Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Commun Biol ; 5(1): 409, 2022 May 03.
Article in English | MEDLINE | ID: covidwho-1821622

ABSTRACT

RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.


Subject(s)
COVID-19 , Chiroptera , Animals , COVID-19/therapy , Chiroptera/metabolism , Humans , Immunization, Passive , Membrane Glycoproteins/metabolism , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
2.
Virus Genes ; 58(2): 143-145, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1777771

ABSTRACT

Virus like particles (VLPs) are used as a tool to study the mutations in the structural genes that influence the virus assembly and entry process. We observed that Chikungunya VLP with the E1:V291I mutation produced more fluorescence-positive cells in Vero cells than the other mutant VLPs (E1:A226V, D284E, and E2:V264A) and wild-type VLP tested in this study. According to the findings, the V291I mutation may aid the virus's ability to enter the cells more efficiently than wild-type VLPs. The study concludes that VLP is a useful model for studying the virus entry process in cells.


Subject(s)
Chikungunya Fever , Animals , Chlorocebus aethiops , Mutation , Vero Cells , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Assembly
3.
Cancer Discov ; 12(4): 892-894, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1775023

ABSTRACT

SUMMARY: Fahrner and colleagues investigated the immune response of patients with cancer and cancer-free individuals to SARS-CoV-2 and found that a propensity toward an IL5-predominant Th2/Tc2 response was predictive of susceptibility to infection. The results of this study also suggest that a cellular response against the Spike 1 protein receptor binding domain (S1-RBD) region of the SARS-CoV-2 proteome contributes to protection and that mutations in this region may drive viral evolution and immune escape. See related article by Fahrner et al., p. 958 (8).


Subject(s)
COVID-19 , COVID-19/genetics , Humans , Membrane Glycoproteins/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism
4.
Indian J Pharmacol ; 54(1): 41-45, 2022.
Article in English | MEDLINE | ID: covidwho-1766049

ABSTRACT

The new omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in South Africa in November 2021 has been declared as a Variant of Concern by the World Health Organization. This variant has been found to carry multifold mutations that have not been observed in any of the variants detected so far. The majority of these mutations are present in spike protein, contributing to its ability to escape the currently available neutralizing antibodies and vaccines, as well as increasing the chances of reinfection. This brief communication provides an insight into mutations detected in the omicron variant and their impact on currently available interventions against SARS-CoV-2 and the need for a booster dose. We also discuss the severity status of infection due to this variant. Additionally, we highlight the hypothesis supporting the association of high HIV prevalence and the appearance of the omicron variant of SARS-CoV-2 in immune-compromised individuals.


Subject(s)
COVID-19 , Viral Envelope Proteins , Antibodies, Viral , Humans , SARS-CoV-2/genetics , Viral Envelope Proteins/genetics
5.
Viruses ; 14(3)2022 03 05.
Article in English | MEDLINE | ID: covidwho-1765948

ABSTRACT

The toxicity of mRNA-lipid nanoparticle (LNP) vaccines depends on the total mRNA-LNP dose. We established that the maximum tolerated dose of our trivalent mRNA-LNP genital herpes vaccine was 10 µg/immunization in mice. We then evaluated one of the mRNAs, gD2 mRNA-LNP, to determine how much of the 10 µg total dose to assign to this immunogen. We immunized mice with 0.3, 1.0, 3.0, or 10 µg of gD2 mRNA-LNP and measured serum IgG ELISA, neutralizing antibodies, and antibodies to six crucial gD2 epitopes involved in virus entry and spread. Antibodies to crucial gD2 epitopes peaked at 1 µg, while ELISA and neutralizing titers continued to increase at higher doses. The epitope results suggested no immunologic benefit above 1 µg of gD2 mRNA-LNP, while ELISA and neutralizing titers indicated higher doses may be useful. We challenged the gD2 mRNA-immunized mice intravaginally with HSV-2. The 1-µg dose provided total protection, confirming the epitope studies, and supported assigning less than one-third of the trivalent vaccine maximum dose of 10 µg to gD2 mRNA-LNP. Epitope mapping as performed in mice can also be accomplished in phase 1 human trials to help select the optimum dose of each immunogen in a multivalent vaccine.


Subject(s)
Herpes Genitalis , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Herpes Genitalis/prevention & control , Herpesvirus 2, Human/genetics , Liposomes , Mice , Nanoparticles , RNA, Messenger/genetics , Viral Envelope Proteins/genetics
6.
Viruses ; 14(3)2022 03 19.
Article in English | MEDLINE | ID: covidwho-1760848

ABSTRACT

The SARS-CoV-2 spike protein mediates target recognition, cellular entry, and ultimately the viral infection that leads to various levels of COVID-19 severities. Positive evolutionary selection of mutations within the spike protein has led to the genesis of new SARS-CoV-2 variants with greatly enhanced overall fitness. Given the trend of variants with increased fitness arising from spike protein alterations, it is critical that the scientific community understand the mechanisms by which these mutations alter viral functions. As of March 2022, five SARS-CoV-2 strains were labeled "variants of concern" by the World Health Organization: the Alpha, Beta, Gamma, Delta, and Omicron variants. This review summarizes the potential mechanisms by which the common mutations on the spike protein that occur within these strains enhance the overall fitness of their respective variants. In addressing these mutations within the context of the SARS-CoV-2 spike protein structure, spike/receptor binding interface, spike/antibody binding, and virus neutralization, we summarize the general paradigms that can be used to estimate the effects of future mutations along SARS-CoV-2 evolution.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Membrane Glycoproteins , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
7.
Euro Surveill ; 27(11)2022 03.
Article in English | MEDLINE | ID: covidwho-1753318

ABSTRACT

When SARS-CoV-2 Omicron emerged in 2021, S gene target failure enabled differentiation between Omicron and the dominant Delta variant. In England, where S gene target surveillance (SGTS) was already established, this led to rapid identification (within ca 3 days of sample collection) of possible Omicron cases, alongside real-time surveillance and modelling of Omicron growth. SGTS was key to public health action (including case identification and incident management), and we share applied insights on how and when to use SGTS.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Membrane Glycoproteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
8.
Viruses ; 12(6)2020 06 25.
Article in English | MEDLINE | ID: covidwho-1726024

ABSTRACT

The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has highlighted the importance of reliable and rapid diagnostic testing to prevent and control virus circulation. Dozens of monoplex in-house RT-qPCR assays are already available; however, the development of dual-target assays is suited to avoid false-negative results caused by polymorphisms or point mutations, that can compromise the accuracy of diagnostic and screening tests. In this study, two mono-target assays recommended by WHO (E-Sarbeco (enveloppe gene, Charite University, Berlin, Germany) and RdRp-IP4 (RdRp, Institut Pasteur, Paris, France)) were selected and combined in a unique robust test; the resulting duo SARS-CoV-2 RT-qPCR assay was compared to the two parental monoplex tests. The duo SARS-CoV-2 assay performed equally, or better, in terms of sensitivity, specificity, linearity and signal intensity. We demonstrated that combining two single systems into a dual-target assay (with or without an MS2-based internal control) did not impair performances, providing a potent tool adapted for routine molecular diagnosis in clinical microbiology laboratories.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA-Dependent RNA Polymerase/genetics , Real-Time Polymerase Chain Reaction/methods , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Betacoronavirus/genetics , COVID-19 , Coronavirus Envelope Proteins , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Humans , Pandemics , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Sensitivity and Specificity , World Health Organization
9.
Protein J ; 39(3): 198-216, 2020 06.
Article in English | MEDLINE | ID: covidwho-1718840

ABSTRACT

The devastating effects of the recent global pandemic (termed COVID-19 for "coronavirus disease 2019") caused by the severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) are paramount with new cases and deaths growing at an exponential rate. In order to provide a better understanding of SARS CoV-2, this article will review the proteins found in the SARS CoV-2 that caused this global pandemic.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/physiology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Sequence , Betacoronavirus/genetics , COVID-19 , Coronavirus Envelope Proteins , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Coronavirus Nucleocapsid Proteins , Drug Discovery/methods , Genome, Viral , Host-Pathogen Interactions/drug effects , Humans , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Pandemics , Phosphoproteins , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , Polyproteins , Protein Interaction Maps/drug effects , SARS-CoV-2 , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Proteins/genetics , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism , Viroporin Proteins
10.
Biosci Rep ; 42(2)2022 02 25.
Article in English | MEDLINE | ID: covidwho-1655685

ABSTRACT

Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever-a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit-a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.


Subject(s)
Glycoproteins , Lassa virus , Viral Envelope Proteins , Glycoproteins/genetics , Humans , Lassa virus/genetics , Viral Envelope Proteins/genetics , Virus Internalization
11.
Arch Toxicol ; 96(3): 859-875, 2022 03.
Article in English | MEDLINE | ID: covidwho-1634984

ABSTRACT

rVSV-ΔG-SARS-CoV-2-S is a clinical stage (Phase 2) replication competent recombinant vaccine against SARS-CoV-2. To evaluate the safety profile of the vaccine, a series of non-clinical safety, immunogenicity and efficacy studies were conducted in four animal species, using multiple doses (up to 108 Plaque Forming Units/animal) and dosing regimens. There were no treatment-related mortalities or any noticeable clinical signs in any of the studies. Compared to unvaccinated controls, hematology and biochemistry parameters were unremarkable and no adverse histopathological findings. There was no detectable viral shedding in urine, nor viral RNA detected in whole blood or serum samples seven days post vaccination. The rVSV-ΔG-SARS-CoV-2-S vaccination gave rise to neutralizing antibodies, cellular immune responses, and increased lymphocytic cellularity in the spleen germinal centers and regional lymph nodes. No evidence for neurovirulence was found in C57BL/6 immune competent mice or in highly sensitive type I interferon knock-out mice. Vaccine virus replication and distribution in K18-human Angiotensin-converting enzyme 2-transgenic mice showed a gradual clearance from the vaccination site with no vaccine virus recovered from the lungs. The nonclinical data suggest that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe and immunogenic. These results supported the initiation of clinical trials, currently in Phase 2.


Subject(s)
COVID-19 Vaccines/toxicity , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Cricetinae , Female , Membrane Glycoproteins/genetics , Mesocricetus , Mice , Mice, Inbred C57BL , Rabbits , Swine , Vaccination , Vaccines, Synthetic/toxicity , Viral Envelope Proteins/genetics
12.
Biophys J ; 121(2): 207-227, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1634388

ABSTRACT

Entry of coronaviruses into host cells is mediated by the viral spike protein. Previously, we identified the bona fide fusion peptides (FPs) for severe acute respiratory syndrome coronavirus ("SARS-1") and severe acute respiratory syndrome coronavirus-2 ("SARS-2") using electron spin resonance spectroscopy. We also found that their FPs induce membrane ordering in a Ca2+-dependent fashion. Here we study which negatively charged residues in SARS-1 FP are involved in this binding, to build a topological model and clarify the role of Ca2+. Our systematic mutation study on the SARS-1 FP shows that all six negatively charged residues contribute to the FP's membrane ordering activity, with D812 the dominant residue. The corresponding SARS-2 residue D830 plays an equivalent role. We provide a topological model of how the FP binds Ca2+ ions: its two segments FP1 and FP2 each bind one Ca2+. The binding of Ca2+, the folding of FP (both studied by isothermal titration calorimetry experiments), and the ordering activity correlate very well across the mutants, suggesting that the Ca2+ helps the folding of FP in membranes to enhance the ordering activity. Using a novel pseudotyped viral particle-liposome methodology, we monitored the membrane ordering induced by the FPs in the whole spike protein in its trimer form in real time. We found that the SARS-1 and SARS-2 pseudotyped viral particles also induce membrane ordering to the extent that separate FPs do, and mutations of the negatively charged residues also significantly suppress the membrane ordering activity. However, the slower kinetics of the FP ordering activity versus that of the pseudotyped viral particle suggest the need for initial trimerization of the FPs.


Subject(s)
COVID-19 , Membrane Fusion , Humans , Peptides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
13.
Mol Ther ; 30(5): 2058-2077, 2022 May 04.
Article in English | MEDLINE | ID: covidwho-1612108

ABSTRACT

The ongoing COVID-19 pandemic highlights the need to tackle viral variants, expand the number of antigens, and assess diverse delivery systems for vaccines against emerging viruses. In the present study, a DNA vaccine candidate was generated by combining in tandem envelope protein domain III (EDIII) of dengue virus serotypes 1-4 and a dengue virus (DENV)-2 non-structural protein 1 (NS1) protein-coding region. Each domain was designed as a serotype-specific consensus coding sequence derived from different genotypes based on the whole genome sequencing of clinical isolates in India and complemented with data from Africa. This sequence was further optimized for protein expression. In silico structural analysis of the EDIII consensus sequence revealed that epitopes are structurally conserved and immunogenic. The vaccination of mice with this construct induced pan-serotype neutralizing antibodies and antigen-specific T cell responses. Assaying intracellular interferon (IFN)-γ staining, immunoglobulin IgG2(a/c)/IgG1 ratios, and immune gene profiling suggests a strong Th1-dominant immune response. Finally, the passive transfer of immune sera protected AG129 mice challenged with a virulent, non-mouse-adapted DENV-2 strain. Our findings collectively suggest an alternative strategy for dengue vaccine design by offering a novel vaccine candidate with a possible broad-spectrum protection and a successful clinical translation either as a stand alone or in a mix and match strategy.


Subject(s)
COVID-19 , Dengue Vaccines , Dengue Virus , Dengue , Vaccines, DNA , Antibodies, Neutralizing , Antibodies, Viral , Dengue/prevention & control , Dengue Vaccines/genetics , Dengue Virus/genetics , Humans , Pandemics , Viral Envelope Proteins/genetics
14.
Transl Res ; 242: 56-65, 2022 04.
Article in English | MEDLINE | ID: covidwho-1586298

ABSTRACT

The rapid development of two nucleoside-modified mRNA vaccines that are safe and highly effective against coronavirus disease 2019 has transformed the vaccine field. The mRNA technology has the advantage of accelerated immunogen discovery, induction of robust immune responses, and rapid scale up of manufacturing. Efforts to develop genital herpes vaccines have been ongoing for 8 decades without success. The advent of mRNA technology has the potential to change that narrative. Developing a genital herpes vaccine is a high public health priority. A prophylactic genital herpes vaccine should prevent HSV-1 and HSV-2 genital lesions and infection of dorsal root ganglia, the site of latency. Vaccine immunity should be durable for decades, perhaps with the assistance of booster doses. While these goals have been elusive, new efforts with nucleoside-modified mRNA-lipid nanoparticle vaccines show great promise. We review past approaches to vaccine development that were unsuccessful or partially successful in large phase 3 trials, and describe lessons learned from these trials. We discuss our trivalent mRNA-lipid nanoparticle approach for a prophylactic genital herpes vaccine and the ability of the vaccine to induce higher titers of neutralizing antibodies and more durable CD4+ T follicular helper cell and memory B cell responses than protein-adjuvanted vaccines.


Subject(s)
COVID-19 , Herpes Genitalis , Antibodies, Viral , Herpes Genitalis/prevention & control , Humans , Liposomes , Nanoparticles , SARS-CoV-2 , Vaccines, Synthetic , Viral Envelope Proteins/genetics
15.
PLoS Comput Biol ; 17(12): e1009664, 2021 12.
Article in English | MEDLINE | ID: covidwho-1571973

ABSTRACT

The evolution of circulating viruses is shaped by their need to evade antibody response, which mainly targets the viral spike. Because of the high density of spikes on the viral surface, not all antigenic sites are targeted equally by antibodies. We offer here a geometry-based approach to predict and rank the probability of surface residues of SARS spike (S protein) and influenza H1N1 spike (hemagglutinin) to acquire antibody-escaping mutations utilizing in-silico models of viral structure. We used coarse-grained MD simulations to estimate the on-rate (targeting) of an antibody model to surface residues of the spike protein. Analyzing publicly available sequences, we found that spike surface sequence diversity of the pre-pandemic seasonal influenza H1N1 and the sarbecovirus subgenus highly correlates with our model prediction of antibody targeting. In particular, we identified an antibody-targeting gradient, which matches a mutability gradient along the main axis of the spike. This identifies the role of viral surface geometry in shaping the evolution of circulating viruses. For the 2009 H1N1 and SARS-CoV-2 pandemics, a mutability gradient along the main axis of the spike was not observed. Our model further allowed us to identify key residues of the SARS-CoV-2 spike at which antibody escape mutations have now occurred. Therefore, it can inform of the likely functional role of observed mutations and predict at which residues antibody-escaping mutation might arise.


Subject(s)
Evolution, Molecular , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/biosynthesis , Antigens, Viral/chemistry , Antigens, Viral/genetics , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immune Evasion/genetics , Influenza, Human/immunology , Influenza, Human/virology , Models, Immunological , Molecular Dynamics Simulation , Mutation , Pandemics , Spike Glycoprotein, Coronavirus/chemistry , Viral Envelope Proteins/chemistry
16.
Infect Genet Evol ; 96: 105140, 2021 12.
Article in English | MEDLINE | ID: covidwho-1565617

ABSTRACT

Classical swine fever virus (CSFV) is an RNA virus that incurs severe economic costs to swine industries worldwide. This study was conducted to investigate the genetic diversity among CSFV strains circulating in Vietnam, with a focus on their genetic variants relative to four vaccine strains. Samples from clinical cases were collected from different provinces of Central and Southern Vietnam from 2017 to 2019. 21 CSFV-positive samples were selected for amplification and sequencing of the full-length Erns and E2 genes. Phylogenetic analyses of these two genes showed that most CSFV strains circulating in Central and Southern Vietnam from 2017 to 2019 belong to subgroup 2.1c, whereas the remaining strains cluster into subgroup 2.2. All CSFV field strains in this study were genetically distant from group 1 strains. Analysis of the E2 and Erns genes indicated that all CSFV field strains have low sequence identity with the vaccine strains (80-83.5% and 82.3-86% sequence identity for E2 and Erns, respectively). Likewise, amino acid-level sequence analysis showed 87.3-91.1% and 87.6-91.6% sequence identity for E2 and Erns, respectively. Together, our findings indicate that CSFV strains circulating in Vietnam belong to subtypes 2.2 and 2.1c, and we also provide novel insights into the epidemiology, molecular characteristics, genetic diversity, and evolution of these circulating CSFV strains.


Subject(s)
Classical Swine Fever Virus/genetics , Genetic Variation , Membrane Glycoproteins/genetics , Viral Envelope Proteins/genetics , Animals , Classical Swine Fever/virology , Phylogeny , Sus scrofa , Swine , Vietnam
17.
Nat Commun ; 12(1): 4502, 2021 07 23.
Article in English | MEDLINE | ID: covidwho-1550282

ABSTRACT

Cells in many tissues, such as bone, muscle, and placenta, fuse into syncytia to acquire new functions and transcriptional programs. While it is known that fused cells are specialized, it is unclear whether cell-fusion itself contributes to programmatic-changes that generate the new cellular state. Here, we address this by employing a fusogen-mediated, cell-fusion system to create syncytia from undifferentiated cells. RNA-Seq analysis reveals VSV-G-induced cell fusion precedes transcriptional changes. To gain mechanistic insights, we measure the plasma membrane surface area after cell-fusion and observe it diminishes through increases in endocytosis. Consequently, glucose transporters internalize, and cytoplasmic glucose and ATP transiently decrease. This reduced energetic state activates AMPK, which inhibits YAP1, causing transcriptional-reprogramming and cell-cycle arrest. Impairing either endocytosis or AMPK activity prevents YAP1 inhibition and cell-cycle arrest after fusion. Together, these data demonstrate plasma membrane diminishment upon cell-fusion causes transient nutrient stress that may promote transcriptional-reprogramming independent from extrinsic cues.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/metabolism , Cell Nucleus/metabolism , Membrane Glycoproteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic/genetics , Viral Envelope Proteins/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Biological Transport , Cell Fusion , Cell Line , Cell Line, Tumor , Cells, Cultured , Giant Cells/metabolism , HEK293 Cells , Humans , Membrane Glycoproteins/genetics , Mice , RNA-Seq/methods , Signal Transduction/genetics , Transcription Factors/genetics , Viral Envelope Proteins/genetics
18.
Signal Transduct Target Ther ; 6(1): 396, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1517609

ABSTRACT

Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Glycosylation , Humans , Peptidyl-Dipeptidase A/genetics , Protein Binding/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Envelope Proteins/genetics , Viral Matrix Proteins/genetics
19.
Viruses ; 13(10)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1481007

ABSTRACT

Nipah virus (NiV) and respiratory syncytial virus (RSV) possess two surface glycoproteins involved in cellular attachment and membrane fusion, both of which are potential targets for vaccines. The majority of vaccine development is focused on the attachment (G) protein of NiV, which is the immunodominant target. In contrast, the fusion (F) protein of RSV is the main target in vaccine development. Despite this, neutralising epitopes have been described in NiV F and RSV G, making them alternate targets for vaccine design. Through rational design, we have developed a vaccine strategy applicable to phylogenetically divergent NiV and RSV that comprises both the F and G proteins (FxG). In a mouse immunization model, we found that NiV FxG elicited an improved immune response capable of neutralising pseudotyped NiV and a NiV mutant that is able to escape neutralisation by two known F-specific antibodies. RSV FxG elicited an immune response against both F and G and was able to neutralise RSV; however, this was inferior to the immune response of F alone. Despite this, RSV FxG elicited a response against a known protective epitope within G that is conserved across RSV A and B subgroups, which may provide additional protection in vivo. We conclude that inclusion of F and G antigens within a single design provides a streamlined subunit vaccine strategy against both emerging and established pathogens, with the potential for broader protection against NiV.


Subject(s)
Antibodies, Viral/blood , Henipavirus Infections/prevention & control , Nipah Virus/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Vaccines/administration & dosage , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/genetics , Viral Fusion Proteins/immunology
20.
Arch Virol ; 166(10): 2895-2899, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1415037

ABSTRACT

After the 2005-2009 chikungunya epidemic, intermittent outbreaks were reported in many parts of India. The outbreaks were caused by either locally circulating strains or imported viruses. Virus transmission routes can be traced by complete genome sequencing studies. We investigated two outbreaks in 2014 and 2019 in Kerala, India. Chikungunya virus (CHIKV) was isolated from the samples, and whole genomes were sequenced for a 2014 isolate and a 2019 isolate. Phylogenetic analysis revealed that the isolates formed a separate group with a 2019 isolate from Pune, Maharashtra, and belonged to the East/Central/South African (ECSA) genotype, Indian subcontinent sublineage of the Indian Ocean Lineage (IOL). A novel mutation at amino acid position 76 of the E2 gene was observed in the group. The phylogenetic results suggest that the outbreaks might have been caused by a virus that had been circulating in India since 2014. A detailed study is needed to investigate the evolution of CHIKV in India.


Subject(s)
Chikungunya Fever/epidemiology , Chikungunya Fever/virology , Chikungunya virus/genetics , Disease Outbreaks , Chikungunya Fever/transmission , Chikungunya virus/classification , Chikungunya virus/isolation & purification , Genome, Viral/genetics , Genotype , Humans , India/epidemiology , Mutation , Phylogeny , RNA, Viral/genetics , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL