Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 14(4)2022 03 22.
Article in English | MEDLINE | ID: covidwho-1753696

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by infection of SARS-CoV-2 and its variants has posed serious threats to global public health, thus calling for the development of potent and broad-spectrum antivirals. We previously designed and developed a peptide-based pan-coronavirus (CoV) fusion inhibitor, EK1, which is effective against all human CoVs (HCoV) tested by targeting the HCoV S protein HR1 domain. However, its relatively short half-life may limit its clinical use. Therefore, we designed, constructed, and expressed a recombinant protein, FL-EK1, which consists of a modified fibronectin type III domain (FN3) with albumin-binding capacity, a flexible linker, and EK1. As with EK1, we found that FL-EK1 could also effectively inhibit infection of SARS-CoV-2 and its variants, as well as HCoV-OC43. Furthermore, it protected mice from infection by the SARS-CoV-2 Delta variant and HCoV-OC43. Importantly, the half-life of FL-EK1 (30 h) is about 15.7-fold longer than that of EK1 (1.8 h). These results suggest that FL-EK1 is a promising candidate for the development of a pan-CoV fusion inhibitor-based long-acting antiviral drug for preventing and treating infection by current and future SARS-CoV-2 variants, as well as other HCoVs.


Subject(s)
COVID-19 , SARS-CoV-2 , Viral Fusion Protein Inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Coronavirus Infections/drug therapy , Fibronectin Type III Domain , Half-Life , Mice , Recombinant Fusion Proteins , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/pharmacology
2.
Science ; 371(6536): 1379-1382, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1476374

ABSTRACT

Containment of the COVID-19 pandemic requires reducing viral transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is initiated by membrane fusion between the viral and host cell membranes, which is mediated by the viral spike protein. We have designed lipopeptide fusion inhibitors that block this critical first step of infection and, on the basis of in vitro efficacy and in vivo biodistribution, selected a dimeric form for evaluation in an animal model. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour cohousing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and thus may readily translate into safe and effective intranasal prophylaxis to reduce transmission of SARS-CoV-2.


Subject(s)
COVID-19/transmission , Lipopeptides/administration & dosage , Membrane Fusion/drug effects , SARS-CoV-2/drug effects , Viral Fusion Protein Inhibitors/administration & dosage , Virus Internalization/drug effects , Administration, Intranasal , Animals , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Disease Models, Animal , Drug Design , Ferrets , Lipopeptides/chemistry , Lipopeptides/pharmacokinetics , Lipopeptides/pharmacology , Mice , Pre-Exposure Prophylaxis , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Tissue Distribution , Vero Cells , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/pharmacokinetics , Viral Fusion Protein Inhibitors/pharmacology
3.
Science ; 371(6536): 1379-1382, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1088184

ABSTRACT

Containment of the COVID-19 pandemic requires reducing viral transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is initiated by membrane fusion between the viral and host cell membranes, which is mediated by the viral spike protein. We have designed lipopeptide fusion inhibitors that block this critical first step of infection and, on the basis of in vitro efficacy and in vivo biodistribution, selected a dimeric form for evaluation in an animal model. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour cohousing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and thus may readily translate into safe and effective intranasal prophylaxis to reduce transmission of SARS-CoV-2.


Subject(s)
COVID-19/transmission , Lipopeptides/administration & dosage , Membrane Fusion/drug effects , SARS-CoV-2/drug effects , Viral Fusion Protein Inhibitors/administration & dosage , Virus Internalization/drug effects , Administration, Intranasal , Animals , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Disease Models, Animal , Drug Design , Ferrets , Lipopeptides/chemistry , Lipopeptides/pharmacokinetics , Lipopeptides/pharmacology , Mice , Pre-Exposure Prophylaxis , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Tissue Distribution , Vero Cells , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/pharmacokinetics , Viral Fusion Protein Inhibitors/pharmacology
4.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: covidwho-873186

ABSTRACT

Although enveloped viruses canonically mediate particle entry through virus-cell fusion, certain viruses can spread by cell-cell fusion, brought about by receptor engagement and triggering of membrane-bound, viral-encoded fusion proteins on the surface of cells. The formation of pathogenic syncytia or multinucleated cells is seen in vivo, but their contribution to viral pathogenesis is poorly understood. For the negative-strand paramyxoviruses respiratory syncytial virus (RSV) and Nipah virus (NiV), cell-cell spread is highly efficient because their oligomeric fusion protein complexes are active at neutral pH. The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been reported to induce syncytia formation in infected cells, with the spike protein initiating cell-cell fusion. Whilst it is well established that fusion protein-specific antibodies can block particle attachment and/or entry into the cell (canonical virus neutralization), their capacity to inhibit cell-cell fusion and the consequences of this neutralization for the control of infection are not well characterized, in part because of the lack of specific tools to assay and quantify this activity. Using an adapted bimolecular fluorescence complementation assay, based on a split GFP-Renilla luciferase reporter, we have established a micro-fusion inhibition test (mFIT) that allows the identification and quantification of these neutralizing antibodies. This assay has been optimized for high-throughput use and its applicability has been demonstrated by screening monoclonal antibody (mAb)-mediated inhibition of RSV and NiV fusion and, separately, the development of fusion-inhibitory antibodies following NiV vaccine immunization in pigs. In light of the recent emergence of coronavirus disease 2019 (COVID-19), a similar assay was developed for SARS-CoV-2 and used to screen mAbs and convalescent patient plasma for fusion-inhibitory antibodies. Using mFITs to assess antibody responses following natural infection or vaccination is favourable, as this assay can be performed entirely at low biocontainment, without the need for live virus. In addition, the repertoire of antibodies that inhibit cell-cell fusion may be different to those that inhibit particle entry, shedding light on the mechanisms underpinning antibody-mediated neutralization of viral spread.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/diagnosis , Henipavirus Infections/diagnosis , High-Throughput Screening Assays , Respiratory Syncytial Virus Infections/diagnosis , Viral Fusion Proteins/antagonists & inhibitors , Animals , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/metabolism , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , COVID-19/immunology , COVID-19/virology , Cell Fusion , Convalescence , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Henipavirus Infections/immunology , Henipavirus Infections/virology , Humans , Immune Sera/chemistry , Luciferases/genetics , Luciferases/metabolism , Models, Molecular , Nipah Virus/immunology , Nipah Virus/pathogenicity , Protein Conformation , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Swine , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/metabolism , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL