Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Heart Lung ; 58: 210-216, 2023.
Article in English | MEDLINE | ID: covidwho-2165352

ABSTRACT

BACKGROUND: The novel coronavirus disease (COVID-19) may cause vascular (e.g., endothelial dysfunction, and arterial stiffness), cardiac, autonomic (e.g., heart rate variability [HRV]), and systemic inflammatory response via direct viral attack, hypoxia-induced injury, or immunological dysregulation, especially in those patients with pre-existing cardiovascular diseases (CVD). However, to date, no study has shown prevalence of endothelial dysfunction, arterial stiffness and heart rate variability assessed by bedside peripheral arterial tonometry in patients with previous CVD hospitalized in the acute phase of COVID-19. OBJECTIVE: This study aimed to assess the prevalence of endothelial dysfunction, arterial stiffness, and altered HRV in patients with CVD hospitalized due to COVID-19. METHODS: This cross-sectional study was conducted from July 2020 to February 2021. Included male and female adult patients aged 40 to 60 years with previous CVD and diagnosed with COVID-19. Anthropometric data, comorbidities, and blood tests were analyzed. Endothelial function, arterial stiffness, and HRV were assessed using peripheral arterial tonometry (PAT), and the statistical significance was set at 5%. RESULTS: Fourteen (51.8%) patients presented endothelial dysfunction (reactive hyperemia index = 1.2 ± 0.3) and enhancement in the high-frequency component of HRV (p < 0.05). There was a high prevalence of endothelial dysfunction, especially in patients with chronic heart failure (10 (71.4%)). Patients with preserved endothelial function showed a high augmentation index normalized to a heart rate of 75 bpm (p < 0.01), suggesting arterial stiffness. CONCLUSION: Patients with CVD hospitalized due to COVID-19 presented endothelial dysfunction assessed using PAT, which could be used as a biomarker for arterial stiffness and altered HRV. The possibility of detecting vascular and autonomic changes during phase II of COVID-19 may help to prevent possible long-term complications.


Subject(s)
COVID-19 , Cardiovascular Diseases , Vascular Stiffness , Adult , Humans , Male , Female , Heart Rate , Vascular Stiffness/physiology , Cross-Sectional Studies , Endothelium, Vascular , COVID-19/complications
2.
Am J Hypertens ; 35(11): 948-954, 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2097304

ABSTRACT

BACKGROUND: Although hypertension is a risk factor for severe Coronavirus Disease 2019 (COVID-19) illness, little is known about the effects of COVID-19 on blood pressure (BP). Central BP measures taken over a 24-hour period using ambulatory blood pressure monitoring (ABPM) adds prognostic value in assessing cardiovascular disease (CVD) risk compared with brachial BP measures from a single time point. We assessed CVD risk between adults with and without a history of COVID-19 via appraisal of 24-hour brachial and central hemodynamic load from ABPM. METHODS: Cross-sectional analysis was performed on 32 adults who tested positive for COVID-19 (29 ± 13 years, 22 females) and 43 controls (28 ± 12 years, 26 females). Measures of 24-hour hemodynamic load included brachial and central systolic and diastolic BP, pulse pressure, augmentation index (AIx), pulse wave velocity (PWV), nocturnal BP dipping, the ambulatory arterial stiffness index (AASI), and the blood pressure variability ratio (BPVR). RESULTS: Participants who tested positive for COVID-19 experienced 6 ± 4 COVID-19 symptoms, were studied 122 ± 123 days after testing positive, and had mild-to-moderate COVID-19 illness. The results from independent samples t-tests showed no significant differences in 24-hour, daytime, or nighttime measures of central or peripheral hemodynamic load across those with and without a history of COVID-19 (P > 0.05 for all). CONCLUSIONS: No differences in 24-hour brachial or central ABPM measures were detected between adults recovering from mild-to-moderate COVID-19 and controls without a history of COVID-19. Adults recovering from mild-to-moderate COVID-19 do not have increased 24-hour central hemodynamic load.


Subject(s)
COVID-19 , Hypertension , Vascular Stiffness , Adult , Female , Humans , Blood Pressure Monitoring, Ambulatory/methods , Pulse Wave Analysis/methods , Cross-Sectional Studies , Blood Pressure , Vascular Stiffness/physiology , Hemodynamics
3.
Medicine (Baltimore) ; 101(34): e29721, 2022 Aug 26.
Article in English | MEDLINE | ID: covidwho-2042652

ABSTRACT

Increased aortic stiffness is an important predictor of cardiovascular disease (CVD). It remains controversial whether HIV infected persons have increased aortic stiffness at the time of HIV diagnosis. An explorative, case-control study was performed using carotid-femoral pulse wave velocity (PWV) in a newly diagnosed, antiretroviral treatment (ART)-naïve cohort with modest baseline cardiovascular risk. We recruited 85 newly diagnosed adults without known CVD from health care facilities in South Africa (43 female; mean age 33). Median CD4 count was 285, IQR 156-393 cells/µL. Twenty two HIV uninfected controls were recruited from the same facilities (8 female; mean age 33). PWV was measured using the Vicorder module (Skidmore Medical, United Kingdom) using a corrective factor of 0.8. The HIV infected group's mean PWV measured 11% higher than controls (5.88 vs 5.28 m/s; P = .02). Median aortic distensibility in HIV infected persons was 18% lower than controls (0.37 vs 0.45 mm Hg-1; P = .009). Multivariate analysis revealed that the difference in PWV between groups remained significant when corrected for age, sex, mean blood pressure and kidney function (mean difference 0.52 m/s; P = .01). Mean blood pressure, estimated glomerular filtration rate, HIV infection per se, age and male sex were important associations with increased PWV. Our study provides evidence for increased aortic stiffness in ART naïve adults already demonstrable at the time of HIV diagnosis. The cohort's young age and recent HIV diagnosis makes atherosclerosis a less likely explanation for the difference. Alternative, potentially reversible, explanations that require further research include vasomotor tone abnormalities and endothelial dysfunction.


Subject(s)
Cardiovascular Diseases , HIV Infections , Vascular Stiffness , Adult , Anti-Retroviral Agents/therapeutic use , Blood Pressure/physiology , Cardiovascular Diseases/complications , Case-Control Studies , Female , HIV Infections/complications , HIV Infections/drug therapy , Humans , Male , Pulse Wave Analysis , Vascular Stiffness/physiology
4.
Am J Physiol Heart Circ Physiol ; 323(1): H59-H64, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1861685

ABSTRACT

We and others have previously shown that COVID-19 results in vascular and autonomic impairments in young adults. However, the newest variant of COVID-19 (Omicron) appears to have less severe complications. Therefore, we investigated whether recent breakthrough infection with COVID-19 during the Omicron wave impacts cardiovascular health in young adults. We hypothesized that measures of vascular health and indices of cardiac autonomic function would be impaired in those who had the Omicron variant of COVID-19 when compared with controls who never had COVID-19. We studied 23 vaccinated adults who had COVID-19 after December 25, 2021 (Omicron; age, 23 ± 3 yr; 14 females) within 6 wk of diagnosis compared with 13 vaccinated adults who never had COVID-19 (age, 26 ± 4 yr; 7 females). Macro- and microvascular function were assessed using flow-mediated dilation (FMD) and reactive hyperemia, respectively. Arterial stiffness was determined as carotid-femoral pulse wave velocity (cfPWV) and augmentation index (AIx). Heart rate (HR) variability and cardiac baroreflex sensitivity (BRS) were assessed as indices of cardiac autonomic function. FMD was not different between control (5.9 ± 2.8%) and Omicron (6.1 ± 2.3%; P = 0.544). Similarly, reactive hyperemia (P = 0.884) and arterial stiffness were not different between groups (e.g., cfPWV; control, 5.9 ± 0.6 m/s and Omicron, 5.7 ± 0.8 m/s; P = 0.367). Finally, measures of HR variability and cardiac BRS were not different between groups (all, P > 0.05). Collectively, these data suggest preserved vascular health and cardiac autonomic function in young, otherwise healthy adults who had breakthrough cases of COVID-19 during the Omicron wave.NEW & NOTEWORTHY We show for the first time that breakthrough cases of COVID-19 during the Omicron wave does not impact vascular health and cardiac autonomic function in young adults. These are promising results considering earlier research showing impaired vascular and autonomic function following previous variants of COVID-19. Collectively, these data demonstrate that the recent Omicron variant is not detrimental to cardiovascular health in young, otherwise healthy, vaccinated adults.


Subject(s)
COVID-19 , Hyperemia , Vascular Stiffness , Adult , Female , Humans , Pulse Wave Analysis , SARS-CoV-2 , Vascular Stiffness/physiology , Young Adult
5.
Circ Res ; 130(9): 1276-1285, 2022 04 29.
Article in English | MEDLINE | ID: covidwho-1822121

ABSTRACT

BACKGROUND: COVID-19 is characterized by severe inflammation during the acute phase and increased aortic stiffness in the early postacute phase. In other models, aortic stiffness is improved after the reduction of inflammation. We aimed to evaluate the mid- and long-term effects of COVID-19 on vascular and cardiac autonomic function. The primary outcome was aortic pulse wave velocity (aPWV). METHODS: The cross-sectional Study-1 included 90 individuals with a history of COVID-19 and 180 matched controls. The longitudinal Study-2 included 41 patients with COVID-19 randomly selected from Study-1 who were followed-up for 27 weeks. RESULTS: Study-1: Compared with controls, patients with COVID-19 had higher aPWV and brachial PWV 12 to 24 (but not 25-48) weeks after COVID-19 onset, and they had higher carotid Young's elastic modulus and lower distensibility 12 to 48 weeks after COVID-19 onset. In partial least squares structural equation modeling, the higher the hs-CRP (high-sensitivity C-reactive protein) at hospitalization was, the higher the aPWV 12 to 48 weeks from COVID-19 onset (path coefficient: 0.184; P=0.04). Moreover, aPWV (path coefficient: -0.186; P=0.003) decreased with time. Study-2: mean blood pressure and carotid intima-media thickness were comparable at the end of follow-up, whereas aPWV (-9%; P=0.01), incremental Young's elastic modulus (-17%; P=0.03), baroreflex sensitivity (+28%; P=0.049), heart rate variability triangular index (+15%; P=0.01), and subendocardial viability ratio (+12%; P=0.01×10-4) were significantly improved. There was a trend toward improvement in brachial PWV (-6%; P=0.14) and carotid distensibility (+18%; P=0.05). Finally, at the end of follow-up (48 weeks after the onset of COVID-19) aPWV (+6%; P=0.04) remained significantly higher in patients with COVID-19 than in control subjects. CONCLUSIONS: COVID-19-related arterial stiffening involves several arterial tree portions and is partially resolved in the long-term.


Subject(s)
COVID-19 , Vascular Stiffness , C-Reactive Protein , Carotid Intima-Media Thickness , Cross-Sectional Studies , Humans , Inflammation , Longitudinal Studies , Pulse Wave Analysis , Vascular Stiffness/physiology
6.
J Appl Physiol (1985) ; 132(5): 1297-1309, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1794427

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can increase arterial stiffness 3-4 wk following infection, even among young, healthy adults. However, the long-term impacts of SARS-CoV-2 infection on cardiovascular health and the duration of recovery remain unknown. The purpose of this study was to elucidate potential long-lasting effects of SARS-CoV-2 infection on markers of arterial stiffness among young adults during the 6 mo following infection. Assessments were performed at months 1, 2, 3, 4, and ∼6 following SARS-CoV-2 infection. Doppler ultrasound was used to measure carotid-femoral pulse wave velocity (cfPWV) and carotid stiffness, and arterial tonometry was used to measure central blood pressures and aortic augmentation index at a heart rate of 75 beats·min-1 (AIx@HR75). Vascular (VCAM-1) and intracellular (ICAM-1) adhesion molecules were analyzed as circulating markers of arterial stiffness. From months 1-6, a significant reduction in cfPWV was observed (month 1: 5.70 ± 0.73 m·s-1; month 6: 4.88 ± 0.65 m·s-1; P < 0.05) without any change in carotid stiffness measures. Reductions in systolic blood pressure (month 1: 123 ± 8 mmHg; month 6: 112 ± 11 mmHg) and mean arterial pressure (MAP; month 1: 97 ± 6 mmHg; month 6: 86 ± 7 mmHg) were observed (P < 0.05), although AIx@HR75 did not change over time. The month 1-6 change in cfPWV and MAP were correlated (r = 0.894; P < 0.001). A reduction in VCAM-1 was observed at month 3 compared with month 1 (month 1: 5,575 ± 2,242 pg·mL-1; month 3: 4,636 ± 1,621 pg·mL-1; P < 0.05) without a change in ICAM-1. A reduction in cfPWV was related with MAP, and some indicators of arterial stiffness remain elevated for several months following SARS-CoV-2 infection, possibly contributing to prolonged recovery and increased cardiovascular health risks.NEW & NOTEWORTHY We sought to investigate potential long-lasting effects of SARS-CoV-2 infection on markers of arterial stiffness among young adults for 6 mo following infection. Carotid femoral pulse wave velocity was significantly reduced while carotid stiffness measures remained unaltered over the 6-mo period. These findings suggest several months of recovery from infection may be necessary for young adults to improve various markers of arterial stiffness, possibly contributing to cardiovascular health and recovery among those infected with SARS-CoV-2.


Subject(s)
COVID-19 , Vascular Stiffness , Blood Pressure/physiology , Humans , Intercellular Adhesion Molecule-1 , Pulse Wave Analysis , SARS-CoV-2 , Vascular Cell Adhesion Molecule-1 , Vascular Stiffness/physiology , Young Adult
7.
Hypertension ; 79(2): 325-334, 2022 02.
Article in English | MEDLINE | ID: covidwho-1476907

ABSTRACT

In a cross-sectional analysis of a case-control study in 2015, we revealed the association between increased arterial stiffness (pulse wave velocity) and aircraft noise exposure. In June 2020, we evaluated the long-term effects, and the impact of a sudden decline in noise exposure during the coronavirus disease 2019 (COVID-19) lockdown, on blood pressure and pulse wave velocity, comparing 74 participants exposed to long-term day-evening-night aircraft noise level >60 dB and 75 unexposed individuals. During the 5-year follow-up, the prevalence of hypertension increased in the exposed (42% versus 59%, P=0.048) but not in the unexposed group. The decline in noise exposure since April 2020 was accompanied with a significant decrease of noise annoyance, 24-hour systolic (121.2 versus 117.9 mm Hg; P=0.034) and diastolic (75.1 versus 72.0 mm Hg; P=0.003) blood pressure, and pulse wave velocity (10.2 versus 8.8 m/s; P=0.001) in the exposed group. Less profound decreases of these parameters were noticed in the unexposed group. Significant between group differences were observed for declines in office and night-time diastolic blood pressure and pulse wave velocity. Importantly, the difference in the reduction of pulse wave velocity between exposed and unexposed participants remained significant after adjustment for covariates (-1.49 versus -0.35 m/s; P=0.017). The observed difference in insomnia prevalence between exposed and unexposed individuals at baseline was no more significant at follow-up. Thus, long-term aircraft noise exposure may increase the prevalence of hypertension and accelerate arterial stiffening. However, even short-term noise reduction, as experienced during the COVID-19 lockdown, may reverse those unfavorable effects.


Subject(s)
Aircraft , Blood Pressure/physiology , COVID-19 , Environmental Exposure , Noise, Transportation/adverse effects , Noise/adverse effects , Quarantine , Vascular Stiffness/physiology , Aged , Arteriosclerosis/epidemiology , Arteriosclerosis/etiology , Female , Harm Reduction , Humans , Hypertension/epidemiology , Hypertension/etiology , Life Style , Male , Middle Aged , Poland/epidemiology , Pulse Wave Analysis , Sleep Initiation and Maintenance Disorders/epidemiology , Sleep Initiation and Maintenance Disorders/etiology , Urban Health
8.
Am J Physiol Heart Circ Physiol ; 320(1): H404-H410, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-1388544

ABSTRACT

While SARS-CoV-2 primarily affects the lungs, the virus may be inflicting detriments to the cardiovascular system, both directly through angiotensin-converting enzyme 2 receptor and initiating systemic inflammation. Persistent systemic inflammation may be provoking vascular dysfunction, an early indication of cardiovascular disease risk. To establish the potential effects of SARS-CoV-2 on the systemic vasculature in the arms and legs, we performed a cross-sectional analysis of young healthy adults (control: 5 M/15 F, 23.0 ± 1.3 y, 167 ± 9 cm, 63.0 ± 7.4 kg) and young adults who, 3-4 wk prior to testing, had tested positive for SARS-CoV-2 (SARS-CoV-2: 4 M/7 F, 20.2 ± 1.1 y, 172 ± 12 cm, 69.5 ± 12.4 kg) (means ± SD). Using Doppler ultrasound, brachial artery flow-mediated dilation (FMD) in the arm and single passive limb movement (sPLM) in the leg were assessed as markers of vascular function. Carotid-femoral pulse wave velocity (PWVcf) was asvsessed as a marker of arterial stiffness. FMD was lower in the SARS-CoV-2 group (2.71 ± 1.21%) compared with the control group (8.81 ± 2.96%) (P < 0.01) and when made relative to the shear stimulus (SARS-CoV-2: 0.04 ± 0.02 AU, control: 0.13 ± 0.06 AU, P < 0.01). The femoral artery blood flow response, as evidenced by the area under the curve, from the sPLM was lower in the SARS-CoV-2 group (-3 ± 91 mL) compared with the control group (118 ± 114 mL) (P < 0.01). PWVcf was higher in the SARS-CoV-2 group (5.83 ± 0.62 m/s) compared with the control group (5.17 ± 0.66 m/s) (P < 0.01). Significantly lower systemic vascular function and higher arterial stiffness are evident weeks after testing positive for SARS-CoV-2 among young adults compared with controls.NEW & NOTEWORTHY This study was the first to investigate the vascular implications of contracting SARS-CoV-2 among young, otherwise healthy adults. Using a cross-sectional design, this study assessed vascular function 3-4 wk after young adults tested positive for SARS-CoV-2. The main findings from this study were a strikingly lower vascular function and a higher arterial stiffness compared with healthy controls. Together, these results suggest rampant vascular effects seen weeks after contracting SARS-CoV-2 in young adults.


Subject(s)
Blood Vessels/physiopathology , Brachial Artery/physiopathology , COVID-19/physiopathology , Carotid-Femoral Pulse Wave Velocity , Femoral Artery/physiopathology , Hyperemia/physiopathology , Vascular Stiffness/physiology , Vasodilation/physiology , Adolescent , Angiotensin-Converting Enzyme 2/metabolism , Area Under Curve , Blood Vessels/metabolism , Brachial Artery/diagnostic imaging , COVID-19/diagnostic imaging , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Hyperemia/diagnostic imaging , Male , SARS-CoV-2 , Severity of Illness Index , Ultrasonography, Doppler , Young Adult
9.
J Intern Med ; 290(2): 437-443, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1112272

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) interferes with the vascular endothelium. It is not known whether COVID-19 additionally affects arterial stiffness. METHODS: This case-control study compared brachial-ankle pulse wave (baPWV) and carotid-femoral pulse wave velocities (cfPWV) of acutely ill patients with and without COVID-19. RESULTS: Twenty-two COVID-19 patients (50% females, 77 [67-84] years) were compared with 22 age- and sex-matched controls. In COVID-19 patients, baPWV (19.9 [18.4-21.0] vs. 16.0 [14.2-20.4], P = 0.02) and cfPWV (14.3 [13.4-16.0] vs. 11.0 [9.5-14.6], P = 0.01) were higher than in the controls. In multiple regression analysis, COVID-19 was independently associated with higher cfPWV (ß = 3.164, P = 0.004) and baPWV (ß = 3.532, P = 0.003). PWV values were higher in nonsurvivors. In survivors, PWV correlated with length of hospital stay. CONCLUSION: COVID-19 appears to be related to an enhanced PWV reflecting an increase in arterial stiffness. Higher PWV might be related to an increased length of hospital stay and mortality.


Subject(s)
COVID-19/mortality , COVID-19/physiopathology , Vascular Stiffness/physiology , Aged , Aged, 80 and over , Brachial Artery/physiopathology , Carotid Arteries/physiopathology , Case-Control Studies , Female , Femoral Artery/physiopathology , Humans , Length of Stay , Male , Pulse Wave Analysis , Survivors
SELECTION OF CITATIONS
SEARCH DETAIL