Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
N Engl J Med ; 386(22): 2097-2111, 2022 06 02.
Article in English | MEDLINE | ID: covidwho-1830291

ABSTRACT

BACKGROUND: The ZF2001 vaccine, which contains a dimeric form of the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 and aluminum hydroxide as an adjuvant, was shown to be safe, with an acceptable side-effect profile, and immunogenic in adults in phase 1 and 2 clinical trials. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 3 trial to investigate the efficacy and confirm the safety of ZF2001. The trial was performed at 31 clinical centers across Uzbekistan, Indonesia, Pakistan, and Ecuador; an additional center in China was included in the safety analysis only. Adult participants (≥18 years of age) were randomly assigned in a 1:1 ratio to receive a total of three 25-µg doses (30 days apart) of ZF2001 or placebo. The primary end point was the occurrence of symptomatic coronavirus disease 2019 (Covid-19), as confirmed on polymerase-chain-reaction assay, at least 7 days after receipt of the third dose. A key secondary efficacy end point was the occurrence of severe-to-critical Covid-19 (including Covid-19-related death) at least 7 days after receipt of the third dose. RESULTS: Between December 12, 2020, and December 15, 2021, a total of 28,873 participants received at least one dose of ZF2001 or placebo and were included in the safety analysis; 25,193 participants who had completed the three-dose regimen, for whom there were approximately 6 months of follow-up data, were included in the updated primary efficacy analysis that was conducted at the second data cutoff date of December 15, 2021. In the updated analysis, primary end-point cases were reported in 158 of 12,625 participants in the ZF2001 group and in 580 of 12,568 participants in the placebo group, for a vaccine efficacy of 75.7% (95% confidence interval [CI], 71.0 to 79.8). Severe-to-critical Covid-19 occurred in 6 participants in the ZF2001 group and in 43 in the placebo group, for a vaccine efficacy of 87.6% (95% CI, 70.6 to 95.7); Covid-19-related death occurred in 2 and 12 participants, respectively, for a vaccine efficacy of 86.5% (95% CI, 38.9 to 98.5). The incidence of adverse events and serious adverse events was balanced in the two groups, and there were no vaccine-related deaths. Most adverse reactions (98.5%) were of grade 1 or 2. CONCLUSIONS: In a large cohort of adults, the ZF2001 vaccine was shown to be safe and effective against symptomatic and severe-to-critical Covid-19 for at least 6 months after full vaccination. (Funded by the National Science and Technology Major Project and others; ClinicalTrials.gov number, NCT04646590.).


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccines, Subunit , Adolescent , Adult , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Double-Blind Method , Humans , SARS-CoV-2 , Vaccination , Vaccines , Vaccines, Subunit/adverse effects , Vaccines, Subunit/therapeutic use , Young Adult
2.
Nature ; 601(7894): 617-622, 2022 01.
Article in English | MEDLINE | ID: covidwho-1528018

ABSTRACT

T cell immunity is central for the control of viral infections. CoVac-1 is a peptide-based vaccine candidate, composed of SARS-CoV-2 T cell epitopes derived from various viral proteins1,2, combined with the Toll-like receptor 1/2 agonist XS15 emulsified in Montanide ISA51 VG, aiming to induce profound SARS-CoV-2 T cell immunity to combat COVID-19. Here we conducted a phase I open-label trial, recruiting 36 participants aged 18-80 years, who received a single subcutaneous CoVac-1 vaccination. The primary end point was safety analysed until day 56. Immunogenicity in terms of CoVac-1-induced T cell response was analysed as the main secondary end point until day 28 and in the follow-up until month 3. No serious adverse events and no grade 4 adverse events were observed. Expected local granuloma formation was observed in all study participants, whereas systemic reactogenicity was absent or mild. SARS-CoV-2-specific T cell responses targeting multiple vaccine peptides were induced in all study participants, mediated by multifunctional T helper 1 CD4+ and CD8+ T cells. CoVac-1-induced IFNγ T cell responses persisted in the follow-up analyses and surpassed those detected after SARS-CoV-2 infection as well as after vaccination with approved vaccines. Furthermore, vaccine-induced T cell responses were unaffected by current SARS-CoV-2 variants of concern. Together, CoVac-1 showed a favourable safety profile and induced broad, potent and variant of concern-independent T cell responses, supporting the presently ongoing evaluation in a phase II trial for patients with B cell or antibody deficiency.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Vaccines, Subunit/immunology , Administration, Cutaneous , Adolescent , Adult , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Clinical Trials, Phase II as Topic , Female , Granuloma/immunology , Humans , Immunogenicity, Vaccine , Interferon-gamma/immunology , Male , Middle Aged , T-Lymphocytes, Helper-Inducer/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Young Adult
4.
Curr Opin Virol ; 49: 52-57, 2021 08.
Article in English | MEDLINE | ID: covidwho-1213121

ABSTRACT

SARS-CoV-2 has been detected in more than 141 million people and caused more than 3 million deaths worldwide. To reduce the additional loss of millions of lives until natural immunity is reached, researchers have focused on the only known method to stop the COVID-19 pandemic: vaccines. The pandemic has propelled high-speed vaccine development, some based on novel technology previously not utilized in the vaccine field. The new technology opens new possibilities and comes with challenges because the long-term performance of the new platforms is unknown. Here we review the current leading vaccine candidates against COVID-19 and outline the advantages and disadvantages as well as the unknowns of each candidate.


Subject(s)
Biomedical Research , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Adenoviridae/genetics , Biomedical Research/statistics & numerical data , Biomedical Research/trends , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/genetics , Humans , Mutation , SARS-CoV-2/genetics , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
5.
ACS Nano ; 14(10): 12522-12537, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-841319

ABSTRACT

Humanity is experiencing a catastrophic pandemic. SARS-CoV-2 has spread globally to cause significant morbidity and mortality, and there still remain unknowns about the biology and pathology of the virus. Even with testing, tracing, and social distancing, many countries are struggling to contain SARS-CoV-2. COVID-19 will only be suppressible when herd immunity develops, either because of an effective vaccine or if the population has been infected and is resistant to reinfection. There is virtually no chance of a return to pre-COVID-19 societal behavior until there is an effective vaccine. Concerted efforts by physicians, academic laboratories, and companies around the world have improved detection and treatment and made promising early steps, developing many vaccine candidates at a pace that has been unmatched for prior diseases. As of August 11, 2020, 28 of these companies have advanced into clinical trials with Moderna, CanSino, the University of Oxford, BioNTech, Sinovac, Sinopharm, Anhui Zhifei Longcom, Inovio, Novavax, Vaxine, Zydus Cadila, Institute of Medical Biology, and the Gamaleya Research Institute having moved beyond their initial safety and immunogenicity studies. This review analyzes these frontrunners in the vaccine development space and delves into their posted results while highlighting the role of the nanotechnologies applied by all the vaccine developers.


Subject(s)
Clinical Trials as Topic , Drug Industry/methods , Nanotechnology/methods , Viral Vaccines/immunology , COVID-19 Vaccines , Coronavirus Infections/economics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Humans , Vaccines, Subunit/adverse effects , Vaccines, Subunit/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Viral Vaccines/adverse effects , Viral Vaccines/economics
6.
ACS Nano ; 14(10): 12370-12389, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-811625

ABSTRACT

Despite the vital role of vaccines in fighting viral pathogens, effective vaccines are still unavailable for many infectious diseases. The importance of vaccines cannot be overstated during the outbreak of a pandemic, such as the coronavirus disease 2019 (COVID-19) pandemic. The understanding of genomics, structural biology, and innate/adaptive immunity have expanded the toolkits available for current vaccine development. However, sudden outbreaks and the requirement of population-level immunization still pose great challenges in today's vaccine designs. Well-established vaccine development protocols from previous experiences are in place to guide the pipelines of vaccine development for emerging viral diseases. Nevertheless, vaccine development may follow different paradigms during a pandemic. For example, multiple vaccine candidates must be pushed into clinical trials simultaneously, and manufacturing capability must be scaled up in early stages. Factors from essential features of safety, efficacy, manufacturing, and distributions to administration approaches are taken into consideration based on advances in materials science and engineering technologies. In this review, we present recent advances in vaccine development by focusing on vaccine discovery, formulation, and delivery devices enabled by alternative administration approaches. We hope to shed light on developing better solutions for faster and better vaccine development strategies through the use of biomaterials, biomolecular engineering, nanotechnology, and microfabrication techniques.


Subject(s)
Viral Vaccines/immunology , COVID-19 Vaccines , Clinical Trials as Topic , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Humans , Immunogenicity, Vaccine , Vaccine Potency , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL