluate disease progression. However, little data exists on predicting prolonged mechanical ventilation (PMV) and successful extubation using serial LUS scores. We examined the relationship of PMV with successful extubation in patients with severe coronavirus disease (COVID-19) by using two types of serial LUS scores. One LUS score evaluated both the pleura and lung fields, while the other assessed each separately (modified-LUS score). Both LUS scores were determined for 20 consecutive patients with severe COVID-19 at three timepoints: admission (day-1), after 48 h (day-3), and on the seventh follow-up day (day-7). We compared LUS scores with the radiographic assessment of the lung oedema (RALE) scores and laboratory test results, at the three timepoints. The PMV and successful extubation groups showed no significant differences in mortality, but significant differences occurred on day-3 and day-7 both LUS scores, day-7 RALE score, and day-7 PaO2/FiO2 ratio, in the PMV group (p<0.05); and day-3 and day-7 modified-LUS scores, day-7 C-reactive protein levels, and day-7 PaO2/FiO2 ratio, in the successful extubation group (p<0.05). The area under the curves (AUC) of LUS scores on day-3 and day-7, modified-LUS scores on day-3 and day-7,RALE score on day-7, and PaO2/FiO2 ratio on day-7 in the PMV group were 0.98, 0.85, 0.88, 0.98, 0.77, and 0.80, respectively. The AUC of modified-LUS scores on day-3 and day-7, C-reactive protein levels on day-7, and PaO2/FiO2 ratio on day-7 in the successful extubation group were 0.79, 0.90, 0.82, and 0.79, respectively. The modified-LUS score on day 7 was significantly higher than that on day 1 in PMV group (p<0.05). While the LUS score did not exhibit significant differences. The serial modified-LUS score of patients with severe COVID-19 could predict PMV.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , C-Reactive Protein , COVID-19/diagnostic imaging , COVID-19/therapy , Cohort Studies , Humans , Lung/diagnostic imaging , Respiration, Artificial , Respiratory Sounds , Ultrasonography/methods
12.
BMJ ; 374: n2132, 2021 09 21.
Article in English | MEDLINE | ID: covidwho-1923193

ABSTRACT

OBJECTIVE: To assess whether point-of care procalcitonin and lung ultrasonography can safely reduce unnecessary antibiotic treatment in patients with lower respiratory tract infections in primary care. DESIGN: Three group, pragmatic cluster randomised controlled trial from September 2018 to March 2020. SETTING: 60 Swiss general practices. PARTICIPANTS: One general practitioner per practice was included. General practitioners screen all patients with acute cough; patients with clinical pneumonia were included. INTERVENTIONS: Randomisation in a 1:1:1 of general practitioners to either antibiotics guided by sequential procalcitonin and lung ultrasonography point-of-care tests (UltraPro; n=152), procalcitonin guided antibiotics (n=195), or usual care (n=122). MAIN OUTCOMES: Primary outcome was proportion of patients in each group prescribed an antibiotic by day 28. Secondary outcomes included duration of restricted activities due to lower respiratory tract infection within 14 days. RESULTS: 60 general practitioners included 469 patients (median age 53 years (interquartile range 38-66); 278 (59%) were female). Probability of antibiotic prescription at day 28 was lower in the procalcitonin group than in the usual care group (0.40 v 0.70, cluster corrected difference -0.26 (95% confidence interval -0.41 to -0.10)). No significant difference was seen between UltraPro and procalcitonin groups (0.41 v 0.40, -0.03 (-0.17 to 0.12)). The median number of days with restricted activities by day 14 was 4 days in the procalcitonin group and 3 days in the usual care group (difference 1 day (95% confidence interval -0.23 to 2.32); hazard ratio 0.75 (95% confidence interval 0.58 to 0.97)), which did not prove non-inferiority. CONCLUSIONS: Compared with usual care, point-of-care procalcitonin led to a 26% absolute reduction in the probability of 28 day antibiotic prescription without affecting patients' safety. Point-of-care lung ultrasonography did not further reduce antibiotic prescription, although a potential added value cannot be excluded, owing to the wide confidence intervals. TRIAL REGISTRATION: ClinicalTrials.gov NCT03191071.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Point-of-Care Testing , Procalcitonin/blood , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Ultrasonography/methods , Adult , Aged , Biomarkers/analysis , Cluster Analysis , Drug Prescriptions/statistics & numerical data , Female , General Practice , Humans , Intention to Treat Analysis , Lung/diagnostic imaging , Male , Middle Aged , Primary Health Care/methods
13.
BMJ Open ; 12(6): e060181, 2022 06 24.
Article in English | MEDLINE | ID: covidwho-1909763

ABSTRACT

OBJECTIVES: Early identification of SARS-CoV-2 infection is important to guide quarantine and reduce transmission. This study evaluates the diagnostic performance of lung ultrasound (LUS), an affordable, consumable-free point-of-care tool, for COVID-19 screening. DESIGN, SETTING AND PARTICIPANTS: This prospective observational cohort included adults presenting with cough and/or dyspnoea at a SARS-CoV-2 screening centre of Lausanne University Hospital between 31 March and 8 May 2020. INTERVENTIONS: Investigators recorded standardised LUS images and videos in 10 lung zones per patient. Two blinded independent experts reviewed LUS recording and classified abnormal findings according to prespecified criteria to investigate their predictive value to diagnose SARS-CoV-2 infection according to PCR on nasopharyngeal swabs (COVID-19 positive vs COVID-19 negative). PRIMARY AND SECONDARY OUTCOME MEASURES: We finally combined LUS and clinical findings to derive a multivariate logistic regression diagnostic score. RESULTS: Of 134 included patients, 23% (n=30/134) were COVID-19 positive and 77% (n=103/134) were COVID-19 negative; 85%, (n=114/134) cases were previously healthy healthcare workers presenting within 2-5 days of symptom onset (IQR). Abnormal LUS findings were significantly more frequent in COVID-19 positive compared with COVID-19 negative (45% vs 26%, p=0.045) and mostly consisted of focal pathologic B lines. Combining clinical findings in a multivariate logistic regression score had an area under the receiver operating curve of 80.3% to detect COVID-19, and slightly improved to 84.5% with the addition of LUS features. CONCLUSIONS: COVID-19-positive patients are significantly more likely to have lung pathology by LUS. However, LUS has an insufficient sensitivity and is not an appropriate screening tool in outpatients. LUS only adds little value to clinical features alone.


Subject(s)
COVID-19 , Adult , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Outpatients , Point-of-Care Systems , Prospective Studies , SARS-CoV-2 , Switzerland/epidemiology , Ultrasonography/methods
14.
Ann Rheum Dis ; 81(6): 760-767, 2022 06.
Article in English | MEDLINE | ID: covidwho-1854252

ABSTRACT

OBJECTIVES: To develop evidence-based Points to Consider (PtC) for the use of imaging modalities to guide interventional procedures in patients with rheumatic and musculoskeletal diseases (RMDs). METHODS: European Alliance of Associations for Rheumatology (EULAR) standardised operating procedures were followed. A systematic literature review was conducted to retrieve data on the role of imaging modalities including ultrasound (US), fluoroscopy, MRI, CT and fusion imaging to guide interventional procedures. Based on evidence and expert opinion, the task force (25 participants consisting of physicians, healthcare professionals and patients from 11 countries) developed PtC, with consensus obtained through voting. The final level of agreement was provided anonymously. RESULTS: A total of three overarching principles and six specific PtC were formulated. The task force recommends preference of imaging over palpation to guide targeted interventional procedures at peripheral joints, periarticular musculoskeletal structures, nerves and the spine. While US is the favoured imaging technique for peripheral joints and nerves, the choice of the imaging method for the spine and sacroiliac joints has to be individualised according to the target, procedure, expertise, availability and radiation exposure. All imaging guided interventions should be performed by a trained specialist using appropriate operational procedures, settings and assistance by technical personnel. CONCLUSION: These are the first EULAR PtC to provide guidance on the role of imaging to guide interventional procedures in patients with RMDs.


Subject(s)
Muscular Diseases , Musculoskeletal Diseases , Rheumatic Diseases , Rheumatology , Humans , Musculoskeletal Diseases/diagnostic imaging , Musculoskeletal Diseases/therapy , Rheumatic Diseases/diagnostic imaging , Rheumatic Diseases/therapy , Ultrasonography/methods
15.
Eur Radiol Exp ; 6(1): 20, 2022 05 10.
Article in English | MEDLINE | ID: covidwho-1833380

ABSTRACT

The use of a pocked-sized, wireless-Bluetooth ultrasound portable system with display images presented on a tablet facilitated the work of our radiologists during the first wave of coronavirus disease 2019 (COVID-19) to perform diagnostic and interventional procedures in bedridden patients. The device is equipped with a battery-powered probe without cables that transmits images to a tablet (or a cell phone) through a dedicated App. We hypothesise in future to extend diagnostic and low-complexity interventional procedures from hospitalised patients to at-home patients who are not able to mobilise out of bed or are difficult to transport. This domiciliary service might also reduce the overhead of hospital accesses.


Subject(s)
COVID-19 , Bedridden Persons , Humans , Intensive Care Units , Pandemics , Ultrasonography/methods
16.
Anaesthesiol Intensive Ther ; 54(1): 1-2, 2022.
Article in English | MEDLINE | ID: covidwho-1818526

ABSTRACT

I have attentively read the article "Minute Zero: an essential assessment in peri-operative ultrasound for anaesthesia" by Elena Segura-Grau et al. [1]. The authors have suggested using point-of-care ultrasonography (POCUS) as part of a comprehensive anaesthetic assessment in the perioperative period. Such an extension of the standard perioperative examination aimed at searching for pathologies that may affect the intra- and postoperative course performed by an anaes-thesiologist seems fully justified and may have a significant impact on treatment outcomes [2]. In the "Minute Zero" model, the authors have suggested that POCUS assessment of anaesthetised patients should be carried out twice - on admission to the operating theatre and before transfer to the postoperative ward. The described scheme is based on the well-known eFAST, FATE and BLUE protocols (assessment to determine the presence of free fluid in the body cavities, basic cardiac assessment, including IVC, and lung ultrasound assessment). The examination conducted in the manner specified by the authors provides a general but holistic picture of the patient, focused at detecting life-threatening pathologies. It is right to include a preoperative assessment of the filling of the stomach in the protocol, as the surface area of the pylorus found on ultrasound scans indicates the risk of aspiration during the induction of general anaesthesia [3, 4]. This may be of particular importance in patients undergoing emergency procedures, with gastrointestinal obstruction or in those with difficult contact (mainly children and the elderly). In the algorithm described, the assessment of bladder filling in the postoperative period has been emphasised. This is a huge asset, which is often overlooked and, as the authors rightly point out, can cause postoperative delirium, especially in the elderly. The authors have developed an examination card that enables to document the examination in a simple and transparent manner based on markings of the appropriate blanks, which makes the protocol very friendly. The additional pros of the publication are the attached sample ultrasound images, which perfectly illustrate the ease of diagnosis of basic pathologies.


Subject(s)
Anesthesiology , Anesthetics , Aged , Anesthesia, General , Child , Humans , Point-of-Care Systems , Ultrasonography/methods
17.
J Neuroimaging ; 32(1): 104-110, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1769736

ABSTRACT

BACKGROUND AND PURPOSE: Treatment of elevated intracranial pressure (ICP) is central to neurocritical care, but not all patients are eligible for invasive ICP-monitoring. A promising noninvasive option is ultrasound measurement of the optic nerve sheath diameter (ONSD). However, meta-analyses of ONSD for elevated ICP show wide confidence intervals. This might be due to baseline variations, inter-rater variability, and varying measurement methods. No standardized protocol has been validated. Corrections for eyeball diameter (ED) and optic nerve diameter (OND) may compensate for baseline variations. We evaluated a protocol and compared two different measurement methods for ONSD ultrasound. METHODS: Two operators, blinded to each other's measurements, measured ONSD, ED, and OND twice in 20 patients. ONSD was measured with two different methods in use: internal (ONSDint) or external (ONSDext) of the dura mater. Intra-class correlation (ICC) was calculated for inter-rater and intra-rater reliability. RESULTS: ICCs for inter-rater reliability of ONSDext and ONSDint (95% confidence interval) were 0.96 (0.93, 0.98) and 0.88 (0.79, 0.94), respectively. ICCs for intra-rater reliability of ONSDext and ONSDint were 0.97 (0.94, 0.99) and 0.93 (0.87, 0.96), respectively. There was no significant bias or difference in intra-rater reliability between operators. CONCLUSIONS: ONSD can be measured with an excellent inter- and intra-rater reliability and low risk of inter-rater bias, when using this protocol. ONSDext yields a higher inter- and intra-rater reliability than ONSDint. Corrections for ED and OND can be performed reliably.


Subject(s)
Intracranial Hypertension , Central Nervous System , Humans , Intracranial Hypertension/diagnostic imaging , Intracranial Pressure/physiology , Optic Nerve/diagnostic imaging , Reproducibility of Results , Ultrasonography/methods
18.
J Urol ; 207(1): 152-160, 2022 01.
Article in English | MEDLINE | ID: covidwho-1769451

ABSTRACT

PURPOSE: Urologists will benefit from an imaging modality which can assess intra and extraluminal characteristics of urethral strictures. We conducted a prospective pilot study evaluating the utility of contrast-enhanced ultrasound and shear wave elastography for the evaluation of bulbar urethral stricture disease. MATERIALS AND METHODS: Patients with a single, bulbar urethral stricture were prospectively recruited. Contrast-enhanced ultrasound and shear wave elastography were performed at the time of surgical repair and at 4 months' followup using an Aplio i800 scanner (Canon Medical Systems, Tustin, California) with an i8CX1 transducer. Sulfur hexafluoride lipid-type A microsphere ultrasound contrast (Lumason®, Bracco Imaging, Princeton, New Jersey) was injected retrograde through the urethra. Stiffness of the corpus spongiosum was measured at and adjacent to the stricture site. Stricture lengths based on retrograde urethrogram, grayscale ultrasound and contrast-enhanced ultrasound were correlated with measured intraoperative stricture length. RESULTS: Thirty men were enrolled. Contrast-enhanced ultrasound (R2=0.709) showed the best correlation with intraoperative measured stricture length compared to retrograde urethrogram (R2=0.016) or grayscale ultrasound (R2=0.471). Stiffness of the spongiosum was greater at the site of the stricture (32.6±5.4 vs 27.3±5.8 kPa, p=0.044) and in narrower caliber strictures (p=0.044) but did not differ by stricture length (p=0.182). At followup (4.3±1.1 months) contrast-enhanced ultrasound detected stricture recurrence with 80% sensitivity, 100% specificity, and 93% accuracy compared to cystoscopy. CONCLUSIONS: This pilot study demonstrates the ability of contrast-enhanced ultrasound and shear wave elastography to become safe, accurate, and potentially efficacious modalities for assessing bulbar urethral strictures and spongiofibrosis.


Subject(s)
Contrast Media , Elasticity Imaging Techniques , Urethral Stricture/diagnostic imaging , Adult , Aged , Humans , Male , Microspheres , Middle Aged , Pilot Projects , Prospective Studies , Ultrasonography/methods
19.
Respir Med ; 197: 106826, 2022 06.
Article in English | MEDLINE | ID: covidwho-1768511

ABSTRACT

BACKGROUND: Lung ultrasound (LUS) is a useful tool for diagnosis and monitoring in patients with active COVID-19-infection. However, less is known about the changes in LUS findings after a hospitalization for COVID-19. METHODS: In a prospective, longitudinal study in patients with COVID-19 enrolled from non-ICU hospital units, adult patients underwent 8-zone LUS and blood sampling both during the hospitalization and 2-3 months after discharge. LUS images were analyzed blinded to clinical variables and outcomes. RESULTS: A total of 71 patients with interpretable LUS at baseline and follow up (mean age 64 years, 61% male, 24% with acute respiratory distress syndrome (ARDS)) were included. The follow-up LUS was performed a median of 72 days after the initial LUS performed during hospitalization. At baseline, 87% had pathologic LUS findings in ≥1 zone (e.g. ≥3 B-lines, confluent B-lines or subpleural or lobar consolidation), whereas 30% had pathologic findings at follow-up (p < 0.001). The total number of B-lines and LUS score decreased significantly from hospitalization to follow-up (median 17 vs. 4, p < 0.001 and 4 vs. 0, p < 0.001, respectively). On the follow-up LUS, 28% of all patients had ≥3 B-lines in ≥1 zone, whereas in those with ARDS during the baseline hospitalization (n = 17), 47% had ≥3 B-lines in ≥1 zone. CONCLUSION: LUS findings improved significantly from hospitalization to follow-up 2-3 months after discharge in COVID-19 survivors. However, persistent B-lines were frequent at follow-up, especially among those who initially had ARDS. LUS seems to be a promising method to monitor COVID-19 lung changes over time. GOV ID: NCT04377035.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Adult , COVID-19/diagnostic imaging , Cohort Studies , Female , Hospitalization , Humans , Longitudinal Studies , Lung/diagnostic imaging , Male , Middle Aged , Prospective Studies , Respiratory Distress Syndrome/diagnostic imaging , Ultrasonography/methods
20.
IEEE Trans Ultrason Ferroelectr Freq Control ; 69(5): 1661-1669, 2022 05.
Article in English | MEDLINE | ID: covidwho-1759131

ABSTRACT

The application of lung ultrasound (LUS) imaging for the diagnosis of lung diseases has recently captured significant interest within the research community. With the ongoing COVID-19 pandemic, many efforts have been made to evaluate LUS data. A four-level scoring system has been introduced to semiquantitatively assess the state of the lung, classifying the patients. Various deep learning (DL) algorithms supported with clinical validations have been proposed to automate the stratification process. However, no work has been done to evaluate the impact on the automated decision by varying pixel resolution and bit depth, leading to the reduction in size of overall data. This article evaluates the performance of DL algorithm over LUS data with varying pixel and gray-level resolution. The algorithm is evaluated over a dataset of 448 LUS videos captured from 34 examinations of 20 patients. All videos are resampled by a factor of 2, 3, and 4 of original resolution, and quantized to 128, 64, and 32 levels, followed by score prediction. The results indicate that the automated scoring shows negligible variation in accuracy when it comes to the quantization of intensity levels only. Combined effect of intensity quantization with spatial down-sampling resulted in a prognostic agreement ranging from 73.5% to 82.3%.These results also suggest that such level of prognostic agreement can be achieved over evaluation of data reduced to 32 times of its original size. Thus, laying foundation to efficient processing of data in resource constrained environments.


Subject(s)
COVID-19 , Deep Learning , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Pandemics , Ultrasonography/methods
SELECTION OF CITATIONS
SEARCH DETAIL