Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nat Commun ; 12(1): 5819, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1454763

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The continued spread of SARS-CoV-2 increases the probability of influenza/SARS-CoV-2 coinfection, which may result in severe disease. In this study, we examine the disease outcome of influenza A virus (IAV) and SARS-CoV-2 coinfection in K18-hACE2 mice. Our data indicate enhance susceptibility of IAV-infected mice to developing severe disease upon coinfection with SARS-CoV-2 two days later. In contrast to nonfatal influenza and lower mortality rates due to SARS-CoV-2 alone, this coinfection results in severe morbidity and nearly complete mortality. Coinfection is associated with elevated influenza viral loads in respiratory organs. Remarkably, prior immunity to influenza, but not to SARS-CoV-2, prevents severe disease and mortality. This protection is antibody-dependent. These data experimentally support the necessity of seasonal influenza vaccination for reducing the risk of severe influenza/COVID-19 comorbidity during the COVID-19 pandemic.


Subject(s)
COVID-19/immunology , COVID-19/virology , Coinfection/immunology , Coinfection/virology , Immunity , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/immunology , COVID-19/pathology , Cell Line , Disease Models, Animal , Female , Humans , Inflammation/genetics , Lung/pathology , Lung/virology , Male , Mice, Inbred C57BL , Mice, Transgenic , Up-Regulation/genetics , Viral Load/immunology
2.
Biochem Biophys Res Commun ; 577: 146-151, 2021 11 05.
Article in English | MEDLINE | ID: covidwho-1401239

ABSTRACT

The human lung cell A549 is susceptible to infection with a number of respiratory viruses. However, A549 cells are resistant to Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infection in conventional submerged culture, and this would appear to be due to low expression levels of the SARS-CoV-2 entry receptor: angiotensin-converting enzyme-2 (ACE2). Here, we examined SARS-CoV-2 susceptibility to A549 cells after adaptation to air-liquid interface (ALI) culture. A549 cells in ALI culture yielded a layer of mucus on their apical surface, exhibited decreased expression levels of the proliferation marker KI-67 and intriguingly became susceptible to SARS-CoV-2 infection. We found that A549 cells increased the endogenous expression levels of ACE2 and TMPRSS2 following adaptation to ALI culture conditions. Camostat, a TMPRSS2 inhibitor, reduced SARS-CoV-2 infection in ALI-cultured A549 cells. These findings indicate that ALI culture switches the phenotype of A549 cells from resistance to susceptibility to SARS-CoV-2 infection through upregulation of ACE2 and TMPRSS2.


Subject(s)
Alveolar Epithelial Cells/virology , COVID-19/virology , Cell Culture Techniques/methods , SARS-CoV-2/physiology , A549 Cells , Alveolar Epithelial Cells/pathology , Cells, Cultured , Disease Susceptibility , Gene Expression Regulation, Neoplastic , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Up-Regulation/genetics
3.
EBioMedicine ; 70: 103525, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1356203

ABSTRACT

BACKGROUND: While our battle with the COVID-19 pandemic continues, a multitude of Omics data have been generated from patient samples in various studies. Translation of these data into clinical interventions against COVID-19 remains to be accomplished. Exploring host response to COVID-19 in the upper respiratory tract can unveil prognostic markers and therapeutic targets. METHODS: We conducted a meta-analysis of published transcriptome and proteome profiles of respiratory samples of COVID-19 patients to shortlist high confidence upregulated host factors. Subsequently, mRNA overexpression of selected genes was validated in nasal swabs from a cohort of COVID-19 positive/negative, symptomatic/asymptomatic individuals. Guided by this analysis, we sought to check for potential drug targets. An FDA-approved drug, Auranofin, was tested against SARS-CoV-2 replication in cell culture and Syrian hamster challenge model. FINDINGS: The meta-analysis and validation in the COVID-19 cohort revealed S100 family genes (S100A6, S100A8, S100A9, and S100P) as prognostic markers of severe COVID-19. Furthermore, Thioredoxin (TXN) was found to be consistently upregulated. Auranofin, which targets Thioredoxin reductase, was found to mitigate SARS-CoV-2 replication in vitro. Furthermore, oral administration of Auranofin in Syrian hamsters in therapeutic as well as prophylactic regimen reduced viral replication, IL-6 production, and inflammation in the lungs. INTERPRETATION: Elevated mRNA level of S100s in the nasal swabs indicate severe COVID-19 disease, and FDA-approved drug Auranofin mitigated SARS-CoV-2 replication in preclinical hamster model. FUNDING: This study was supported by the DBT-IISc partnership program (DBT (IED/4/2020-MED/DBT)), the Infosys Young Investigator award (YI/2019/1106), DBT-BIRAC grant (BT/CS0007/CS/02/20) and the DBT-Wellcome Trust India Alliance Intermediate Fellowship (IA/I/18/1/503613) to ST lab.


