Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Medicine (Baltimore) ; 101(8): e28971, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1713783

ABSTRACT

ABSTRACT: Background: This systematic review and meta-analysis aimed to assess whether tricuspid annular plane systolic excursion (TAPSE) could be used as a prognostic tool in patients with coronavirus disease 19 (COVID-19). METHODS: Studies on the relationship between TAPSE and COVID-19 since February 2021. Standardized mean difference (SMD) and 95% confidence intervals were used to assess the effect size. The potential for publication bias was assessed using a contour-enhanced funnel plot and Egger test. A meta-regression was performed to assess if the difference in TAPSE between survivors and nonsurvivors was affected by age, sex, hypertension or diabetes. RESULTS: Sixteen studies comprising 1579 patients were included in this meta-analysis. TAPSE was lower in nonsurvivors (SMD -3.24 (-4.23, -2.26), P < .00001; I2 = 71%), and a subgroup analysis indicated that TAPSE was also lower in critically ill patients (SMD -3.85 (-5.31, -2.38,), P < .00001; I2 = 46%). Heterogeneity was also significantly reduced, I2 < 50%. Pooled results showed that patients who developed right ventricular dysfunction had lower TAPSE (SMD -5.87 (-7.81, -3.92), P = .004; I2 = 82%). There was no statistically significant difference in the TAPSE of patients who sustained a cardiac injury vs those who did not (SMD -1.36 (-3.98, 1.26), P = .31; I2 = 88%). No significant publication bias was detected (P = .8147) but the heterogeneity of the included studies was significant. A meta-regression showed that heterogeneity was significantly greater when the incidence of hypertension was <50% (I2 = 91%) and that of diabetes was <30% (I2 = 85%). CONCLUSION: Low TAPSE levels are associated with poor COVID-19 disease outcomes. TAPSE levels are modulated by disease severity, and their prognostic utility may be skewed by pre-existing patient comorbidities. TRIAL RETROSPECTIVELY REGISTERED FEBRUARY ,: PROSPERO CRD42021236731.


Subject(s)
COVID-19 , Echocardiography/methods , Tricuspid Valve/diagnostic imaging , Ventricular Dysfunction, Right , Humans , Hypertension/complications , SARS-CoV-2 , Tricuspid Valve/physiopathology , Ventricular Dysfunction, Right/etiology , Ventricular Function, Right/physiology
3.
Heart Fail Rev ; 27(4): 1325-1339, 2022 07.
Article in English | MEDLINE | ID: covidwho-1188132

ABSTRACT

Due to the SARS-CoV-2 infection-related severe pulmonary tissue damages associated with a relative specific widespread thrombotic microangiopathy, the pathophysiologic role of heart-lung interactions becomes crucial for the development and progression of right ventricular (RV) dysfunction. The high resistance in the pulmonary circulation, as a result of small vessel thrombosis and hypoxemia, is the major cause of right heart failure associated with a particularly high mortality in severe COVID-19. Timely identification of patients at high risk for RV failure, optimization of mechanical ventilation to limit its adverse effects on RV preload and afterload, avoidance of medication-related increase in the pulmonary vascular resistance, and the use of extracorporeal membrane oxygenation in refractory respiratory failure with hemodynamic instability, before RV failure develops, can improve patient survival. Since it was confirmed that the right-sided heart is particularly involved in the clinical deterioration of patients with COVID-19 and pressure overload-induced RV dysfunction plays a key role for patient outcome, transthoracic echocardiography (TTE) received increasing attention. Limited TTE focused on the right heart appears highly useful in hospitalized COVID-19 patients and particularly beneficial for monitoring of critically ill patients. In addition to detection of right-sided heart dilation and RV dysfunction, it enables assessment of RV-pulmonary arterial coupling and evaluation of RV adaptability to pressure loading which facilitate useful prognostic statements to be made. The increased use of bedside TTE focused on the right heart could facilitate more personalized management and treatment of hospitalized patients and can contribute towards reducing the high mortality associated with SARS-CoV-2 infection.


Subject(s)
COVID-19 , Heart Failure , Ventricular Dysfunction, Right , COVID-19/complications , Echocardiography , Heart Ventricles/diagnostic imaging , Humans , Lung/diagnostic imaging , Prognosis , SARS-CoV-2 , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/etiology , Ventricular Function, Right/physiology
5.
Rev Cardiovasc Med ; 21(4): 635-641, 2020 12 30.
Article in English | MEDLINE | ID: covidwho-1005370

ABSTRACT

To investigate the right heart function in coronavirus disease 2019 (COVID-19) patients with acute respiratory distress syndrome (ARDS), a retrospective analysis of 49 COVID-19 patients with ARDS was performed. Patients were divided into severe group and critically-severe group according to the severity of illness. Age-matched healthy volunteers were recruited as a control group. The cardiac cavity diameters, tricuspid annular plane systolic excursion (TAPSE), tricuspid valve regurgitation pressure gradient biggest (TRPG), pulmonary arterial systolic pressure (PASP), maximum inferior vena cava diameter (IVCmax) and minimum diameter (IVCmin), and inferior vena cava collapse index (ICV-CI) were measured using echocardiography. We found that the TAPSE was significantly decreased in pneumonia patients compared to healthy subjects (P < 0.0001), and it was significantly lower in critically-severe patients (P = 0.0068). The TAPSE was less than 17 mm in three (8.6%) severe and five (35.7%) critically-severe patients. In addition, the TAPSE was significantly decreased in severe ARDS patients than in mild ARDS patients. The IVCmax and IVCmin were significantly increased in critically-severe patients compared to healthy subjects and severe patients (P < 0.01), whereas the ICV-CI was significantly decreased (P < 0.05). COVID-19 patients had significantly larger right atrium and ventricle than healthy controls (P < 0.01). The left ventricular ejection fraction (LVEF) in critically-severe patients was significantly lower than that in severe patients and healthy controls (P < 0.05). Right ventricular function was impaired in critically-severe COVID-19 patients. The assessment and protection of the right heart function in COVID-19 patients should be strengthened.


Subject(s)
COVID-19/complications , Heart Ventricles/physiopathology , Pandemics , Ventricular Dysfunction, Right/etiology , Ventricular Function, Right/physiology , COVID-19/epidemiology , Echocardiography, Doppler , Female , Follow-Up Studies , Heart Ventricles/diagnostic imaging , Humans , Male , Middle Aged , Retrospective Studies , Ventricular Dysfunction, Right/diagnosis , Ventricular Dysfunction, Right/physiopathology
6.
Echocardiography ; 38(2): 222-229, 2021 02.
Article in English | MEDLINE | ID: covidwho-991342

ABSTRACT

AIMS: The aim of this investigation was to evaluate echocardiographic parameters of cardiac function and in particular right ventricular (RV) function as a predictor of mortality in patients with coronavirus disease-2019 (COVID-19) pneumonia. METHODS AND RESULTS: This prospective observational study included 35 patients admitted to a UK district general hospital with COVID-19 and evidence of cardiac involvement, that is, raised Troponin I levels or clinical evidence of heart failure during the first wave of the COVID-19 pandemic (March-May 2020). All patients underwent echocardiography including speckle tracking for right ventricular longitudinal strain (RVLS) providing image quality was sufficient (30 out of 35 patients). Upon comparison of patients who survived COVID-19 with non-survivors, survivors had significantly smaller RVs (basal RV diameter 38.2 vs 43.5 mm P = .0295) with significantly better RV function (Tricuspid annular plane systolic excursion (TAPSE): 17.5 vs 15.3 mm P = .049; average RVLS: 24.3% vs 15.6%; P = .0018). Tricuspid regurgitation (TR) maximal velocity was higher in survivors (2.75 m/s vs 2.11 m/s; P = .0045) indicating that pressure overload was not the predominant driver of this effect and there was no significant difference in left ventricular (LV) ejection fraction. Kaplan-Meier and log-rank analysis of patients split into groups according to average RVLS above or below 20% revealed significantly increased 30-day mortality in patients with average RVLS under 20% (HR: 3.189; 95% CI: 1.297-12.91; P = .0195). CONCLUSION: This study confirms that RVLS is a potent and independent predictor of outcome in COVID-19 patients with evidence of cardiac involvement.


Subject(s)
COVID-19/epidemiology , Echocardiography, Three-Dimensional/methods , Heart Failure/physiopathology , Heart Ventricles/diagnostic imaging , Pandemics , Stroke Volume/physiology , Ventricular Function, Right/physiology , Aged , Comorbidity , Female , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Ventricles/physiopathology , Humans , Male , Pilot Projects , Prognosis , Prospective Studies , SARS-CoV-2
7.
J Am Soc Echocardiogr ; 33(10): 1278-1284, 2020 10.
Article in English | MEDLINE | ID: covidwho-714636

ABSTRACT

BACKGROUND: Despite growing evidence of cardiovascular complications associated with coronavirus disease 2019 (COVID-19), there are few data regarding the performance of transthoracic echocardiography (TTE) and the spectrum of echocardiographic findings in this disease. METHODS: A retrospective analysis was performed among adult patients admitted to a quaternary care center in New York City between March 1 and April 3, 2020. Patients were included if they underwent TTE during the hospitalization after a known positive diagnosis for COVID-19. Demographic and clinical data were obtained using chart abstraction from the electronic medical record. RESULTS: Of 749 patients, 72 (9.6%) underwent TTE following positive results on severe acute respiratory syndrome coronavirus-2 polymerase chain reaction testing. The most common clinical indications for TTE were concern for a major acute cardiovascular event (45.8%) and hemodynamic instability (29.2%). Although most patients had preserved biventricular function, 34.7% were found to have left ventricular ejection fractions ≤ 50%, and 13.9% had at least moderately reduced right ventricular function. Four patients had wall motion abnormalities suggestive of stress-induced cardiomyopathy. Using Spearman rank correlation, there was an inverse relationship between high-sensitivity troponin T and left ventricular ejection fraction (ρ = -0.34, P = .006). Among 20 patients with prior echocardiograms, only two (10%) had new reductions in LVEF of >10%. Clinical management was changed in eight individuals (24.2%) in whom TTE was ordered for concern for acute major cardiovascular events and three (14.3%) in whom TTE was ordered for hemodynamic evaluation. CONCLUSIONS: This study describes the clinical indications for use and diagnostic performance of TTE, as well as findings seen on TTE, in hospitalized patients with COVID-19. In appropriately selected patients, TTE can be an invaluable tool for guiding COVID-19 clinical management.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Echocardiography/methods , Heart Diseases/diagnosis , Heart Ventricles/diagnostic imaging , Pneumonia, Viral/complications , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/epidemiology , Female , Follow-Up Studies , Heart Diseases/etiology , Heart Diseases/physiopathology , Heart Ventricles/physiopathology , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Reproducibility of Results , Retrospective Studies , SARS-CoV-2 , Stroke Volume/physiology , Ventricular Function, Left/physiology , Ventricular Function, Right/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL