Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add filters

Document Type
Year range
1.
BMC Cancer ; 21(1): 1354, 2021 Dec 27.
Article in English | MEDLINE | ID: covidwho-1582093

ABSTRACT

BACKGROUND: Patients with multiple myeloma (MM) were excluded from the original SARS-CoV-2 mRNA vaccine trials, which may influence vaccine hesitancy in this population. We prospectively characterized the safety and immunogenicity of two-dose SARS-CoV-2 mRNA vaccination in 44 patients with MM, who underwent vaccination from 12/17/2020 to 3/18/2021. RESULTS: Rates adverse reactions were low and consistent with those documented in vaccine trials. Among those on MM therapy, 93% developed detectable anti-receptor binding domain (RBD) antibodies after dose 2, while 94% of patients not on MM therapy seroconverted. CONCLUSIONS: Two-dose SARS-CoV-2 mRNA vaccination is mildly reactogenic and leads to high rates of seroconversion in patients with MM. These findings can provide reassurance to MM patients who are hesitant to receive SARS-CoV-2 mRNA vaccines.


Subject(s)
/administration & dosage , Antibodies, Viral/blood , COVID-19/prevention & control , Immunization Schedule , Multiple Myeloma/blood , /adverse effects , Aged , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Cohort Studies , Female , Humans , Male , Middle Aged , Multiple Myeloma/epidemiology , Prospective Studies , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , /adverse effects
2.
Biomed Pharmacother ; 145: 112385, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1565522

ABSTRACT

Chemically modified mRNA represents a unique, efficient, and straightforward approach to produce a class of biopharmaceutical agents. It has been already approved as a vaccination-based method for targeting SARS-CoV-2 virus. The COVID-19 pandemic has highlighted the prospect of synthetic modified mRNA to efficiently and safely combat various diseases. Recently, various optimization advances have been adopted to overcome the limitations associated with conventional gene therapeutics leading to wide-ranging applications in different disease conditions. This review sheds light on emerging directions of chemically modified mRNAs to prevent and treat widespread chronic diseases, including metabolic disorders, cancer vaccination and immunotherapy, musculoskeletal disorders, respiratory conditions, cardiovascular diseases, and liver diseases.


Subject(s)
COVID-19/prevention & control , Chronic Disease/prevention & control , Chronic Disease/therapy , Genetic Therapy/methods , Immunotherapy/methods , Pandemics/prevention & control , RNA, Messenger/chemistry , SARS-CoV-2/immunology , Vaccines, Synthetic , Biological Availability , Drug Carriers , Forecasting , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/therapeutic use , Humans , Immunotherapy, Active , RNA Stability , RNA, Messenger/administration & dosage , RNA, Messenger/immunology , RNA, Messenger/therapeutic use , SARS-CoV-2/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , /immunology
6.
Emerg Microbes Infect ; 10(1): 365-375, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1490458

ABSTRACT

Concerns about vaccine safety are an important reason for vaccine hesitancy, however, limited information is available on whether common adverse reactions following vaccination affect the immune response. Data from three clinical trials of recombinant vaccines were used in this post hoc analysis to assess the correlation between inflammation-related solicited adverse reactions (ISARs, including local pain, redness, swelling or induration and systematic fever) and immune responses after vaccination. In the phase III trial of the bivalent HPV-16/18 vaccine (Cecolin®), the geometric mean concentrations (GMCs) for IgG anti-HPV-16 and -18 (P<0.001) were significantly higher in participants with any ISAR following vaccination than in those without an ISAR. Local pain, induration, swelling and systemic fever were significantly correlated with higher GMCs for IgG anti-HPV-16 and/or anti-HPV-18, respectively. Furthermore, the analyses of the immunogenicity bridging study of Cecolin® and the phase III trial of a hepatitis E vaccine yielded similar results. Based on these results, we built a scoring model to quantify the inflammation reactions and found that the high score of ISAR indicates the strong vaccine-induced antibody level. In conclusion, this study suggests inflammation-related adverse reactions following vaccination potentially indicate a stronger immune response.


Subject(s)
Hepatitis E/immunology , Human papillomavirus 16/immunology , Human papillomavirus 18/immunology , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Vaccines, Synthetic/immunology , Viral Hepatitis Vaccines/immunology , Adolescent , Adult , Aged , Antibodies, Viral/immunology , Female , Hepatitis E/prevention & control , Hepatitis E/virology , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Humans , Immunity , Immunoglobulin G/immunology , Male , Middle Aged , Papillomavirus Infections/prevention & control , Papillomavirus Infections/virology , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/adverse effects , Papillomavirus Vaccines/genetics , Vaccination/adverse effects , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Viral Hepatitis Vaccines/administration & dosage , Viral Hepatitis Vaccines/adverse effects , Viral Hepatitis Vaccines/genetics , Young Adult
7.
MMWR Morb Mortal Wkly Rep ; 70(44): 1553-1559, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1502903

ABSTRACT

Immunocompromised persons, defined as those with suppressed humoral or cellular immunity resulting from health conditions or medications, account for approximately 3% of the U.S. adult population (1). Immunocompromised adults are at increased risk for severe COVID-19 outcomes (2) and might not acquire the same level of protection from COVID-19 mRNA vaccines as do immunocompetent adults (3,4). To evaluate vaccine effectiveness (VE) among immunocompromised adults, data from the VISION Network* on hospitalizations among persons aged ≥18 years with COVID-19-like illness from 187 hospitals in nine states during January 17-September 5, 2021 were analyzed. Using selected discharge diagnoses,† VE against COVID-19-associated hospitalization conferred by completing a 2-dose series of an mRNA COVID-19 vaccine ≥14 days before the index hospitalization date§ (i.e., being fully vaccinated) was evaluated using a test-negative design comparing 20,101 immunocompromised adults (10,564 [53%] of whom were fully vaccinated) and 69,116 immunocompetent adults (29,456 [43%] of whom were fully vaccinated). VE of 2 doses of mRNA COVID-19 vaccine against COVID-19-associated hospitalization was lower among immunocompromised patients (77%; 95% confidence interval [CI] = 74%-80%) than among immunocompetent patients (90%; 95% CI = 89%-91%). This difference persisted irrespective of mRNA vaccine product, age group, and timing of hospitalization relative to SARS-CoV-2 (the virus that causes COVID-19) B.1.617.2 (Delta) variant predominance in the state of hospitalization. VE varied across immunocompromising condition subgroups, ranging from 59% (organ or stem cell transplant recipients) to 81% (persons with a rheumatologic or inflammatory disorder). Immunocompromised persons benefit from mRNA COVID-19 vaccination but are less protected from severe COVID-19 outcomes than are immunocompetent persons, and VE varies among immunocompromised subgroups. Immunocompromised persons receiving mRNA COVID-19 vaccines should receive 3 doses and a booster, consistent with CDC recommendations (5), practice nonpharmaceutical interventions, and, if infected, be monitored closely and considered early for proven therapies that can prevent severe outcomes.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Immunocompromised Host/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/immunology , COVID-19/therapy , COVID-19 Vaccines/immunology , Female , Humans , Immunization Schedule , Laboratories , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , United States/epidemiology , Vaccines, Synthetic/administration & dosage , Young Adult
8.
MMWR Morb Mortal Wkly Rep ; 70(44): 1539-1544, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1502901

ABSTRACT

Previous infection with SARS-CoV-2 (the virus that causes COVID-19) or COVID-19 vaccination can provide immunity and protection from subsequent SARS-CoV-2 infection and illness. CDC used data from the VISION Network* to examine hospitalizations in adults with COVID-19-like illness and compared the odds of receiving a positive SARS-CoV-2 test result, and thus having laboratory-confirmed COVID-19, between unvaccinated patients with a previous SARS-CoV-2 infection occurring 90-179 days before COVID-19-like illness hospitalization, and patients who were fully vaccinated with an mRNA COVID-19 vaccine 90-179 days before hospitalization with no previous documented SARS-CoV-2 infection. Hospitalized adults aged ≥18 years with COVID-19-like illness were included if they had received testing at least twice: once associated with a COVID-19-like illness hospitalization during January-September 2021 and at least once earlier (since February 1, 2020, and ≥14 days before that hospitalization). Among COVID-19-like illness hospitalizations in persons whose previous infection or vaccination occurred 90-179 days earlier, the odds of laboratory-confirmed COVID-19 (adjusted for sociodemographic and health characteristics) among unvaccinated, previously infected adults were higher than the odds among fully vaccinated recipients of an mRNA COVID-19 vaccine with no previous documented infection (adjusted odds ratio [aOR] = 5.49; 95% confidence interval [CI] = 2.75-10.99). These findings suggest that among hospitalized adults with COVID-19-like illness whose previous infection or vaccination occurred 90-179 days earlier, vaccine-induced immunity was more protective than infection-induced immunity against laboratory-confirmed COVID-19. All eligible persons should be vaccinated against COVID-19 as soon as possible, including unvaccinated persons previously infected with SARS-CoV-2.


Subject(s)
COVID-19/diagnosis , COVID-19/immunology , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Female , Hospitalization/statistics & numerical data , Humans , Laboratories , Male , Middle Aged , SARS-CoV-2/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult
10.
Sci Rep ; 11(1): 21308, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1493219

ABSTRACT

The aim of this study was to present and evaluate novel oral vaccines, based on self-amplifying RNA lipid nanparticles (saRNA LNPs), saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum, to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) variants alpha and delta. After invitro evaluation of the oral vaccines on HEK293T/17 cells, we found that saRNA LNPs, saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum could express S-protein at both mRNA and protein levels. In the next step, BALB/c mice were orally vaccinated with saRNA LNPs, saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum at weeks 1 and 3. Importantly, a high titer of IgG and IgA was observed by all of them, sharply in week 6 (P < 0.05). In all study groups, their ratio of IgG2a/IgG1 was upper 1, indicating Th1-biased responses. Wild-type viral neutralization assay showed that the secreted antibodies in vaccinated mice and recovered COVID-19 patients could neutralize SARS-COV-2 variants alpha and delta. After oral administration of oral vaccines, biodistribution assay was done. It was found that all of them had the same biodistribution pattern. The highest concentration of S-protein was seen in the small intestine, followed by the large intestine and liver.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Lactobacillus plantarum/genetics , Lipids/chemistry , Nanoparticles/chemistry , SARS-CoV-2/immunology , Transfection/methods , Vaccination/methods , Vaccines, Synthetic/administration & dosage , Administration, Oral , Adult , Animals , COVID-19/blood , COVID-19/virology , COVID-19 Vaccines/pharmacokinetics , Female , HEK293 Cells , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Intestine, Small/metabolism , Lactobacillus plantarum/metabolism , Male , Mice , Mice, Inbred BALB C , Middle Aged , Models, Animal , Neutralization Tests , RNA, Messenger/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Tissue Distribution
12.
Front Immunol ; 12: 740708, 2021.
Article in English | MEDLINE | ID: covidwho-1470758

ABSTRACT

SARS-CoV-2 mRNA vaccines have demonstrated high efficacy and immunogenicity, but limited information is currently available on memory B cell generation and long-term persistence. Here, we investigated spike-specific memory B cells and humoral responses in 145 subjects, up to 6 months after the BNT162b2 vaccine (Comirnaty) administration. Spike-specific antibodies peaked 7 days after the second dose and significant antibody titers and ACE2/RBD binding inhibiting activity were still observed after 6 months, despite a progressive decline over time. Concomitant to antibody reduction, spike-specific memory B cells, mostly IgG class-switched, increased in the blood of vaccinees and persisted 6 months after vaccination. Following the in vitro restimulation, circulating memory B cells reactivated and produced spike-specific antibodies. A high frequency of spike-specific IgG+ plasmablasts, identified by computational analysis 7 days after boost, positively correlated with the generation of IgG+ memory B cells at 6 months. These data demonstrate that mRNA BNT162b2 vaccine elicits strong B cell immunity with spike-specific memory B cells that still persist 6 months after vaccination, playing a crucial role for a rapid response to SARS-CoV-2 virus encounter.


Subject(s)
B-Lymphocytes/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Synthetic/administration & dosage , Adult , Aged , Antibodies, Viral/blood , Antigens, Viral/immunology , Female , Humans , Immunoglobulin G/blood , Immunologic Memory , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
13.
MMWR Morb Mortal Wkly Rep ; 70(38): 1344-1348, 2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1468851

ABSTRACT

The Pfizer-BioNTech COVID-19 vaccine (BNT162b2) is a lipid nanoparticle-formulated, nucleoside mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes COVID-19. Vaccination with the Pfizer-BioNTech COVID-19 vaccine consists of 2 intramuscular doses (30 µg, 0.3 mL each) administered 3 weeks apart. In December 2020, the vaccine was granted Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA) as well as an interim recommendation for use among persons aged ≥16 years by the Advisory Committee on Immunization Practices (ACIP) (1). In May 2021, the EUA and interim ACIP recommendations for Pfizer-BioNTech COVID-19 vaccine were extended to adolescents aged 12-15 years (2). During December 14, 2020-September 1, 2021, approximately 211 million doses of Pfizer-BioNTech COVID-19 vaccine were administered in the United States.* On August 23, 2021, FDA approved a Biologics License Application for use of the Pfizer-BioNTech COVID-19 vaccine, Comirnaty (Pfizer, Inc.), in persons aged ≥16 years (3). The ACIP COVID-19 Vaccines Work Group's conclusions regarding the evidence for the Pfizer-BioNTech COVID-19 vaccine were presented to ACIP at a public meeting on August 30, 2021. To guide its deliberations regarding the Pfizer-BioNTech COVID-19 vaccine, ACIP used the Evidence to Recommendation (EtR) Framework,† and incorporated a Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.§ In addition to initial clinical trial data, ACIP considered new information gathered in the 8 months since issuance of the interim recommendation for Pfizer-BioNTech COVID-19 vaccine, including additional follow-up time in the clinical trial, real-world vaccine effectiveness studies, and postauthorization vaccine safety monitoring. The additional information increased certainty that benefits from prevention of asymptomatic infection, COVID-19, and associated hospitalization and death outweighs vaccine-associated risks. On August 30, 2021, ACIP issued a recommendation¶ for use of the Pfizer-BioNTech COVID-19 vaccine in persons aged ≥16 years for the prevention of COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization/standards , Practice Guidelines as Topic , Adolescent , Adult , Advisory Committees , COVID-19/epidemiology , COVID-19 Vaccines/adverse effects , Centers for Disease Control and Prevention, U.S. , Drug Approval , Female , Humans , Male , United States/epidemiology , Vaccines, Synthetic/administration & dosage , Young Adult
14.
MMWR Morb Mortal Wkly Rep ; 70(39): 1379-1384, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1444557

ABSTRACT

On August 12, 2021, the Food and Drug Administration (FDA) amended Emergency Use Authorizations (EUAs) for the Pfizer-BioNTech and Moderna COVID-19 vaccines to authorize administration of an additional dose after completion of a primary vaccination series to eligible persons with moderate to severe immunocompromising conditions (1,2). On September 22, 2021, FDA authorized an additional dose of Pfizer-BioNTech vaccine ≥6 months after completion of the primary series among persons aged ≥65 years, at high risk for severe COVID-19, or whose occupational or institutional exposure puts them at high risk for COVID-19 (1). Results from a phase 3 clinical trial conducted by Pfizer-BioNTech that included 306 persons aged 18-55 years showed that adverse reactions after receipt of a third dose administered 5-8 months after completion of a 2-dose primary mRNA vaccination series were similar to those reported after receipt of dose 2; these adverse reactions included mild to moderate injection site and systemic reactions (3). CDC developed v-safe, a voluntary, smartphone-based safety surveillance system, to provide information on adverse reactions after COVID-19 vaccination. Coincident with authorization of an additional dose for persons with immunocompromising conditions, the v-safe platform was updated to allow registrants to enter information about additional doses of COVID-19 vaccine received. During August 12-September 19, 2021, a total of 22,191 v-safe registrants reported receipt of an additional dose of COVID-19 vaccine. Most (97.6%) reported a primary 2-dose mRNA vaccination series followed by a third dose of the same vaccine. Among those who completed a health check-in survey for all 3 doses (12,591; 58.1%), 79.4% and 74.1% reported local or systemic reactions, respectively, after dose 3, compared with 77.6% and 76.5% who reported local or systemic reactions, respectively, after dose 2. These initial findings indicate no unexpected patterns of adverse reactions after an additional dose of COVID-19 vaccine; most of these adverse reactions were mild or moderate. CDC will continue to monitor vaccine safety, including the safety of additional doses of COVID-19 vaccine, and provide data to guide vaccine recommendations and protect public health.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Drug-Related Side Effects and Adverse Reactions/epidemiology , Product Surveillance, Postmarketing , Adolescent , Adult , Adverse Drug Reaction Reporting Systems , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , Centers for Disease Control and Prevention, U.S. , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , United States/epidemiology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Young Adult
15.
MMWR Morb Mortal Wkly Rep ; 70(38): 1337-1343, 2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1436415

ABSTRACT

Three COVID-19 vaccines are authorized or approved for use among adults in the United States (1,2). Two 2-dose mRNA vaccines, mRNA-1273 from Moderna and BNT162b2 from Pfizer-BioNTech, received Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA) in December 2020 for persons aged ≥18 years and aged ≥16 years, respectively. A 1-dose viral vector vaccine (Ad26.COV2 from Janssen [Johnson & Johnson]) received EUA in February 2021 for persons aged ≥18 years (3). The Pfizer-BioNTech vaccine received FDA approval for persons aged ≥16 years on August 23, 2021 (4). Current guidelines from FDA and CDC recommend vaccination of eligible persons with one of these three products, without preference for any specific vaccine (4,5). To assess vaccine effectiveness (VE) of these three products in preventing COVID-19 hospitalization, CDC and collaborators conducted a case-control analysis among 3,689 adults aged ≥18 years who were hospitalized at 21 U.S. hospitals across 18 states during March 11-August 15, 2021. An additional analysis compared serum antibody levels (anti-spike immunoglobulin G [IgG] and anti-receptor binding domain [RBD] IgG) to SARS-CoV-2, the virus that causes COVID-19, among 100 healthy volunteers enrolled at three hospitals 2-6 weeks after full vaccination with the Moderna, Pfizer-BioNTech, or Janssen COVID-19 vaccine. Patients with immunocompromising conditions were excluded. VE against COVID-19 hospitalizations was higher for the Moderna vaccine (93%; 95% confidence interval [CI] = 91%-95%) than for the Pfizer-BioNTech vaccine (88%; 95% CI = 85%-91%) (p = 0.011); VE for both mRNA vaccines was higher than that for the Janssen vaccine (71%; 95% CI = 56%-81%) (all p<0.001). Protection for the Pfizer-BioNTech vaccine declined 4 months after vaccination. Postvaccination anti-spike IgG and anti-RBD IgG levels were significantly lower in persons vaccinated with the Janssen vaccine than the Moderna or Pfizer-BioNTech vaccines. Although these real-world data suggest some variation in levels of protection by vaccine, all FDA-approved or authorized COVID-19 vaccines provide substantial protection against COVID-19 hospitalization.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Immunocompromised Host/immunology , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , United States/epidemiology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult
16.
Cell ; 184(21): 5271-5274, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1433036

ABSTRACT

This year's Lasker∼Debakey Clinical Research Award honors Katalin Karikó and Drew Weissman for the development of a therapeutic technology based on nucleoside-modification of messenger RNA, enabling the rapid development of the highly effective COVID-19 vaccines.


Subject(s)
Biotechnology/methods , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , RNA, Messenger/administration & dosage , SARS-CoV-2/immunology , Vaccines, Synthetic/administration & dosage , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Humans , RNA, Messenger/chemistry
17.
Cell ; 184(21): 5293-5296, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1433035

ABSTRACT

The highly effective and safe mRNA-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines draw on decades of painstaking research to overcome the many hurdles for delivering, expressing, and avoiding toxicity of therapeutic mRNA. Cell editor Nicole Neuman talked with Dr. Katalin Karikó and Dr. Drew Weissman, recipients of the 2021 Lasker∼DeBakey Clinical Medical Research Award, to learn more about their quest to develop mRNA-based therapeutics, which led them to the crucial discovery that modification of mRNA could prevent toxicity and increase expression. This conversation has been adapted for print below, with editing for clarity, accuracy, and length.


Subject(s)
Biotechnology/methods , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , RNA, Messenger/administration & dosage , SARS-CoV-2/immunology , Vaccines, Synthetic/administration & dosage , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Drug Discovery , Humans , Interviews as Topic , RNA, Messenger/chemistry
18.
Curr Opin Allergy Clin Immunol ; 21(6): 545-552, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1429315

ABSTRACT

PURPOSE OF REVIEW: Antisevere acute respiratory syndrome-corona virus 2 (SARS-CoV-2) vaccines may provide prompt, effective, and safe solution for the COVID-19 pandemic. Several vaccine candidates have been evaluated in randomized clinical trials (RCTs). Furthermore, data from observational studies mimicking real-life practice and studies on specific groups, such as pregnant women or immunocompromised patients who were excluded from RCTs, are currently available. The main aim of the review is to summarize and provide an immunologist's view on mechanism of action, efficacy and safety, and future challenges in vaccination against SARS-CoV-2. RECENT FINDINGS: mRNA and recombinant viral vector-based vaccines have been approved for conditional use in Europe and the USA. They show robust humoral and cellular responses, high with efficacy in prevention of COVID-19 infection (66.9 95%) and favorable safety profile in RCTs. High efficacy of 80-92% was observed in real-life practice. A pilot study also confirmed good safety profile of the mRNA vaccines in pregnant women. Unlike in those with secondary immunodeficiencies where postvaccination responses did not occur, encouraging results were obtained in patients with inborn errors of immunity. SUMMARY: Although both RCTs and observational studies suggest good efficacy and safety profiles of the vaccines, their long-term efficacy and safety are still being discussed. Despite the promising results, clinical evidence for specific groups such as children, pregnant and breastfeeding women, and immunocompromised patients, and for novel virus variants are lacking. VIDEO ABSTRACT: http://links.lww.com/COAI/A21.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Pandemics/prevention & control , Primary Immunodeficiency Diseases/immunology , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/adverse effects , Humans , Immunocompromised Host , Observational Studies as Topic , Pilot Projects , Primary Immunodeficiency Diseases/complications , Primary Immunodeficiency Diseases/genetics , Treatment Outcome , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects
19.
Clin Chem Lab Med ; 59(12): 2010-2018, 2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1398962

ABSTRACT

OBJECTIVES: Simple and standardized methods to establish correlates to vaccine-elicited SARS-CoV-2 protection are needed. METHODS: An observational study on antibody response to a mRNA vaccine (Comirnaty) was performed on health care workers (V, n=120). Recovered COVID-19 patients (N, n=94) were used for comparison. Antibody response was evaluated by a quantitative anti-receptor binding domain IgG (anti-RBD) commercial assay and by virus microneutralization test (MNT), in order to establish a threshold of anti-RBD binding antibody units (BAU) able to predict a robust (≥1:80) MNT titer. RESULTS: Significant correlation between BAU and MNT titers was found in both V and N, being stronger in V (rs=0.91 and 0.57 respectively, p<0.001); a higher incremental trend starting from MNT titer 1:80 was observed in the V group. The 99% probability of high MNT titer (≥1:80) was reached at 1,814 and 3,564 BAU/mL, and the area under the receiver operating characteristic (ROC) curve was 0.99 (CI: 0.99-1.00) and 0.78 (CI: 0.67-0.86) in V and N, respectively. CONCLUSIONS: A threshold of 2,000 BAU/mL is highly predictive of strong MNT response in vaccinated individuals and may represent a good surrogate marker of protective response. It remains to be established whether the present results can be extended to BAU titers obtained with other assays.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Humoral , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Area Under Curve , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Health Personnel , Humans , Logistic Models , Male , Middle Aged , Neutralization Tests , ROC Curve , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/administration & dosage , Young Adult
20.
Allergy Asthma Proc ; 42(5): 395-399, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1394716

ABSTRACT

Background: Adverse reactions, including anaphylaxis, to messenger RNA coronavirus disease 2019 (COVID-19) vaccines rarely occur. Because of the need to administer a timely second dose in subjects who reported a reaction to their first dose, a panel of health-care professionals developed a safe triage of the employees and health care providers (EHCP) at a large health-care system to consider administration of future dosing. Methods: There were 28,544 EHCPs who received their first dose of COVID-19 vaccines between December 15, 2020, and March 8, 2021. The EHCPs self-reported adverse reactions to a centralized COVID-19 command center (CCC). The CCC screened and collected information on the quality of reaction, symptoms, and timing of the onset of the reaction. Results: Of 1253 calls to the CCC, 113 were identified as requiring consideration by a panel of three (American Board of Allergy and Immunology) ABAI-certified allergists for future dosing or formal in-person assessment. Of the 113 EHCPs, 94 (83.2%) were recommended to get their second dose. Eighty of 94 received their second planned dose without a severe or immediate reaction. Of the 14 of 113 identified as needing further evaluation, 6 were evaluated by a physician and subsequently received their second dose without a serious adverse reaction. Eight of 14 did not receive their second dose. Only 5 of the 113 EHCPs reported reactions (4.4%) were recommended to not take the second dose: 3 (2.6%) because of symptoms consistent with anaphylaxis, and 2 because of neurologic complications (seizure, stroke). Conclusion: The panel demonstrated that, by consideration of reaction history alone, the ECHPs could be appropriately triaged to receive scheduled second dosing of COVID-19 vaccines without delays for in-person evaluation and allergy testing.


Subject(s)
Anaphylaxis/etiology , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Health Personnel , Occupational Diseases/prevention & control , Triage/methods , Vaccines, Synthetic/adverse effects , Adult , Aged , Anaphylaxis/diagnosis , Anaphylaxis/prevention & control , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , Occupational Health Services/methods , Occupational Health Services/standards , Quality Improvement , Retrospective Studies , Self Report , Triage/standards , Vaccines, Synthetic/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...