Subject(s)
COVID-19/genetics , Nasopharynx/virology , Proteome/genetics , Transcriptome/genetics , Adult , Animals , Biomarkers/metabolism , COVID-19/pathology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Cohort Studies , Female , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/virology , Interleukin-6/genetics , Male , Mesocricetus , Middle Aged , Nasopharynx/pathology , Pandemics , Prognosis , RNA, Messenger/genetics , SARS-CoV-2/pathogenicity , Up-Regulation/genetics , Vero Cells , Virus Replication/genetics
4.
Front Immunol ; 12: 686462, 2021.
Article in English | MEDLINE | ID: covidwho-1317225

ABSTRACT

Immune homeostasis is disturbed during severe viral infections, which can lead to loss of tolerance to self-peptides and result in short- or long-term autoimmunity. Using publicly available transcriptomic datasets, we conducted an in-silico analyses to evaluate the expression levels of 52 autoantigens, known to be associated with 24 autoimmune diseases, during SAR-CoV-2 infection. Seven autoantigens (MPO, PRTN3, PADI4, IFIH1, TRIM21, PTPRN2, and TSHR) were upregulated in whole blood samples. MPO and TSHR were overexpressed in both lung autopsies and whole blood tissue and were associated with more severe COVID-19. Neutrophil activation derived autoantigens (MPO, PRTN3, and PADI4) were prominently increased in blood of both SARS-CoV-1 and SARS-CoV-2 viral infections, while TSHR and PTPRN2 autoantigens were specifically increased in SARS-CoV-2. Using single-cell dataset from peripheral blood mononuclear cells (PBMCs), we observed an upregulation of MPO, PRTN3, and PADI4 autoantigens within the low-density neutrophil subset. To validate our in-silico analysis, we measured plasma protein levels of two autoantigens, MPO and PRTN3, in severe and asymptomatic COVID-19. The protein levels of these two autoantigens were significantly upregulated in more severe COVID-19 infections. In conclusion, the immunopathology and severity of COVID-19 could result in transient autoimmune activation. Longitudinal follow-up studies of confirmed cases of COVID-19 could determine the enduring effects of viral infection including development of autoimmune disease.


Subject(s)
Autoantigens/genetics , Autoimmunity/genetics , COVID-19/immunology , SARS-CoV-2/immunology , Transcriptome , Asymptomatic Diseases , Autoantigens/blood , Autoimmune Diseases/blood , Autoimmune Diseases/immunology , COVID-19/blood , COVID-19/pathology , COVID-19/virology , Computer Simulation , Databases, Genetic , Humans , Lung/pathology , Myeloblastin/blood , Myeloblastin/genetics , Neutrophil Activation , Neutrophils/immunology , Peroxidase/blood , Peroxidase/genetics , RNA-Seq , Severity of Illness Index , Up-Regulation/genetics
5.
Hum Immunol ; 82(10): 726-732, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1313135

ABSTRACT

Soluble HLA-G (sHLA-G) molecules are considered potent immunomodulators, and their dysregulated expression has been implicated in several pathological conditions, including coronavirus disease 19 (COVID-19). Therefore, a case-control study (103 COVID-19 patients and 105 controls) was performed to determine sHLA-G role in severity of COVID-19. Results revealed that median levels of sHLA-G were significantly increased in serum of patients compared to controls (19.3 vs. 12.7 ng/mL; p <0.001). When patients and controls were stratified by age group, gender, body mass index, chronic disease, or ABO and Rh blood groups, the sHLA-G level did not show a significant difference in each stratum. Logistic regression analysis demonstrated that the up-regulated expression of sHLA-G was associated with an elevated risk of developing COVID-19. Receiver operating characteristic curve analysis showed that sHLA-G was a very good predictor of COVID-19, and at a cut-off value of 15.4 ng/mL, the sensitivity and specificity of sHLA-G were 79.6 and 79.0%, respectively. Spearman rank correlation analysis revealed that sHLA-G was positively correlated with age, erythrocyte sedimentation rate, white blood cell count, and random blood glucose, while a negative correlation was recorded with vitamin D. In conclusion, up-regulated expression of sHLA-G was indicated in patients with severe COVID-19.


Subject(s)
COVID-19/genetics , HLA-G Antigens/genetics , Up-Regulation/genetics , Adult , Aged , Biomarkers/metabolism , Case-Control Studies , Female , Humans , Male , Middle Aged , ROC Curve , SARS-CoV-2/pathogenicity , Sensitivity and Specificity
6.
Front Immunol ; 12: 595150, 2021.
Article in English | MEDLINE | ID: covidwho-1311373

ABSTRACT

As one of the current global health conundrums, COVID-19 pandemic caused a dramatic increase of cases exceeding 79 million and 1.7 million deaths worldwide. Severe presentation of COVID-19 is characterized by cytokine storm and chronic inflammation resulting in multi-organ dysfunction. Currently, it is unclear whether extrapulmonary tissues contribute to the cytokine storm mediated-disease exacerbation. In this study, we applied systems immunology analysis to investigate the immunomodulatory effects of SARS-CoV-2 infection in lung, liver, kidney, and heart tissues and the potential contribution of these tissues to cytokines production. Notably, genes associated with neutrophil-mediated immune response (e.g. CXCL1) were particularly upregulated in lung, whereas genes associated with eosinophil-mediated immune response (e.g. CCL11) were particularly upregulated in heart tissue. In contrast, immune responses mediated by monocytes, dendritic cells, T-cells and B-cells were almost similarly dysregulated in all tissue types. Focused analysis of 14 cytokines classically upregulated in COVID-19 patients revealed that only some of these cytokines are dysregulated in lung tissue, whereas the other cytokines are upregulated in extrapulmonary tissues (e.g. IL6 and IL2RA). Investigations of potential mechanisms by which SARS-CoV-2 modulates the immune response and cytokine production revealed a marked dysregulation of NF-κB signaling particularly CBM complex and the NF-κB inhibitor BCL3. Moreover, overexpression of mucin family genes (e.g. MUC3A, MUC4, MUC5B, MUC16, and MUC17) and HSP90AB1 suggest that the exacerbated inflammation activated pulmonary and extrapulmonary tissues remodeling. In addition, we identified multiple sets of immune response associated genes upregulated in a tissue-specific manner (DCLRE1C, CHI3L1, and PARP14 in lung; APOA4, NFASC, WIPF3, and CD34 in liver; LILRA5, ISG20, S100A12, and HLX in kidney; and ASS1 and PTPN1 in heart). Altogether, these findings suggest that the cytokines storm triggered by SARS-CoV-2 infection is potentially the result of dysregulated cytokine production by inflamed pulmonary and extrapulmonary (e.g. liver, kidney, and heart) tissues.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Kidney/immunology , Liver/immunology , Lung/immunology , Myocardium/immunology , Pandemics , SARS-CoV-2/immunology , Severity of Illness Index , Biomarkers/blood , COVID-19/blood , COVID-19/complications , Case-Control Studies , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokines/biosynthesis , Humans , Immunity/genetics , Monocytes/immunology , Neutrophils/immunology , Transcriptome , Up-Regulation/genetics
7.
Sci Rep ; 11(1): 12948, 2021 06 21.
Article in English | MEDLINE | ID: covidwho-1279894

ABSTRACT

COVID 19 disease has become a global catastrophe over the past year that has claimed the lives of over two million people around the world. Despite the introduction of vaccines against the disease, there is still a long way to completely eradicate it. There are concerns about the complications following infection with SARS-CoV-2. This research aimed to evaluate the possible correlation between infection with SARS-CoV viruses and cancer in an in-silico study model. To do this, the relevent dataset was selected from GEO database. Identification of differentially expressed genes among defined groups including SARS-CoV, SARS-dORF6, SARS-BatSRBD, and H1N1 were screened where the |Log FC| ≥ 1and p < 0.05 were considered statistically significant. Later, the pathway enrichment analysis and gene ontology (GO) were used by Enrichr and Shiny GO databases. Evaluation with STRING online was applied to predict the functional interactions of proteins, followed by Cytoscape analysis to identify the master genes. Finally, analysis with GEPIA2 server was carried out to reveal the possible correlation between candidate genes and cancer development. The results showed that the main molecular function of up- and down-regulated genes was "double-stranded RNA binding" and actin-binding, respectively. STRING and Cytoscape analysis presented four genes, PTEN, CREB1, CASP3, and SMAD3 as the key genes involved in cancer development. According to TCGA database results, these four genes were up-regulated notably in pancreatic adenocarcinoma. Our findings suggest that pancreatic adenocarcinoma is the most probably malignancy happening after infection with SARS-CoV family.


Subject(s)
Adenocarcinoma/etiology , COVID-19/complications , Carcinogenesis/genetics , Influenza A Virus, H1N1 Subtype , Influenza, Human/complications , Pancreatic Neoplasms/etiology , SARS Virus , SARS-CoV-2 , Severe Acute Respiratory Syndrome/complications , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Caspase 3/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Gene Expression Regulation , Gene Ontology , Humans , Influenza, Human/genetics , Influenza, Human/metabolism , Influenza, Human/virology , PTEN Phosphohydrolase/genetics , Protein Interaction Maps , Risk , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/virology , Signal Transduction/genetics , Smad3 Protein/genetics , Up-Regulation/genetics
8.
J Cell Mol Med ; 25(14): 7001-7012, 2021 07.
Article in English | MEDLINE | ID: covidwho-1276684

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in many deaths throughout the world. It is vital to identify the novel prognostic biomarkers and therapeutic targets to assist with the subsequent diagnosis and treatment plan to mitigate the expansion of COVID-19. Since angiotensin-converting enzyme 2 (ACE2)-positive cells are hosts for COVID-19, we focussed on this cell type to explore the underlying mechanisms of COVID-19. In this study, we identified that ACE2-positive cells from the bronchoalveolar lavage fluid (BALF) of patients with COVID-19 belong to bronchial epithelial cells. Comparing with patients of COVID-19 showing severe symptoms, the antigen processing and presentation pathway was increased and 12 typical genes, HLA-DRB5, HLA-DRB1, CD74, HLA-DRA, HLA-DPA1, HLA-DQA1, HSP90AA1, HSP90AB1, HLA-DPB1, HLA-DQB1, HLA-DQA2, and HLA-DMA, particularly HLA-DPB1, were obviously up-regulated in ACE2-positive bronchial epithelial cells of patients with mild disease. We further discovered SDCBP was positively correlated with above 12 genes particularly with HLA-DPB1 in ACE2-positive bronchial epithelial cells of COVID-19 patients. Moreover, SDCBP may increase the immune infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in different lung carcinoma. Moreover, we found the expression of SDCBP was positively correlated with the expression of antigen processing and presentation genes in post-mortem lung biopsies tissues, which is consistent with previous discoveries. These results suggest that SDCBP has good potential to be further developed as a novel diagnostic and therapeutic target in the treatment of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Bronchi/pathology , COVID-19/pathology , Epithelial Cells/metabolism , RNA-Seq , Severity of Illness Index , Single-Cell Analysis , Syntenins/metabolism , Antigen Presentation/genetics , Bronchoalveolar Lavage Fluid , COVID-19/genetics , COVID-19/metabolism , Epithelial Cells/pathology , Gene Expression Profiling , Humans , Postmortem Changes , SARS-CoV-2/physiology , Up-Regulation/genetics
9.
Curr Cancer Drug Targets ; 21(5): 428-442, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-969514

ABSTRACT

BACKGROUND: A higher incidence of COVID-19 infection was demonstrated in cancer patients, including lung cancer patients. This study was conducted to get insights into the enhanced frequency of COVID-19 infection in cancer. METHODS: Using different bioinformatics tools, the expression and methylation patterns of ACE2 and TMPRSS2 were analyzed in healthy and malignant tissues, focusing on lung adenocarcinoma and data were correlated to clinical parameters and smoking history. RESULTS: ACE2 and TMPRSS2 were heterogeneously expressed across 36 healthy tissues with the highest expression levels in digestive, urinary and reproductive organs, while the overall analysis of 72 paired tissues demonstrated significantly lower expression levels of ACE2 in cancer tissues when compared to normal counterparts. In contrast, ACE2, but not TMPRSS2, was overexpressed in LUAD, which inversely correlated to the promoter methylation. This upregulation of ACE2 was age-dependent in LUAD, but not in normal lung tissues. TMPRSS2 expression in non-neoplastic lung tissues was heterogeneous and dependent on sex and smoking history, while it was downregulated in LUAD of smokers. Cancer progression was associated with a decreased TMPRSS2 but unaltered ACE2. In contrast, ACE2 and TMPRSS2 of lung metastases derived from different cancer subtypes was higher than organ metastases of other sites. TMPRSS2, but not ACE2, was associated with LUAD patients' survival. CONCLUSIONS: Comprehensive molecular analyses revealed a heterogeneous and distinct expression and/or methylation profile of ACE2 and TMPRSS2 in healthy lung vs. LUAD tissues across sex, age and smoking history and might have implications for COVID-19 disease.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Lung/virology , Adenocarcinoma of Lung/epidemiology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/virology , Angiotensin-Converting Enzyme 2/genetics , COVID-19/virology , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/virology , Methylation , Promoter Regions, Genetic/genetics , SARS-CoV-2/pathogenicity , Serine Endopeptidases/genetics , Smoking/adverse effects , Up-Regulation/genetics
11.
Arch Virol ; 165(2): 345-354, 2020 Feb.
Article in English | MEDLINE | ID: covidwho-824852

ABSTRACT

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a typical neurotropic coronavirus that mainly invades the central nervous system (CNS) in piglets and causes vomiting and wasting disease. Emerging evidence suggests that PHEV alters microRNA (miRNA) expression profiles, and miRNA has also been postulated to be involved in its pathogenesis, but the mechanisms underlying this process have not been fully explored. In this study, we found that PHEV infection upregulates miR-142a-3p RNA expression in N2a cells and in the CNS of mice. Downregulation of miR-142a-3p by an miRNA inhibitor led to a significant repression of viral proliferation, implying that it acts as a positive regulator of PHEV proliferation. Using a dual-luciferase reporter assay, miR-142a-3p was found to bind directly bound to the 3' untranslated region (3'UTR) of Rab3a mRNA and downregulate its expression. Knockdown of Rab3a expression by transfection with an miR-142a-3p mimic or Rab3a siRNA significantly increased PHEV replication in N2a cells. Conversely, the use of an miR-142a-3p inhibitor or overexpression of Rab3a resulted in a marked restriction of viral production at both the mRNA and protein level. Our data demonstrate that miR-142a-3p promotes PHEV proliferation by directly targeting Rab3a mRNA, and this provides new insights into the mechanisms of PHEV-related pathogenesis and virus-host interactions.


Subject(s)
Betacoronavirus 1/genetics , Cell Proliferation/genetics , Coronavirus Infections/genetics , MicroRNAs/genetics , Swine/virology , rab3A GTP-Binding Protein/genetics , 3' Untranslated Regions/genetics , Animals , Cell Line , Cell Line, Tumor , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Down-Regulation/genetics , HEK293 Cells , Humans , Mice , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Up-Regulation/genetics
12.
Sci Adv ; 6(33): eabb7238, 2020 08.
Article in English | MEDLINE | ID: covidwho-733188

ABSTRACT

Cigarette smoking, the leading cause of chronic obstructive pulmonary disease (COPD), has been implicated as a risk factor for severe disease in patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we show that mice with lung epithelial cell-specific loss of function of Miz1, which we identified as a negative regulator of nuclear factor κB (NF-κB) signaling, spontaneously develop progressive age-related changes resembling COPD. Furthermore, loss of Miz1 up-regulates the expression of Ace2, the receptor for SARS-CoV-2. Concomitant partial loss of NF-κB/RelA prevented the development of COPD-like phenotype in Miz1-deficient mice. Miz1 protein levels are reduced in the lungs from patients with COPD, and in the lungs of mice exposed to chronic cigarette smoke. Our data suggest that Miz1 down-regulation-induced sustained activation of NF-κB-dependent inflammation in the lung epithelium is sufficient to induce progressive lung and airway destruction that recapitulates features of COPD, with implications for COVID-19.


Subject(s)
Epithelial Cells/metabolism , Kruppel-Like Transcription Factors/metabolism , Lung/metabolism , Peptidyl-Dipeptidase A/metabolism , Phenotype , Protein Inhibitors of Activated STAT/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Ubiquitin-Protein Ligases/genetics , Up-Regulation/genetics , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Gene Knockout Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Protein Inhibitors of Activated STAT/metabolism , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , SARS-CoV-2 , Signal Transduction/genetics , Smoking/adverse effects , Transcription Factor RelA/metabolism , Ubiquitin-Protein Ligases/metabolism
14.
Biochem Biophys Res Commun ; 529(2): 263-269, 2020 08 20.
Article in English | MEDLINE | ID: covidwho-617705

ABSTRACT

The World Health Organization recently announced that pandemic status has been achieved for coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Exponential increases in patient numbers have been reported around the world, along with proportional increases in the number of COVID-19-related deaths. The SARS-CoV-2 infection rate in a population is expected to be influenced by social practices, availability of vaccines or prophylactics, and the prevalence of susceptibility genes in the population. Previous work revealed that cellular uptake of SARS-CoV-2 requires Angiotensin Converting Enzyme 2 (ACE-2) and a cellular protease. The spike (S) protein on SARS-CoV-2 binds ACE-2, which functions as an entry receptor. Following receptor binding, transmembrane protease serine 2 (encoded by TMPRSS2) primes the S protein to allow cellular uptake. Therefore, individual expression of TMPRSS2 may be a crucial determinant of SARS-CoV-2 infection susceptibility. Here, we utilized multiple large genome databases, including the GTEx portal, SNP nexus, and Ensembl genome project, to identify gene expression profiles for TMPRSS2 and its important expression quantitative trait loci. Our results show that four variants (rs464397, rs469390, rs2070788 and rs383510) affect expression of TMPRSS2 in lung tissue. The allele frequency of each variant was then assessed in regional populations, including African, American, European, and three Asian cohorts (China, Japan and Taiwan). Interestingly, our data shows that TMPRSS2-upregulating variants are at higher frequencies in European and American populations than in the Asian populations, which implies that these populations might be relatively susceptible to SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/metabolism , Gene Expression Regulation/genetics , Internationality , Lung/metabolism , Receptors, Virus/genetics , Serine Endopeptidases/genetics , Asia/ethnology , Cohort Studies , Europe/ethnology , Gene Frequency , Genetics, Population , Geographic Mapping , Humans , Organ Specificity/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , SARS-CoV-2 , United States/ethnology , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...