Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Viruses ; 13(10)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1481007


Nipah virus (NiV) and respiratory syncytial virus (RSV) possess two surface glycoproteins involved in cellular attachment and membrane fusion, both of which are potential targets for vaccines. The majority of vaccine development is focused on the attachment (G) protein of NiV, which is the immunodominant target. In contrast, the fusion (F) protein of RSV is the main target in vaccine development. Despite this, neutralising epitopes have been described in NiV F and RSV G, making them alternate targets for vaccine design. Through rational design, we have developed a vaccine strategy applicable to phylogenetically divergent NiV and RSV that comprises both the F and G proteins (FxG). In a mouse immunization model, we found that NiV FxG elicited an improved immune response capable of neutralising pseudotyped NiV and a NiV mutant that is able to escape neutralisation by two known F-specific antibodies. RSV FxG elicited an immune response against both F and G and was able to neutralise RSV; however, this was inferior to the immune response of F alone. Despite this, RSV FxG elicited a response against a known protective epitope within G that is conserved across RSV A and B subgroups, which may provide additional protection in vivo. We conclude that inclusion of F and G antigens within a single design provides a streamlined subunit vaccine strategy against both emerging and established pathogens, with the potential for broader protection against NiV.

Antibodies, Viral/blood , Henipavirus Infections/prevention & control , Nipah Virus/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Vaccines/administration & dosage , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/genetics , Viral Fusion Proteins/immunology
Mol Ther ; 29(3): 1174-1185, 2021 03 03.
Article in English | MEDLINE | ID: covidwho-985497


Self-amplifying RNA (saRNA) is a cutting-edge platform for both nucleic acid vaccines and therapeutics. saRNA is self-adjuvanting, as it activates types I and III interferon (IFN), which enhances the immunogenicity of RNA vaccines but can also lead to inhibition of translation. In this study, we screened a library of saRNA constructs with cis-encoded innate inhibiting proteins (IIPs) and determined the effect on protein expression and immunogenicity. We observed that the PIV-5 V and Middle East respiratory syndrome coronavirus (MERS-CoV) ORF4a proteins enhance protein expression 100- to 500-fold in vitro in IFN-competent HeLa and MRC5 cells. We found that the MERS-CoV ORF4a protein partially abates dose nonlinearity in vivo, and that ruxolitinib, a potent Janus kinase (JAK)/signal transducer and activator of transcription (STAT) inhibitor, but not the IIPs, enhances protein expression of saRNA in vivo. Both the PIV-5 V and MERS-CoV ORF4a proteins were found to enhance the percentage of resident cells in human skin explants expressing saRNA and completely rescued dose nonlinearity of saRNA. Finally, we observed that the MERS-CoV ORF4a increased the rabies virus (RABV)-specific immunoglobulin G (IgG) titer and neutralization half-maximal inhibitory concentration (IC50) by ∼10-fold in rabbits, but not in mice or rats. These experiments provide a proof of concept that IIPs can be directly encoded into saRNA vectors and effectively abate the nonlinear dose dependency and enhance immunogenicity.

Immunity, Innate/drug effects , Immunogenicity, Vaccine , Protein Biosynthesis/drug effects , Vaccines, Synthetic/pharmacology , Viral Envelope Proteins/administration & dosage , Animals , Cell Line , Encephalitis Virus, Venezuelan Equine/drug effects , Encephalitis Virus, Venezuelan Equine/immunology , Encephalitis Virus, Venezuelan Equine/pathogenicity , Fibroblasts , Gene Expression Regulation , HeLa Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin G/biosynthesis , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Janus Kinases/antagonists & inhibitors , Janus Kinases/genetics , Janus Kinases/immunology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , NF-kappa B/genetics , NF-kappa B/immunology , Nitriles , Parainfluenza Virus 5/drug effects , Parainfluenza Virus 5/immunology , Parainfluenza Virus 5/pathogenicity , Pyrazoles/pharmacology , Pyrimidines , Rabbits , Rabies virus/drug effects , Rabies virus/immunology , Rabies virus/pathogenicity , Rats , STAT Transcription Factors/antagonists & inhibitors , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal Transduction , Vaccines, Synthetic/biosynthesis , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
Emerg Microbes Infect ; 9(1): 2361-2367, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-894519


The coronavirus disease 2019 (COVID-19) pandemic is still ongoing and has become an important public health threat. This disease is caused by a new coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, and so far, little is known about this virus. In this study, by using plaque purification, we purified two SARS-CoV-2 virus strains from the same specimen, one named F8 containing a 12-bp deletion in the E gene and the other named 8X containing the wild-type E gene. There was no significant difference in the viral titer and infectivity of these two strains. The S protein content of the F8 viral culture was 0.39 µg/ml, much higher than that of 8X. An inactivated vaccine made from the F8 strain could trigger high levels of the IgG titer and neutralizing antibody titer, which could last for at least 6 weeks and were significantly higher than those from the 8X strain at 1 and 3 weeks post vaccination, respectively. In conclusion, we reported that both the E gene mutant and wild-type SARS-CoV-2 strains were isolated from the same clinical sample by plaque purification. A 12-bp deletion in the E gene was important for SARS-CoV-2 replication and immunogenicity.

Betacoronavirus/genetics , Coronavirus Infections/virology , Pneumonia, Viral/virology , Viral Envelope Proteins/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Envelope Proteins , Coronavirus Infections/epidemiology , Female , Humans , Immunization , Male , Mice , Mice, Inbred BALB C , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Sequence Deletion , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/immunology , Virulence