Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
3.
Echocardiography ; 39(4): 584-591, 2022 04.
Article in English | MEDLINE | ID: covidwho-1741372

ABSTRACT

BACKGROUND: Acute right ventricular (RV) failure is common in patients hospitalized with COVID-19. Compared to the conventional echocardiographic parameters, right ventricular longitudinal strain (RVLS) is more sensitive and accurate for the diagnosis of RV systolic dysfunction. OBJECTIVE: Our purpose was to investigate the sustained RV dysfunction echo-quantified by RVLS in patients recovered from severe COVID-19. Furthermore, we aimed to assess whether disseminated intravascular coagulation (DIC) has a key role to predict the impaired RV strain. METHODS: Of 198 consecutive COVID-19 patients hospitalized from March 1, 2020, to April 15, 2020, 45 selected patients who survived from severe COVID-19 were enrolled in the study and referred to our echo-lab for transthoracic echocardiography 6-months after discharge. RVLS was calculated as the mean of the strain values of RV free wall. DIC was defined with a validated scoring system: DIC score equal to or more than 5 is compatible with overt-DIC. Categories of acute respiratory distress syndrome (ARDS) were defined based on PaO2 /FiO2 ratio. RESULTS: A total 26 of 45 patients showed impaired RVLS at 6-months' follow-up. DIC score was significantly higher in patients with worse RVLS than in those with better RVLS (4.8 ± .5 vs. 3.6 ± .6, p =.03). Stages of ARDS did not modulate this relationship. Finally, overt-DIC results the only independent predictor of sustained RV dysfunction (OR 1.233, 95% CI 1.041-1.934, p =.043). CONCLUSIONS: Sustained RV impairment frequently occurs in patients recovered from severe COVID-19. DIC plays a key role, resulting in an independent predictor of sustained RV dysfunction.


Subject(s)
COVID-19 , Disseminated Intravascular Coagulation , Heart Failure , Respiratory Distress Syndrome , Ventricular Dysfunction, Right , COVID-19/complications , Dacarbazine , Disseminated Intravascular Coagulation/complications , Humans , Ventricular Dysfunction, Right/complications , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Right
4.
Medicine (Baltimore) ; 101(8): e28971, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1713783

ABSTRACT

ABSTRACT: Background: This systematic review and meta-analysis aimed to assess whether tricuspid annular plane systolic excursion (TAPSE) could be used as a prognostic tool in patients with coronavirus disease 19 (COVID-19). METHODS: Studies on the relationship between TAPSE and COVID-19 since February 2021. Standardized mean difference (SMD) and 95% confidence intervals were used to assess the effect size. The potential for publication bias was assessed using a contour-enhanced funnel plot and Egger test. A meta-regression was performed to assess if the difference in TAPSE between survivors and nonsurvivors was affected by age, sex, hypertension or diabetes. RESULTS: Sixteen studies comprising 1579 patients were included in this meta-analysis. TAPSE was lower in nonsurvivors (SMD -3.24 (-4.23, -2.26), P < .00001; I2 = 71%), and a subgroup analysis indicated that TAPSE was also lower in critically ill patients (SMD -3.85 (-5.31, -2.38,), P < .00001; I2 = 46%). Heterogeneity was also significantly reduced, I2 < 50%. Pooled results showed that patients who developed right ventricular dysfunction had lower TAPSE (SMD -5.87 (-7.81, -3.92), P = .004; I2 = 82%). There was no statistically significant difference in the TAPSE of patients who sustained a cardiac injury vs those who did not (SMD -1.36 (-3.98, 1.26), P = .31; I2 = 88%). No significant publication bias was detected (P = .8147) but the heterogeneity of the included studies was significant. A meta-regression showed that heterogeneity was significantly greater when the incidence of hypertension was <50% (I2 = 91%) and that of diabetes was <30% (I2 = 85%). CONCLUSION: Low TAPSE levels are associated with poor COVID-19 disease outcomes. TAPSE levels are modulated by disease severity, and their prognostic utility may be skewed by pre-existing patient comorbidities. TRIAL RETROSPECTIVELY REGISTERED FEBRUARY ,: PROSPERO CRD42021236731.


Subject(s)
COVID-19 , Echocardiography/methods , Tricuspid Valve/diagnostic imaging , Ventricular Dysfunction, Right , Humans , Hypertension/complications , SARS-CoV-2 , Tricuspid Valve/physiopathology , Ventricular Dysfunction, Right/etiology , Ventricular Function, Right/physiology
7.
Eur Heart J Cardiovasc Imaging ; 23(3): 319-325, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1569679

ABSTRACT

AIMS: Cardiac dysfunction in coronavirus disease-19 (COVID-19) has been reported during acute phase but serial changes have not been well studied. To determine serial changes in type and severity of echocardiographic left and right heart functions we performed a prospective study. METHODS AND RESULTS: Successive COVID-19 patients at discharge from the hospital from June to December 2020 were enrolled. Clinical details were obtained and echocardiography was performed using Philips IE33X-Matrix. Follow-up evaluation was performed after 3 months. In total, 1789 COVID-19 patients were evaluated. Baseline echocardiography was performed in 1000 eligible patients (men 611, women 389). Mean age was 50.2 ± 15 years, hypertension was in 44.0%, diabetes in 49.4%, and coronary disease in 10.8%. COVID-19 was mild in 47.0%, moderate in 39.5%, and severe in 13.5%. Baseline cardiac parameters were more impaired in severe vs. moderate or mild COVID-19. At 3 months, in 632 patients where baseline and follow-up data were available, decline was observed in select left [left ventricular internal diameter in diastole +0.9 ± 0.2 mm, left atrial volume +7.6 ± 0.1 mL/m2, mitral E/e' +4.8 ± 0.1, and left ventricular ejection fraction (LVEF) -3.7 ± 0.2%] and right [right ventricular internal diameter in diastole +2.1 ± 0.1 mm, right atrial internal dimension +1.6 ± 0.1 mm, tricuspid Vmax +1.0 ± 0.1 cm, and tricuspid annulus plane systolic excursion (TAPSE) -2.7 ± 0.2 mm] heart variables (P < 0.001). Compared to mild COVID-19, decline was significantly greater in moderate/severe disease, LVEF -1.1 ± 0.3 vs. -3.8 ± 0.3%; mitral E/e' +3.2 ± 0.1 vs. +4.8 ± 0.1, tricuspid Vmax +0.3 ± 0.1 vs. +1.0 ± 0.1 cm, and TAPSE -0.7 ± 0.2 vs. -2.7 ± 0.2 mm (P < 0.001). CONCLUSION: This study shows impaired cardiac functions in severe and moderate COVID-19 compared to mild at hospital discharge and progressive decline in left and right heart functions at 3 months. Impairment is significantly greater in patients with moderate to severe disease.


Subject(s)
COVID-19 , Ventricular Dysfunction, Right , Adult , Aged , Echocardiography , Female , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left , Ventricular Function, Right
8.
Int J Cardiovasc Imaging ; 37(12): 3451-3457, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1525549

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a newly recognized infectious disease that has spread rapidly. COVID-19 has been associated with a number of cardiovascular involvements, including ventricular functions. The aim of our study was to evaluate the right ventricular functions of mild severity COVID-19 patients 3 months after, and compare them to the right ventricular functions of healthy volunteers. For this single-center study, data from 105 patients who were treated for mild severity COVID-19 between September 15, 2020 and December 31, 2020 were collected. 105 age and sex matched healthy subjects were included in the study. Right ventricular (RV) functions were evaluated using conventional two-dimensional (2D) echocardiography and 2D speckle-tracking echocardiography (STE) for all patients. 2D-E parameters indicating RV functions were compared between the two groups. RV diamaters, systolic pulmonary artery pressure (sPAP) and RV myocardial performance index (RV MPI) were significantly higher in the COVID-19 patients compared to control group (p < 0.05). Tricuspid annular plane systolic motion (TAPSE), right ventricular fractional area change (RVFAC) and RV S' were significantly lower in the COVID-19 group compared to control group (p < 0.05). RV global longitudinal strain (RV-GLS) (- 19.6 ± 5.2 vs. - 15.1 ± 3.4, p < 0.001) and RV free wall longitudinal strain RV-FWLS (- 19.6 ± 5.2 vs. - 17.2 ± 4.4, p < 0.001) values were significantly lower in the COVID-19 group than the control group. There was a significant negative correlation between RV-FWLS, RV-GLS and C-reactive protein (CRP), neutrophil to lymphocyte ratio (NLR), d-dimer, ferritin, platelet to lymphocyte ratio (PLR) in patients with mild severity COVID-19. This results suggested that RV-GLS and RV-FWLS decreased in the long term (third month) follow-up of patients treated for mild severity COVID-19 disease. Subclinical RV dysfunction may be observed in patients after mild severity COVID-19.


Subject(s)
COVID-19 , Ventricular Dysfunction, Right , Humans , Predictive Value of Tests , SARS-CoV-2 , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/etiology , Ventricular Function, Right
9.
J Am Soc Echocardiogr ; 35(3): 295-304, 2022 03.
Article in English | MEDLINE | ID: covidwho-1499808

ABSTRACT

BACKGROUND: COVID-19 infection is known to cause a wide array of clinical chronic sequelae, but little is known regarding the long-term cardiac complications. We aim to report echocardiographic follow-up findings and describe the changes in left (LV) and right ventricular (RV) function that occur following acute infection. METHODS: Patients enrolled in the World Alliance Societies of Echocardiography-COVID study with acute COVID-19 infection were asked to return for a follow-up transthoracic echocardiogram. Overall, 198 returned at a mean of 129 days of follow-up, of which 153 had paired baseline and follow-up images that were analyzable, including LV volumes, ejection fraction (LVEF), and longitudinal strain (LVLS). Right-sided echocardiographic parameters included RV global longitudinal strain, RV free wall strain, and RV basal diameter. Paired echocardiographic parameters at baseline and follow-up were compared for the entire cohort and for subgroups based on the baseline LV and RV function. RESULTS: For the entire cohort, echocardiographic markers of LV and RV function at follow-up were not significantly different from baseline (all P > .05). Patients with hyperdynamic LVEF at baseline (>70%), had a significant reduction of LVEF at follow-up (74.3% ± 3.1% vs 64.4% ± 8.1%, P < .001), while patients with reduced LVEF at baseline (<50%) had a significant increase (42.5% ± 5.9% vs 49.3% ± 13.4%, P = .02), and those with normal LVEF had no change. Patients with normal LVLS (<-18%) at baseline had a significant reduction of LVLS at follow-up (-21.6% ± 2.6% vs -20.3% ± 4.0%, P = .006), while patients with impaired LVLS at baseline had a significant improvement at follow-up (-14.5% ± 2.9% vs -16.7% ± 5.2%, P < .001). Patients with abnormal RV global longitudinal strain (>-20%) at baseline had significant improvement at follow-up (-15.2% ± 3.4% vs -17.4% ± 4.9%, P = .004). Patients with abnormal RV basal diameter (>4.5 cm) at baseline had significant improvement at follow-up (4.9 ± 0.7 cm vs 4.6 ± 0.6 cm, P = .019). CONCLUSIONS: Overall, there were no significant changes over time in the LV and RV function of patients recovering from COVID-19 infection. However, differences were observed according to baseline LV and RV function, which may reflect recovery from the acute myocardial injury occurring in the acutely ill. Left ventricular and RV function tends to improve in those with impaired baseline function, while it tends to decrease in those with hyperdynamic LV or normal RV function.


Subject(s)
COVID-19 , COVID-19/complications , Echocardiography/methods , Follow-Up Studies , Heart Ventricles/diagnostic imaging , Humans , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left , Ventricular Function, Right
10.
Clin Cardiol ; 44(10): 1360-1370, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1490731

ABSTRACT

There is limited evidence about the prognostic utility of right ventricular dysfunction (RVD) in patients with coronavirus disease 2019 (COVID-19). We assessed the association between RVD and mortality in COVID-19 patients. We searched electronic databases from inception to February 15, 2021. RVD was defined based on the following echocardiographic variables: tricuspid annular plane systolic excursion (TAPSE), tricuspid S' peak systolic velocity, fractional area change (FAC), and right ventricular free wall longitudinal strain (RVFWLS). All meta-analyses were performed using a random-effects model. Nineteen cohort studies involving 2307 patients were included. The mean age ranged from 59 to 72 years and 65% of patients were male. TAPSE (mean difference [MD], -3.13 mm; 95% confidence interval [CI], -4.08--2.19), tricuspid S' peak systolic velocity (MD, -0.88 cm/s; 95% CI, -1.68 to -0.08), FAC (MD, -3.47%; 95% CI, -6.21 to -0.72), and RVFWLS (MD, -5.83%; 95% CI, -7.47--4.20) were significantly lower in nonsurvivors compared to survivors. Each 1 mm decrease in TAPSE (adjusted hazard ratio [aHR], 1.22; 95% CI, 1.08-1.37), 1% decrease in FAC (aHR, 1.09; 95% CI, 1.04-1.14), and 1% increase in RVFWLS (aHR, 1.33; 95% CI, 1.19-1.48) were independently associated with higher mortality. RVD was significantly associated with higher mortality using unadjusted risk ratio (2.05; 95% CI, 1.27-3.31), unadjusted hazard ratio (3.37; 95% CI, 1.72-6.62), and adjusted hazard ratio (aHR, 2.75; 95% CI, 1.52-4.96). Our study shows that echocardiographic parameters of RVD were associated with an increased risk of mortality in COVID-19 patients.


Subject(s)
COVID-19 , Ventricular Dysfunction, Right , Aged , Humans , Male , Middle Aged , SARS-CoV-2 , Systole , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/etiology , Ventricular Function, Right
11.
J Clin Ultrasound ; 50(1): 17-24, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1487481

ABSTRACT

PURPOSE: While most coronavirus disease 2019 (COVID-19) cases are mild, the risk of heart dysfunction remains unknown. The objective of this observational study was to assess the impact of mild COVID-19 on heart function in a short-term follow-up using advanced echocardiography. METHODS: Our study cohort comprised patients diagnosed with COVID-19 who did not require hospitalization. Speckle tracking echocardiography (STE) was used to assess heart chambers function in the 31 recovered COVID-19 patients, and the results were compared with those of the control group (28 healthy participants). RESULTS: Left ventricular (LV) and right ventricular (RV) systolic function was assessed using standard and STE methods and was found to be normal and comparable in both groups (LV ejection fraction [p = 0.075], LV global longitudinal strain [p = 0.123], LV global radial strain [p = 0.630], LV global circumferential strain [p = 0.069], tricuspid annular plane systolic excursion [p = 0.417], tricuspid S' peak systolic velocity [p = 0.622], and RV free wall longitudinal strain [p = 0.749]). Similarly, atrial function was not impacted when assessed using advanced STE. CONCLUSIONS: The heart function of patients with mild COVID-19 symptoms, assessed using standard and advanced echocardiographic methods, was observed to be normal after a short-term follow-up.


Subject(s)
COVID-19 , Ventricular Dysfunction, Right , Echocardiography , Heart Ventricles/diagnostic imaging , Humans , SARS-CoV-2 , Stroke Volume , Ventricular Function, Right
12.
J Clin Ultrasound ; 50(1): 7-13, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1487480

ABSTRACT

BACKGROUND: Echocardiography is generally used in our daily practice to detect cardiovascular complications in COVID-19 patients and for etiological research in the case of worsened clinical status. Many echocardiographic parameters have been the subject of investigation in previous studies on COVID-19. Recently, the right ventricle early inflow-outflow (RVEIO) index has been identified as a possible and indirect marker of the severity of tricuspid regurgitation and right ventricular dysfunction in pulmonary embolism. In this study, we aimed to investigate the relationship between the severity of pneumonia in COVID-19 patients and the RVEIO index. METHODS: A total of 54 patients diagnosed with COVID-19 pneumonia were enrolled in this study. Our study population was separated into two groups as severe pneumonia and nonsevere pneumonia based on computed tomography imaging. RESULTS: Saturation O2 , C-reactive protein, D-dimer, deceleration time, tricuspid annular plane systolic excursion, tricuspid lateral annular systolic velocity, and RVEIO index values were found to be significantly different between severe and nonsevere pneumonia groups. The result of the multivariate logistic regression test revealed that saturation O2, D-dimer, Sm, and RVEIO index were the independent predictive parameters for severe pneumonia. Receiver operating characteristic curve analysis demonstrated that RVEIO index >4.2 predicted severe pneumonia with 77% sensitivity and 79% specificity. CONCLUSION: The RVEIO index can be used as a bedside, noninvasive, easily accessible, and useful marker to identify the COVID-19 patient group with widespread pneumonia and, therefore high risk of complications, morbidity, and mortality.


Subject(s)
COVID-19 , Ventricular Dysfunction, Right , Echocardiography , Heart Ventricles/diagnostic imaging , Humans , SARS-CoV-2 , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/etiology , Ventricular Function, Right
15.
Eur J Heart Fail ; 23(11): 1903-1912, 2021 11.
Article in English | MEDLINE | ID: covidwho-1404554

ABSTRACT

AIMS: The degree of cardiovascular sequelae following COVID-19 remains unknown. The aim of this study was to investigate whether cardiac function recovers following COVID-19. METHODS AND RESULTS: A consecutive sample of patients hospitalized with COVID-19 was prospectively included in this longitudinal study. All patients underwent an echocardiographic examination during hospitalization and 2 months later. All participants were successfully matched 1:1 with COVID-19-free controls by age and sex. A total of 91 patients were included (mean age 63 ± 12 years, 59% male). A median of 77 days (interquartile range: 72-92) passed between the two examinations. Right ventricular (RV) function improved following resolution of COVID-19: tricuspid annular plane systolic excursion (TAPSE) (2.28 ± 0.40 cm vs. 2.11 ± 0.38 cm, P < 0.001) and RV longitudinal strain (RVLS) (25.3 ± 5.5% vs. 19.9 ± 5.8%, P < 0.001). In contrast, left ventricular (LV) systolic function assessed by global longitudinal strain (GLS) did not significantly improve (17.4 ± 2.9% vs. 17.6 ± 3.3%, P = 0.6). N-terminal pro-B-type natriuretic peptide decreased between the two examinations [177.6 (80.3-408.0) ng/L vs. 11.7 (5.7-24.0) ng/L, P < 0.001]. None of the participants had elevated troponins at follow-up compared to 18 (27.7%) during hospitalization. Recovered COVID-19 patients had significantly lower GLS (17.4 ± 2.9% vs. 18.8 ± 2.9%, P < 0.001 and adjusted P = 0.004), TAPSE (2.28 ± 0.40 cm vs. 2.67 ± 0.44 cm, P < 0.001 and adjusted P < 0.001), and RVLS (25.3 ± 5.5% vs. 26.6 ± 5.8%, P = 0.50 and adjusted P < 0.001) compared to matched controls. CONCLUSION: Acute COVID-19 affected negatively RV function and cardiac biomarkers but recovered following resolution of COVID-19. In contrast, the observed reduced LV function during acute COVID-19 did not improve post-COVID-19. Compared to the matched controls, both LV and RV function remained impaired.


Subject(s)
COVID-19 , Heart Failure , Ventricular Dysfunction, Right , Aged , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Ventricular Function, Right
16.
Eur Heart J Cardiovasc Imaging ; 22(11): 1241-1254, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1376291

ABSTRACT

AIMS: Cardiovascular involvement is common in COVID-19. We sought to describe the haemodynamic profiles of hospitalized COVID-19 patients and determine their association with mortality. METHODS AND RESULTS: Consecutive hospitalized patients diagnosed with COVID-19 infection underwent clinical evaluation using the Modified Early Warning Score (MEWS) and a full non-invasive echocardiographic haemodynamic evaluation, irrespective of clinical indication, as part of a prospective predefined protocol. Patients were stratified based on filling pressure and output into four groups. Multivariable Cox-Hazard analyses determined the association between haemodynamic parameters with mortality. Among 531 consecutive patients, 44% of patients had normal left ventricular (LV) and right ventricular (RV) haemodynamic status. In contrast to LV haemodynamic parameters, RV parameters worsened with higher MEWS stage. While RV parameters did not have incremental risk prediction value above MEWS, LV stroke volume index, E/e' ratio, and LV stroke work index were all independent predictors of outcome, particularly in severe disease. Patients with LV or RV with high filling pressure and low output had the worse outcome, and patients with normal haemodynamics had the best (P < 0.0001). CONCLUSION: In hospitalized patients with COVID-19, almost half have normal left and right haemodynamics at presentation. RV but not LV haemodynamics are related to easily obtainable clinical parameters. LV but not RV haemodynamics are independent predictors of mortality, mostly in patients with severe disease.


Subject(s)
COVID-19 , Ventricular Dysfunction, Right , Hemodynamics , Humans , Prospective Studies , SARS-CoV-2 , Stroke Volume , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Left , Ventricular Function, Right
17.
J Am Heart Assoc ; 10(16): e021428, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1348207

ABSTRACT

Background Cardiac dysfunction is a prominent feature of multisystem inflammatory syndrome in children (MIS-C), yet the etiology is poorly understood. We determined whether dysfunction is global or regional, and whether it is associated with the cytokine milieu, microangiopathy, or severity of shock. Methods and Results We analyzed echocardiographic parameters of myocardial deformation and compared global and segmental left ventricular strain between 43 cases with MIS-C ≤18 years old and 40 controls. Primary outcomes included left ventricular global longitudinal strain, right ventricular free wall strain), and left atrial strain. We evaluated relationships between strain and profiles of 10 proinflammatory cytokines, microangiopathic features (soluble C5b9), and vasoactive-inotropic requirements. Compared with controls, cases with MIS-C had significant impairments in all parameters of systolic and diastolic function. 65% of cases with MIS-C had abnormal left ventricular function (|global longitudinal strain|<17%), although elevations of cytokines were modest. All left ventricular segments were involved, without apical or basal dominance to suggest acute stress cardiomyopathy. Worse global longitudinal strain correlated with higher ratios of interleukin-6 (ρ -0.43) and interleukin-8 (ρ -0.43) to total hypercytokinemia, but not absolute levels of interleukin-6 or interleukin-8, or total hypercytokinemia. Similarly, worse right ventricular free wall strain correlated with higher relative interleukin-8 expression (ρ -0.59). There were no significant associations between function and microangiopathy or vasoactive-inotropic requirements. Conclusions Myocardial function is globally decreased in MIS-C and not explained by acute stress cardiomyopathy. Cardiac dysfunction may be driven by the relative skew of the immune response toward interleukin-6 and interleukin-8 pathways, more so than degree of hyperinflammation, refining the current paradigm of myocardial involvement in MIS-C.


Subject(s)
Atrial Function, Left , COVID-19/complications , Cytokine Release Syndrome/etiology , Cytokines/blood , Heart Diseases/etiology , Inflammation Mediators/blood , Systemic Inflammatory Response Syndrome/complications , Ventricular Function, Left , Ventricular Function, Right , Adolescent , Age Factors , Biomarkers/blood , COVID-19/diagnosis , COVID-19/immunology , Child , Cross-Sectional Studies , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/immunology , Echocardiography , Female , Heart Diseases/diagnostic imaging , Heart Diseases/immunology , Heart Diseases/physiopathology , Humans , Male , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/immunology
18.
Echocardiography ; 38(9): 1579-1585, 2021 09.
Article in English | MEDLINE | ID: covidwho-1345951

ABSTRACT

BACKGROUND: The evaluation of the tricuspid annular plane systolic excursion (TAPSE) is recommended to assess the right ventricular (RV) systolic function. We performed an updated meta-analysis of the association between TAPSE and short-term mortality in COVID-19 patients. METHODS: MEDLINE and Scopus databases were searched to locate all the articles published up to May 1, 2021, reporting data on TAPSE among COVID-19 survivors and non-survivors. The difference of TAPSE between the two groups was expressed as mean difference (MD) with the corresponding 95% confidence interval (CI) using the Mantel-Haenszel random effects model. Both Q value and I2 statistics were used to assess heterogeneity across studies. Sensitivity analysis, meta-regression, and evaluation of bias were performed. RESULTS: Twelve studies, enrolling 1272 COVID-19 patients (778 males, mean age 69.3 years), met the inclusion criteria and were included in the final analysis. Non-survivors had a lower TAPSE compared to survivors (MD =  -3.089 mm, 95% CI =  -4.087 to -2.091, p < 0.0001, I2  = 79.0%). Both the visual inspection of the funnel plot and the Egger's tests (t = 1.195, p = 0.259) revealed no evidence of publication bias. Sensitivity analysis confirmed yielded results. Meta-regression analysis evidenced that the difference in TAPSE between the two groups was only influenced by pre-existing chronic obstructive pulmonary disease (COPD, p = 0.02). CONCLUSION: COVID-19 non-survivors have a lower TAPSE when compared to survivors, especially in COPD subjects. Current data suggest that the TAPSE assessment may provide useful information regarding the short-term prognosis of COVID-19 patients during the infection.


Subject(s)
COVID-19 , Ventricular Dysfunction, Right , Aged , Echocardiography , Humans , Male , SARS-CoV-2 , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Right
20.
J Magn Reson Imaging ; 55(3): 866-880, 2022 03.
Article in English | MEDLINE | ID: covidwho-1323896

ABSTRACT

BACKGROUND: Recent studies have utilized MRI to determine the extent to which COVID-19 survivors may experience cardiac sequels after recovery. PURPOSE: To systematically review the main cardiac MRI findings in COVID-19 adult survivors. STUDY TYPE: Systematic review. SUBJECTS: A total of 2954 COVID-19 adult survivors from 16 studies. FIELD STRENGTH/SEQUENCE: Late gadolinium enhancement (LGE), parametric mapping (T1-native, T2, T1-post (extracellular volume fraction [ECV]), T2-weighted sequences (myocardium/pericardium), at 1.5 T and 3  T. ASSESSMENT: A systematic search was performed on PubMed, Embase, and Google scholar databases using Boolean operators and the relevant key terms covering COVID-19, cardiac injury, CMR, and follow-up. MRI data, including (if available) T1, T2, extra cellular volume, presence of myocardial or pericardial late gadolinium enhancement (LGE) and left and right ventricular ejection fraction were extracted. STATISTICAL TESTS: The main results of the included studies are summarized. No additional statistical analysis was performed. RESULTS: Of 1601 articles retrieved from the initial search, 12 cohorts and 10 case series met our eligibility criteria. The rate of raised T1 in COVID-19 adult survivors varied across studies from 0% to 73%. Raised T2 was detected in none of patients in 4 out of 15 studies, and in the remaining studies, its rate ranged from 2% to 60%. In most studies, LGE (myocardial or pericardial) was observed in COVID-19 survivors, the rate ranging from 4% to 100%. Myocardial LGE mainly had nonischemic patterns. None of the cohort studies observed myocardial LGE in "healthy" controls. Most studies found that patients who recovered from COVID-19 had a significantly greater T1 and T2 compared to participants in the corresponding control group. DATA CONCLUSION: Findings of MRI studies suggest the presence of myocardial and pericardial involvement in a notable number of patients recovered from COVID-19. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 3.


Subject(s)
COVID-19 , Contrast Media , Adult , Gadolinium , Humans , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine , Myocardium , Predictive Value of Tests , SARS-CoV-2 , Stroke Volume , Survivors , Ventricular Function, Left , Ventricular Function, Right
SELECTION OF CITATIONS
SEARCH DETAIL