Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Curr Opin Pediatr ; 34(2): 170-177, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1672398

ABSTRACT

PURPOSE OF REVIEW: For over a decade, the International Liaison Committee on Resuscitation has recommended delayed cord clamping (DCC), but implementation has been variable due to lack of consensus on details of technique and concerns for risks in certain patient populations. This review summarizes recent literature on the benefits and risks of DCC in term and preterm infants and examines alternative approaches such as physiologic-based cord clamping or intact cord resuscitation (ICR) and umbilical cord milking (UCM). RECENT FINDINGS: DCC improves hemoglobin/hematocrit among term infants and may promote improved neurodevelopment. In preterms, DCC improves survival compared to early cord clamping; however, UCM has been associated with severe intraventricular hemorrhage in extremely preterm infants. Infants of COVID-19 positive mothers, growth-restricted babies, multiples, and some infants with cardiopulmonary anomalies can also benefit from DCC. Large randomized trials of ICR will clarify safety and benefits in nonvigorous neonates. These have the potential to dramatically change the sequence of events during neonatal resuscitation. SUMMARY: Umbilical cord management has moved beyond simple time-based comparisons to nuances of technique and application in vulnerable sub-populations. Ongoing research highlights the importance of an individualized approach that recognizes the physiologic equilibrium when ventilation is established before cord clamping.


Subject(s)
COVID-19 , Infant, Premature , COVID-19/prevention & control , Female , Hematocrit , Hemoglobins , Humans , Infant, Newborn , Pregnancy , Pregnancy Complications, Infectious , Resuscitation , SARS-CoV-2 , Time Factors , Umbilical Cord/physiology , Umbilical Cord/surgery
2.
Placenta ; 117: 161-168, 2022 01.
Article in English | MEDLINE | ID: covidwho-1557002

ABSTRACT

The emergence of COVID-19 has created a major health crisis across the globe. Invasion of SARS-CoV-2 into the lungs causes acute respiratory distress syndrome (ARDS) that result in the damage of lung alveolar epithelial cells. Currently, there is no standard treatment available to treat the disease and the resultant lung scarring is irreversible even after recovery. This has prompted researchers across the globe to focus on developing new therapeutics and vaccines for the treatment and prevention of COVID-19. Mesenchymal stem cells (MSCs) have emerged as an efficient drug screening platform and MSC-derived organoids has found applications in disease modeling and drug discovery. Perinatal tissue derived MSC based cell therapies have been explored in the treatment of various disease conditions including ARDS because of their enhanced regenerative and immunomodulatory properties. The multi-utility properties of MSCs have been described in this review wherein we discuss the potential use of MSC-derived lung organoids in screening of novel therapeutic compounds for COVID-19 and also in disease modeling to better understand the pathogenesis of the disease. This article also summarizes the rationale behind the development of MSC-based cell- and cell-free therapies and vaccines for COVID-19 with a focus on the current progress in this area. With the pandemic raging, an important necessity is to develop novel treatment strategies which will not only alleviate the disease symptoms but also avoid any off-target effects which could further increase post infection sequelae. Naturally occurring mesenchymal stem cells could be the magic bullet which fulfil these criteria.


Subject(s)
Amnion/cytology , COVID-19/therapy , Mesenchymal Stem Cells , Placenta/cytology , SARS-CoV-2 , Umbilical Cord/cytology , COVID-19 Vaccines , Cell- and Tissue-Based Therapy , Exosomes/transplantation , Female , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/ultrastructure , Pregnancy , SARS-CoV-2/immunology , Wharton Jelly/cytology
3.
J Cell Mol Med ; 26(1): 228-234, 2022 01.
Article in English | MEDLINE | ID: covidwho-1532813

ABSTRACT

The outbreak of COVID-19 has become a serious public health emergency. The virus targets cells by binding the ACE2 receptor. After infection, the virus triggers in some humans an immune storm containing the release of proinflammatory cytokines and chemokines followed by multiple organ failure. Several vaccines are enrolled, but an effective treatment is still missing. Mesenchymal stem cells (MSCs) have shown to secrete immunomodulatory factors that suppress this cytokine storm. Therefore, MSCs have been suggested as a potential treatment option for COVID-19. We report here that the ACE2 expression is minimal or nonexistent in MSC derived from three different human tissue sources (adipose tissue, umbilical cord Wharton`s jelly and bone marrow). In contrast, TMPRSS2 that is implicated in SARS-CoV-2 entry has been detected in all MSC samples. These results are of particular importance for future MSC-based cell therapies to treat severe cases after COVID-19 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/therapy , Cell- and Tissue-Based Therapy/methods , Cytokine Release Syndrome/therapy , Mesenchymal Stem Cell Transplantation/methods , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Adipose Tissue/cytology , Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Gene Expression Profiling , Gene Expression Regulation , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Primary Cell Culture , Protein Binding , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Umbilical Cord/cytology , Umbilical Cord/metabolism
4.
Cell Transplant ; 30: 9636897211054481, 2021.
Article in English | MEDLINE | ID: covidwho-1511642

ABSTRACT

Biological and cellular interleukin-6 (IL-6)-related therapies have been used to treat severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure, which prompted further exploration of the role of IL-6 in human umbilical cord mesenchymal stem cell (hUCMSC) therapy. Peripheral blood mononuclear cells (PBMCs) were responders cocultured with hUCMSCs or exogenous IL-6. A PBMC suppression assay was used to analyze the anti-inflammatory effects via MTT assay. The IL-6 concentration in the supernatant was measured using ELISA. The correlation between the anti-inflammatory effect of hUCMSCs and IL-6 levels and the relevant roles of IL-6 and IL-6 mRNA expression was analyzed using the MetaCore functional network constructed from gene microarray data. The location of IL-6 and IL-6 receptor (IL-6R) expression was further evaluated. We reported that hUCMSCs did not initially exert any inhibitory effect on PHA-stimulated proliferation; however, a potent inhibitory effect on PHA-stimulated proliferation was observed, and the IL-6 concentration reached approximately 1000 ng/mL after 72 hours. Exogenous 1000 ng/mL IL-6 inhibited PHA-stimulated inflammation but less so than hUCMSCs. The inhibitory effects of hUCMSCs on PHA-stimulated PBMCs disappeared after adding an IL-6 neutralizing antibody or pretreatment with tocilizumab (TCZ), an IL-6R antagonist. hUCMSCs exert excellent anti-inflammatory effects by inducing higher IL-6 levels, which is different from TCZ. High concentration of IL-6 cytokine secretion plays an important role in the anti-inflammatory effect of hUCMSC therapy. Initial hUCMSC therapy, followed by TCZ, seems to optimize the therapeutic potential to treat COVID-19-related acute respiratory distress syndrome (ARDS).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/complications , Interleukin-6/biosynthesis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/immunology , Cells, Cultured , Coculture Techniques , Combined Modality Therapy , DNA, Complementary/genetics , Gene Expression Regulation/drug effects , Humans , Inflammation , Interleukin-6/genetics , Interleukin-6/pharmacology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/drug effects , Phytohemagglutinins/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/biosynthesis , Receptors, Interleukin-6/genetics , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Umbilical Cord/cytology
5.
Arch Dis Child Fetal Neonatal Ed ; 106(6): 627-634, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1503592

ABSTRACT

OBJECTIVE: To identify risk factors associated with delivery room respiratory support in at-risk infants who are initially vigorous and received delayed cord clamping (DCC). DESIGN: Prospective cohort study. SETTING: Two perinatal centres in Melbourne, Australia. PATIENTS: At-risk infants born at ≥35+0 weeks gestation with a paediatric doctor in attendance who were initially vigorous and received DCC for >60 s. MAIN OUTCOME MEASURES: Delivery room respiratory support defined as facemask positive pressure ventilation, continuous positive airway pressure and/or supplemental oxygen within 10 min of birth. RESULTS: Two hundred and ninety-eight infants born at a median (IQR) gestational age of 39+3 (38+2-40+2) weeks were included. Cord clamping occurred at a median (IQR) of 128 (123-145) s. Forty-four (15%) infants received respiratory support at a median of 214 (IQR 156-326) s after birth. Neonatal unit admission for respiratory distress occurred in 32% of infants receiving delivery room respiratory support vs 1% of infants who did not receive delivery room respiratory support (p<0.001). Risk factors independently associated with delivery room respiratory support were average heart rate (HR) at 90-120 s after birth (determined using three-lead ECG), mode of birth and time to establish regular cries. Decision tree analysis identified that infants at highest risk had an average HR of <165 beats per minute at 90-120 s after birth following caesarean section (risk of 39%). Infants with an average HR of ≥165 beats per minute at 90-120 s after birth were at low risk (5%). CONCLUSIONS: We present a clinical decision pathway for at-risk infants who may benefit from close observation following DCC. Our findings provide a novel perspective of HR beyond the traditional threshold of 100 beats per minute.


Subject(s)
Critical Pathways/standards , Delivery, Obstetric , Electrocardiography/methods , Oxygen Inhalation Therapy , Umbilical Cord , Australia/epidemiology , Cesarean Section/adverse effects , Cesarean Section/methods , Clinical Decision-Making , Constriction , Continuous Positive Airway Pressure/methods , Delivery, Obstetric/adverse effects , Delivery, Obstetric/methods , Delivery, Obstetric/statistics & numerical data , Female , Gestational Age , Heart Rate , Humans , Infant, Newborn , Male , Monitoring, Physiologic/methods , Oxygen Inhalation Therapy/adverse effects , Oxygen Inhalation Therapy/instrumentation , Oxygen Inhalation Therapy/methods , Risk Assessment/methods , Risk Factors , Time-to-Treatment/standards , Time-to-Treatment/statistics & numerical data
6.
J Cell Mol Med ; 25(17): 8558-8566, 2021 09.
Article in English | MEDLINE | ID: covidwho-1393908

ABSTRACT

Mesenchymal stem cells (MSCs) have been shown as an effective medicinal means to treat bronchopulmonary dysplasia (BPD). The widely used MSCs were from Wharton's jelly of umbilical cord (UC-MSCs) and bone marrow (BM-MSCs). Amniotic fluid MSCs (AF-MSCs) may be produced before an individual is born to treat foetal diseases by autoplastic transplantation. We evaluated intratracheal (IT) MSCs as an approach to treat an hyperoxia-induced BPD animal model and compared the therapeutic effects between AF-, UC- and BM-MSCs. A BPD animal model was generated by exposing newborn rats to 95% O2 . The continued stress lasted 21 days, and the treatment of IT MSCs was conducted for 4 days. The therapeutic effects were analysed, including lung histology, level of inflammatory cytokines, cell death ratio and state of angiogenesis, by sacrificing the experimental animal at day 21. The lasting hyperoxia stress induced BPD similar to the biological phenotype. The treatment of IT MSCs was safe without deaths and normal organ histopathology. Specifically, the treatment was effective by inhibiting the alveolar dilatation, reducing inflammatory cytokines, inducing angiogenesis and lowering the cell death ratio. AF-MSCs had better therapeutic effects compared with UC-MSCs in relieving the pulmonary alveoli histological changes and promoting neovascularization, and UC-MSCs had the best immunosuppressive effect in plasma and lung lysis compared with AF-MSCs and BM-MSCs. This study demonstrated the therapeutic effects of AF-, UC- and BM-MSCs in BPD model. Superior treatment effect was provided by antenatal MSCs compared to BM-MSC in a statistical comparison.


Subject(s)
Bronchopulmonary Dysplasia/therapy , Hyperoxia/therapy , Mesenchymal Stem Cell Transplantation/methods , Animals , Animals, Newborn , Cells, Cultured , Humans , Mesenchymal Stem Cells , Neovascularization, Physiologic , Rats , Rats, Sprague-Dawley , Umbilical Cord
9.
Stem Cells Dev ; 30(15): 773-781, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1303889

ABSTRACT

Previously, we demonstrated the therapeutic effects of human umbilical cord mesenchymal stromal cells (hUC-MSCs) in severe coronavirus disease 2019 (COVID-19) patients. In this 3-month follow-up study, we examined discharged patients who had received hUC-MSC therapy to assess the safety of this therapy and the health-related quality of life (HRQL) of these patients. The follow-up cohort consisted of 28 discharged severe COVID-19 patients who received either the standard treatment (the control group) or the standard treatment plus hUC-MSC therapy. We examined liver function, kidney function, pulmonary function, coagulation, tumor markers, and vision. We also conducted electrocardiography (ECG) analysis, let the patients answer the St. George's Respiratory Questionnaire (SGRQ), and performed computed tomography (CT) imaging for assessing the lung changes. No obvious adverse effects were observed in the hUC-MSC group after 3 months. Measurements of blood routine index, C-reactive protein and procalcitonin, liver and kidney function, coagulation, ECG, tumor markers, and vision were almost within the normal ranges in both the treatment and control groups. Forced expiratory volumes in 1 s (FEV1) (% of predicted) were 71.88% ± 8.46% and 59.45% ± 27.45% in the hUC-MSC and control groups (P < 0.01), respectively, and FEV1/forced vital capacity (FEV1/FVC) ratios were 79.95% ± 8.00% and 58.97% ± 19.16% in the hUC-MSC and control groups, respectively (P < 0.05). SGRQ scores were lower in the hUC-MSC group than in the control group (15.25 ± 3.69 vs. 31.9 ± 8.78, P < 0.05). The rate of wheezing in the hUC-MSC group was also significantly lower than that in the control group (37.5% vs. 75%, P < 0.05). There were no significant differences in CT scores between the two groups (0.60 ± 0.88 vs. 1.00 ± 1.31, P = 0.917). Overall, the intravenous transplantation of hUC-MSCs accelerated partial pulmonary function recovery and improved HRQL, indicating relative safety and preliminary efficacy of this treatment for patients with severe COVID-19.


Subject(s)
COVID-19/therapy , Cord Blood Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Adult , Aged , COVID-19/epidemiology , COVID-19/pathology , Case-Control Studies , China/epidemiology , Cohort Studies , Comorbidity , Cord Blood Stem Cell Transplantation/statistics & numerical data , Female , Follow-Up Studies , Humans , Male , Mesenchymal Stem Cell Transplantation/statistics & numerical data , Middle Aged , Patient Discharge , Respiratory Function Tests , SARS-CoV-2/physiology , Severity of Illness Index , Treatment Outcome , Umbilical Cord/cytology
10.
Eur Rev Med Pharmacol Sci ; 25(12): 4435-4438, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1296356

ABSTRACT

OBJECTIVE: We aimed at explaining the mechanism of therapeutic effect of Umbilical Cord Mesenchymal Stem Cells (UC-MSC) in subjects with COVID-19 Acute Respiratory Distress Syndrome (ARDS). Patients with COVID-19 ARDS present with a hyperinflammatory response characterized by high levels of circulating pro-inflammatory mediators, including tumor necrosis factor α and ß (TNFα and TNFß). Inflammatory functions of these TNFs can be inhibited by soluble TNF Receptor 2 (sTNFR2). In patients with COVID-19 ARDS, UC-MSC appear to impart a robust anti-inflammatory effect, and treatment is associated with remarkable clinical improvements. We investigated the levels of TNFα, TNFß and sTNFR2 in blood plasma samples collected from subjects with COVID-19 ARDS enrolled in our trial of UC-MSC treatment. PATIENTS AND METHODS: We analyzed plasma samples from subjects with COVID-19 ARDS (n=24) enrolled in a Phase 1/2a randomized controlled trial of UC-MSC treatment. Plasma samples were obtained at Day 0 (baseline, before UC-MSC or control infusion), and Day 6 post infusion. Plasma concentrations of sTNFR2, TNFα, and TNFß were evaluated using a quantitative multiplex protein array. RESULTS: Our data indicate that at Day 6 after infusion, UC-MSC recipients develop significantly increased levels of plasma sTNFR2 and significantly decreased levels of TNFα and TNFß, compared to controls. CONCLUSIONS: These observations suggest that sTNFR2 plays a mechanistic role in mediating UC-MSC effect on TNFα and TNFß plasma levels, determining a decrease in inflammation in COVID-19 ARDS.


Subject(s)
COVID-19/blood , Lymphotoxin-alpha/blood , Mesenchymal Stem Cell Transplantation/methods , Receptors, Tumor Necrosis Factor, Type II/blood , Respiratory Distress Syndrome/blood , Tumor Necrosis Factor-alpha/blood , Umbilical Cord/transplantation , Biomarkers/blood , COVID-19/therapy , Double-Blind Method , Humans , Respiratory Distress Syndrome/therapy , Umbilical Cord/cytology
11.
Stem Cells Transl Med ; 10(9): 1279-1287, 2021 09.
Article in English | MEDLINE | ID: covidwho-1260571

ABSTRACT

One of the main causes of acute respiratory distress syndrome in coronavirus disease 2019 (COVID-19) is cytokine storm, although the exact cause is still unknown. Umbilical cord mesenchymal stromal cells (UC-MSCs) influence proinflammatory T-helper 2 (Th2 ) cells to shift to an anti-inflammatory agent. To investigate efficacy of UC-MSC administration as adjuvant therapy in critically ill patients with COVID-19, we conducted a double-blind, multicentered, randomized controlled trial at four COVID-19 referral hospitals in Jakarta, Indonesia. This study included 40 randomly allocated critically ill patients with COVID-19; 20 patients received an intravenous infusion of 1 × 106 /kg body weight UC-MSCs in 100 ml saline (0.9%) solution (SS) and 20 patients received 100 ml 0.9% SS as the control group. All patients received standard therapy. The primary outcome was measured by survival rate and/or length of ventilator usage. The secondary outcome was measured by clinical and laboratory improvement, with serious adverse events. Our study showed the survival rate in the UC-MSCs group was 2.5 times higher than that in the control group (P = .047), which is 10 patients and 4 patients in the UC-MSCs and control groups, respectively. In patients with comorbidities, UC-MSC administration increased the survival rate by 4.5 times compared with controls. The length of stay in the intensive care unit and ventilator usage were not statistically significant, and no adverse events were reported. The application of infusion UC-MSCs significantly decreased interleukin 6 in the recovered patients (P = .023). Therefore, application of intravenous UC-MSCs as adjuvant treatment for critically ill patients with COVID-19 increases the survival rate by modulating the immune system toward an anti-inflammatory state.


Subject(s)
Mesenchymal Stem Cells/cytology , SARS-CoV-2/growth & development , SARS-CoV-2/physiology , Umbilical Cord/cytology , COVID-19 , Double-Blind Method , Humans , Male , Middle Aged , Severity of Illness Index
12.
Stem Cell Res Ther ; 12(1): 316, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1255964

ABSTRACT

Coronavirus disease 2019 (COVID-19) may result in a life-threatening condition due to a hyperactive immune reaction to severe acute respiratory syndrome-coronavirus-2 infection, for which no effective treatment is available. Based on the potent immunomodulatory properties of mesenchymal stromal cells (MSCs), a growing number of trials are ongoing. This prompted us to carry out a thorough immunological study in a patient treated with umbilical cord-derived MSCs and admitted to the Intensive Care Unit for COVID-19-related pneumonia. The exploratory analyses were assessed on both peripheral blood and bronchoalveolar fluid lavage samples at baseline and after cellular infusion by means of single-cell RNA sequencing, flow cytometry, ELISA, and functional assays. Remarkably, a normalization of circulating T lymphocytes count paralleled by a reduction of inflammatory myeloid cells, and a decrease in serum levels of pro-inflammatory cytokines, mostly of interleukin-6 and tumor necrosis factor-α, were observed. In addition, a drop of plasma levels of those chemokines essential for neutrophil recruitment became evident that paralleled the decrease of lung-infiltrating inflammatory neutrophils. Finally, circulating monocytes and low-density gradient neutrophils acquired immunosuppressive function. This scenario was accompanied by an amelioration of respiratory, renal, inflammatory, and pro-thrombotic indexes. Our results provide the first immunological data possibly related to the use of umbilical cord-derived MSCs in severe COVID-19 context.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , SARS-CoV-2 , Umbilical Cord
13.
Cell Transplant ; 30: 9636897211021008, 2021.
Article in English | MEDLINE | ID: covidwho-1255859

ABSTRACT

The coronavirus pandemic is one of the most significant public health events in recent history. Currently, no specific treatment is available. Some drugs and cell-based therapy have been tested as alternatives to decrease the disease's symptoms, length of hospital stay, and mortality. We reported the case of a patient with a severe manifestation of COVID-19 in critical condition who did not respond to the standard procedures used, including six liters of O2 supplementation under a nasal catheter and treatment with dexamethasone and enoxaparin in prophylactic dose. The patient was treated with tocilizumab and an advanced therapy product based on umbilical cord-derived mesenchymal stromal cells (UC-MSC). The combination of tocilizumab and UC-MSC proved to be safe, with no adverse effects, and the results of this case report prove to be a promising alternative in the treatment of patients with severe acute respiratory syndrome due to SARS-CoV-2.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/therapy , Mesenchymal Stem Cell Transplantation , COVID-19/drug therapy , COVID-19/virology , Combined Modality Therapy , Humans , Immunophenotyping , Karyotyping , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Middle Aged , RNA, Viral/analysis , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Thorax/diagnostic imaging , Tomography, X-Ray Computed , Umbilical Cord/cytology , Viral Load
14.
Stem Cells Dev ; 30(15): 758-772, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1254367

ABSTRACT

Cytokine storm is recognized as one of the factors contributing to organ failures and mortality in patients with COVID-19. Due to chronic inflammation, COVID-19 patients with diabetes mellitus (DM) or renal disease (RD) have more severe symptoms and higher mortality. However, the factors that contribute to severe outcomes of COVID-19 patients with DM and RD have received little attention. In an effort to investigate potential treatments for COVID-19, recent research has focused on the immunomodulation functions of mesenchymal stem cells (MSCs). In this study, the correlation between DM and RD and the severity of COVID-19 was examined by a combined approach with a meta-analysis and experimental research. The results of a systematic review and meta-analysis suggested that the odd of mortality in patients with both DM and RD was increased in comparison to those with a single comorbidity. In addition, in the experimental research, the data showed that high glucose and uremic toxins contributed to the induction of cytokine storm in human lung adenocarcinoma epithelial cells (Calu-3 cells) in response to SARS-CoV Peptide Pools. Of note, the incorporation of Wharton's jelly MSC-derived extracellular vesicles (WJ-EVs) into SARS-CoV peptide-induced Calu-3 resulted in a significant decrease in nuclear NF-κB p65 and the downregulation of the cytokine storm under high concentrations of glucose and uremic toxins. This clearly suggests the potential for WJ-EVs to reduce cytokine storm reactions in patients with both chronic inflammation diseases and viral infection.


Subject(s)
Cytokine Release Syndrome/prevention & control , Extracellular Vesicles/physiology , Mesenchymal Stem Cells/cytology , SARS-CoV-2/physiology , Wharton Jelly/cytology , Adult , Aged , COVID-19/blood , COVID-19/complications , COVID-19/metabolism , COVID-19/therapy , Cells, Cultured , Coculture Techniques , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/virology , Cytokines/genetics , Cytokines/metabolism , Diabetes Complications/blood , Diabetes Complications/metabolism , Diabetes Complications/therapy , Diabetes Complications/virology , Diabetes Mellitus/blood , Diabetes Mellitus/metabolism , Diabetes Mellitus/therapy , Diabetes Mellitus/virology , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Glucose/metabolism , Glucose/pharmacology , Humans , Inflammation Mediators/metabolism , Male , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Pregnancy , Toxins, Biological/metabolism , Toxins, Biological/pharmacology , Umbilical Cord/cytology , Uremia/blood , Uremia/complications , Uremia/metabolism , Uremia/therapy
15.
Clinics ; 76: e2604, 2021. tab, graf
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-1234900

ABSTRACT

OBJECTIVES: The coronavirus disease (COVID-19) outbreak has catastrophically threatened public health worldwide and presented great challenges for clinicians. To date, no specific drugs are available against severe acute respiratory syndrome coronavirus 2. Mesenchymal stem cells (MSCs) appear to be a promising cell therapy owing to their potent modulatory effects on reducing and healing inflammation-induced lung and other tissue injuries. The present pilot study aimed to explore the therapeutic potential and safety of MSCs isolated from healthy cord tissues in the treatment of patients with COVID-19. METHODS: Twelve patients with COVID-19 treated with MSCs plus conventional therapy and 13 treated with conventional therapy alone (control) were included. The efficacy of MSC infusion was evaluated by changes in oxygenation index, clinical chemistry and hematology tests, immunoglobulin (Ig) levels, and pulmonary computerized tomography (CT) imaging. The safety of MSC infusion was evaluated based on the occurrence of allergic reactions and serious adverse events. RESULTS: The MSC-treated group demonstrated significantly improved oxygenation index. The area of pulmonary inflammation decreased significantly, and the CT number in the inflammatory area tended to be restored. Decreased IgM levels were also observed after MSC therapy. Laboratory biomarker levels at baseline and after therapy showed no significant changes in either the MSC-treated or control group. CONCLUSION: Intravenous infusion of MSCs in patients with COVID-19 was effective and well tolerated. Further studies involving a large cohort or randomized controlled trials are warranted.


Subject(s)
Humans , Coronavirus Infections , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Umbilical Cord , Pilot Projects , Betacoronavirus
16.
Neuroimmunomodulation ; 28(1): 1-21, 2021.
Article in English | MEDLINE | ID: covidwho-1206095

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has devastating effects on the population worldwide. Given this scenario, the extent of the impact of the disease on more vulnerable individuals, such as pregnant women, is of great concern. Although pregnancy may be a risk factor in respiratory virus infections, there are no considerable differences regarding COVID-19 severity observed between pregnant and nonpregnant women. In these circumstances, an emergent concern is the possibility of neurodevelopmental and neuropsychiatric harm for the offspring of infected mothers. Currently, there is no stronger evidence indicating vertical transmission of SARS-CoV-2; however, the exacerbated inflammatory response observed in the disease could lead to several impairments in the offspring's brain. Furthermore, in the face of historical knowledge on possible long-term consequences for the progeny's brain after infection by viruses, we must consider that this might be another deleterious facet of COVID-19. In light of neuroimmune interactions at the maternal-fetal interface, we review here the possible harmful outcomes to the offspring brains of mothers infected by SARS-CoV-2.


Subject(s)
COVID-19/immunology , Neurodevelopmental Disorders/physiopathology , Neuroimmunomodulation/immunology , Pregnancy Complications, Infectious/immunology , Prenatal Exposure Delayed Effects/physiopathology , COVID-19/metabolism , COVID-19/physiopathology , Cytokine Release Syndrome/immunology , Decidua/immunology , Female , Humans , Immune Tolerance/immunology , Infectious Disease Transmission, Vertical , Neuroimmunomodulation/physiology , Placenta/immunology , Pregnancy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/physiopathology , SARS-CoV-2 , Umbilical Cord/immunology
17.
Stem Cell Res Ther ; 12(1): 230, 2021 04 12.
Article in English | MEDLINE | ID: covidwho-1192728

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF), the end point of interstitial lung diseases, is characterized by myofibroblast over differentiation and excessive extracellular matrix accumulation, leading to progressive organ dysfunction and usually a terminal outcome. Studies have shown that umbilical cord-derived mesenchymal stromal cells (uMSCs) could alleviate PF; however, the underlying mechanism remains to be elucidated. METHODS: The therapeutic effects of uMSC-derived extracellular vesicles (uMSC-EVs) on PF were evaluated using bleomycin (BLM)-induced mouse models. Then, the role and mechanism of uMSC-EVs in inhibiting myofibroblast differentiation were investigated in vivo and in vitro. RESULTS: Treatment with uMSC-EVs alleviated the PF and enhanced the proliferation of alveolar epithelial cells in BLM-induced mice, thus improved the life quality, including the survival rate, body weight, fibrosis degree, and myofibroblast over differentiation of lung tissue. Moreover, these effects of uMSC-EVs on PF are likely achieved by inhibiting the transforming growth factor-ß (TGF-ß) signaling pathway, evidenced by decreased expression levels of TGF-ß2 and TGF-ßR2. Using mimics of uMSC-EV-specific miRNAs, we found that miR-21 and miR-23, which are highly enriched in uMSC-EVs, played a critical role in inhibiting TGF-ß2 and TGF-ßR2, respectively. CONCLUSION: The effects of uMSCs on PF alleviation are likely achieved via EVs, which reveals a new role of uMSC-EV-derived miRNAs, opening a novel strategy for PF treatment in the clinical setting.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Pulmonary Fibrosis , Animals , Bleomycin/toxicity , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/therapy , Signal Transduction , Transforming Growth Factor beta/genetics , Transforming Growth Factors , Umbilical Cord
18.
J Transl Med ; 19(1): 149, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1183544

ABSTRACT

BACKGROUND: Mesenchymal stem cells derived from human umbilical cord (hUC-MSCs) have immunomodulatory properties that are of interest to treat novel coronavirus disease 2019 (COVID-19). Leng et al. recently reported that hUC-MSCs derived from one donor negatively expressed Angiotensin-Converting Enzyme 2 (ACE2), a key protein for viral infection along with Transmembrane Serine Protease 2 (TMPRSS2). The purpose of this study was to quantify the expression of ACE2 and TMPRSS2 in hUC-MSCs lots derived from multiple donors using molecular-based techniques in order to demonstrate their inability to be a host to SARS-CoV-2. METHODS: Expression of ACE2 and TMPRSS2 was analyzed in 24 lots of hUC-MSCs derived from Wharton's jelly via quantitative polymerase chain reaction (qPCR), Western Blot, immunofluorescence and flow cytometry using 24 different donors. RESULTS: hUC-MSCs had significantly lower ACE2 (p = 0.002) and TMPRSS2 (p = 0.008) expression compared with human lung tissue homogenates in Western blot analyses. Little to no expression of ACE2 was observed in hUC-MSC by qPCR, and they were not observable with immunofluorescence in hUC-MSCs cell membranes. A negative ACE2 and TMPRSS2 population percentage of 95.3% ± 15.55 was obtained for hUC-MSCs via flow cytometry, with only 4.6% ACE2 and 29.5% TMPRSS2 observable positive populations. CONCLUSIONS: We have demonstrated negative expression of ACE2 and low expression of TMPRSS2 in 24 lots of hUC-MSCs. This has crucial implications for the design of future therapeutic options for COVID-19, since hUC-MSCs would have the ability to "dodge" viral infection to exert their immunomodulatory effects.


Subject(s)
COVID-19 , Mesenchymal Stem Cells , Angiotensin-Converting Enzyme 2 , Humans , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics , Umbilical Cord
19.
BJOG ; 128(5): 916, 2021 04.
Article in English | MEDLINE | ID: covidwho-1165661
20.
Crit Care Med ; 48(5): e391-e399, 2020 05.
Article in English | MEDLINE | ID: covidwho-661181

ABSTRACT

OBJECTIVES: To investigate the safety, feasibility, and possible adverse events of single-dose human umbilical cord-derived mesenchymal stem cells in patients with moderate-to-severe acute respiratory distress syndrome. DESIGN: Prospective phase I clinical trial. SETTING: Medical center in Kaohsiung, Taiwan. PATIENTS: Moderate-to-severe acute respiratory distress syndrome with a PaO2/FIO2 ratio less than 200. INTERVENTIONS: Scaling for doses was required by Taiwan Food and Drug Administration as follows: the first three patients received low-dose human umbilical cord-derived mesenchymal stem cells (1.0 × 10 cells/kg), the next three patients with intermediate dose (5.0 × 10 cells/kg), and the final three patients with high dose (1.0 × 10 cells/kg) between December 2017 and August 2019. MEASUREMENTS AND MAIN RESULTS: Nine consecutive patients were enrolled into the study. In-hospital mortality was 33.3% (3/9), including two with recurrent septic shock and one with ventilator-induced severe pneumomediastinum and subcutaneous emphysema. No serious prespecified cell infusion-associated or treatment-related adverse events was identified in any patient. Serial flow-cytometric analyses of circulating inflammatory biomarkers (CD14CD33/CD11b+CD16+/CD16+MPO+/CD11b+MPO+/CD14CD33+) and mesenchymal stem cell markers (CD26+CD45-/CD29+CD45-/CD34+CD45-/CD44+CD45-/CD73+CD45-/CD90+CD45-/CD105+CD45-/CD26+CD45-) were notably progressively reduced (p for trend < 0.001), whereas the immune cell markers (Helper-T-cell/Cytotoxity-T-cell/Regulatory-T-cell) were notably increased (p for trend < 0.001) after cell infusion. CONCLUSIONS: The result of this phase I clinical trial showed that a single-dose IV infusion of human umbilical cord-derived mesenchymal stem cells was safe with favorable outcome in nine acute respiratory distress syndrome patients.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , Respiratory Distress Syndrome/therapy , Umbilical Cord/physiology , Adult , Aged , Drug Dosage Calculations , Female , Hospital Mortality/trends , Humans , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/mortality , Mesenchymal Stem Cells/classification , Middle Aged , Prospective Studies , Respiratory Distress Syndrome/mortality , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL