Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS One ; 17(3): e0264711, 2022.
Article in English | MEDLINE | ID: covidwho-1793510

ABSTRACT

Reports detailing the clinical characteristics, viral load, and outcomes of patients with normal initial chest CT findings are lacking. We sought to compare the differences in clinical findings, viral loads, and outcomes between patients with confirmed COVID-19 who initially tested negative on chest CT (CT negative) with patients who tested initially positive on chest CT (CT positive). The clinical data, viral loads, and outcomes of initial CT-positive and CT-negative patients examined between January 2020 and April 2020 were retrospectively compared. The efficacy of viral load (cyclic threshold value [Ct value]) in predicting pneumonia was evaluated using receiver operating characteristic (ROC) curve and area under the curve (AUC). In total, 128 patients underwent initial chest CT (mean age, 54.3 ± 19.0 years, 50% male). Of those, 36 were initially CT negative, and 92 were CT positive. The CT-positive patients were significantly older (P < .001) than the CT-negative patients. Only age was significantly associated with the initial presence of pneumonia (odds ratio, 1.060; confidence interval (CI), 1.020-1-102; P = .003). In addition, age (OR, 1.062; CI, 1.014-1.112; P = .011), fever at diagnosis (OR, 6.689; CI, 1.715-26.096; P = .006), and CRP level (OR, 1.393; CI, 1.150-1.687; P = .001) were significantly associated with the need for O2 therapy. Viral load was significantly higher in the CT-positive group than in the CT-negative group (P = .017). The cutoff Ct value for predicting the presence of pneumonia was 27.71. Outcomes including the mean hospital stay, intensive care unit admission, and O2 therapy were significantly worse in the CT-positive group than in the CT-negative group (all P < .05). In conclusion, initially CT-negative patients showed better outcomes than initially CT-positive patients. Age was significantly associated with the initial presence of pneumonia, and viral load may help in predicting the initial presence of pneumonia.


Subject(s)
COVID-19/diagnosis , Thorax/diagnostic imaging , Viral Load , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Republic of Korea/epidemiology , Retrospective Studies , SARS-CoV-2 , Sputum/virology , Tomography, X-Ray Computed , Viral Load/physiology , Young Adult
2.
Nat Commun ; 13(1): 460, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1651070

ABSTRACT

The SARS-CoV-2 Delta variant has spread rapidly worldwide. To provide data on its virological profile, we here report the first local transmission of Delta in mainland China. All 167 infections could be traced back to the first index case. Daily sequential PCR testing of quarantined individuals indicated that the viral loads of Delta infections, when they first become PCR-positive, were on average ~1000 times greater compared to lineage A/B infections during the first epidemic wave in China in early 2020, suggesting potentially faster viral replication and greater infectiousness of Delta during early infection. The estimated transmission bottleneck size of the Delta variant was generally narrow, with 1-3 virions in 29 donor-recipient transmission pairs. However, the transmission of minor iSNVs resulted in at least 3 of the 34 substitutions that were identified in the outbreak, highlighting the contribution of intra-host variants to population-level viral diversity during rapid spread.


Subject(s)
COVID-19/transmission , Contact Tracing/methods , Disease Outbreaks/prevention & control , SARS-CoV-2/isolation & purification , Animals , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Humans , RNA-Seq/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Time Factors , Vero Cells , Viral Load/genetics , Viral Load/physiology , Virus Replication/genetics , Virus Replication/physiology , Virus Shedding/genetics , Virus Shedding/physiology
3.
Lancet Infect Dis ; 22(2): 183-195, 2022 02.
Article in English | MEDLINE | ID: covidwho-1598157

ABSTRACT

BACKGROUND: The SARS-CoV-2 delta (B.1.617.2) variant is highly transmissible and spreading globally, including in populations with high vaccination rates. We aimed to investigate transmission and viral load kinetics in vaccinated and unvaccinated individuals with mild delta variant infection in the community. METHODS: Between Sept 13, 2020, and Sept 15, 2021, 602 community contacts (identified via the UK contract-tracing system) of 471 UK COVID-19 index cases were recruited to the Assessment of Transmission and Contagiousness of COVID-19 in Contacts cohort study and contributed 8145 upper respiratory tract samples from daily sampling for up to 20 days. Household and non-household exposed contacts aged 5 years or older were eligible for recruitment if they could provide informed consent and agree to self-swabbing of the upper respiratory tract. We analysed transmission risk by vaccination status for 231 contacts exposed to 162 epidemiologically linked delta variant-infected index cases. We compared viral load trajectories from fully vaccinated individuals with delta infection (n=29) with unvaccinated individuals with delta (n=16), alpha (B.1.1.7; n=39), and pre-alpha (n=49) infections. Primary outcomes for the epidemiological analysis were to assess the secondary attack rate (SAR) in household contacts stratified by contact vaccination status and the index cases' vaccination status. Primary outcomes for the viral load kinetics analysis were to detect differences in the peak viral load, viral growth rate, and viral decline rate between participants according to SARS-CoV-2 variant and vaccination status. FINDINGS: The SAR in household contacts exposed to the delta variant was 25% (95% CI 18-33) for fully vaccinated individuals compared with 38% (24-53) in unvaccinated individuals. The median time between second vaccine dose and study recruitment in fully vaccinated contacts was longer for infected individuals (median 101 days [IQR 74-120]) than for uninfected individuals (64 days [32-97], p=0·001). SAR among household contacts exposed to fully vaccinated index cases was similar to household contacts exposed to unvaccinated index cases (25% [95% CI 15-35] for vaccinated vs 23% [15-31] for unvaccinated). 12 (39%) of 31 infections in fully vaccinated household contacts arose from fully vaccinated epidemiologically linked index cases, further confirmed by genomic and virological analysis in three index case-contact pairs. Although peak viral load did not differ by vaccination status or variant type, it increased modestly with age (difference of 0·39 [95% credible interval -0·03 to 0·79] in peak log10 viral load per mL between those aged 10 years and 50 years). Fully vaccinated individuals with delta variant infection had a faster (posterior probability >0·84) mean rate of viral load decline (0·95 log10 copies per mL per day) than did unvaccinated individuals with pre-alpha (0·69), alpha (0·82), or delta (0·79) variant infections. Within individuals, faster viral load growth was correlated with higher peak viral load (correlation 0·42 [95% credible interval 0·13 to 0·65]) and slower decline (-0·44 [-0·67 to -0·18]). INTERPRETATION: Vaccination reduces the risk of delta variant infection and accelerates viral clearance. Nonetheless, fully vaccinated individuals with breakthrough infections have peak viral load similar to unvaccinated cases and can efficiently transmit infection in household settings, including to fully vaccinated contacts. Host-virus interactions early in infection may shape the entire viral trajectory. FUNDING: National Institute for Health Research.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/physiology , Viral Load/physiology , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , England/epidemiology , Female , Humans , Kinetics , Longitudinal Studies , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology , Vaccination , Vaccination Coverage
4.
BMC Infect Dis ; 21(1): 688, 2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-1314252

ABSTRACT

BACKGROUND: Being able to use COVID-19 RT-PCR Ct values as simple clinical markers of disease outcome or prognosis would allow for the easy and proactive identification and triaging of high-risk cases. This study's objective was thus to explore whether a correlation exists between COVID-19 viral loads, as indicated by RT-PCR Ct values, and disease severity, as indicated by respiratory indices. RESULTS: A multi-centre cross-sectional retrospective study was conducted, using data obtained from Bahrain's National COVID-19 Task force's centralised database. The study period ranged from May 2, 2020 to July 31, 2020. A multivariable logistic regression was used to assess for a correlation using data from a total of 1057 admitted COVID-19 cases. The covariates adjusted for included sex, age, presentation, and comorbidities. In our cohort, Ct value showed no statistical significance for an association with requirement for oxygenation on admission (Odds ratio 1.046; 95%CI 0.999 to 1.096, p = 0.054). CONCLUSION: Viral load, as indicated by Ct values, did not seem to be associated with requirement for oxygenation on admission in our cohort. We postulate however that time since onset of symptom may have acted as an unaccounted-for confounder. As such, RT-PCR Ct values may not be a useful prognostic clinical tool in isolation.


Subject(s)
COVID-19/diagnosis , COVID-19/pathology , SARS-CoV-2/physiology , Viral Load/physiology , Adult , Aged , Bahrain/epidemiology , COVID-19/epidemiology , COVID-19/virology , Cohort Studies , Comorbidity , Cross-Sectional Studies , Female , Hospitalization/statistics & numerical data , Humans , Lung/pathology , Lung/virology , Male , Middle Aged , Prognosis , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Serologic Tests , Severity of Illness Index , Viral Load/statistics & numerical data
5.
Med Hypotheses ; 146: 110431, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-969787

ABSTRACT

The variation in the speed and intensity of SARS-CoV-2 transmission and severity of the resulting COVID-19 disease are still imperfectly understood. We postulate a dose-response relationship in COVID-19, and that "the dose of virus in the initial inoculum" is an important missing link in understanding several incompletely explained observations in COVID-19 as a factor in transmission dynamics and severity of disease. We hypothesize that: (1) Viral dose in inoculum is related to severity of disease, (2) Severity of disease is related to transmission potential, and (3) In certain contexts, chains of severe cases can build up to severe local outbreaks, and large-scale intensive epidemics. Considerable evidence from other infectious diseases substantiates this hypothesis and recent evidence from COVID-19 points in the same direction. We suggest research avenues to validate the hypothesis. If proven, our hypothesis could strengthen the scientific basis for deciding priority containment measures in various contexts in particular the importance of avoiding super-spreading events and the benefits of mass masking.


Subject(s)
COVID-19/transmission , COVID-19/virology , Models, Biological , SARS-CoV-2/pathogenicity , Viral Load/physiology , Adaptive Immunity , COVID-19/immunology , Host Microbial Interactions/immunology , Host Microbial Interactions/physiology , Humans , Immunity, Innate , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Severity of Illness Index
6.
Drugs R D ; 21(1): 1-8, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-951645

ABSTRACT

At present, no cure is available for COVID-19 but vaccines, antiviral drugs, immunoglobulins, or the combination of immunoglobulins with antiviral drugs have been suggested and are in clinical trials. The purpose of this paper is to discuss the role of a pharmacokinetic and viral load analysis as a basis for adjusting immunoglobulin dosing to treat COVID-19. We reviewed the pre-clinical and clinical literature that describes the impact of a high antigen load on pharmacokinetic data following antibody treatment. Representative examples are provided to illustrate the effect of high viral and tumor loads on antibody clearance. We then highlight the implications of these factors for facilitating the development and dosing of hyperimmune anti-SARS CoV2 immunoglobulin. Both nonclinical and clinical examples indicate that high antigen loads, whether they be viral, bacterial, or tumoral in origin, result in increased clearance and decreased area under the curve and half-life of antibodies. A dosing strategy that matches the antigen load can be achieved by giving initially high doses and adjusting the frequency of dosing intervals based on pharmacokinetic parameters. We suggest that study design and dose selection for immunoglobulin products for the treatment of COVID-19 require special considerations such as viral load, antibody-virus interaction, and dosing adjustment based on the pharmacokinetics of the antibody.


Subject(s)
Antibodies, Viral/blood , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , COVID-19/blood , Immunoglobulins/administration & dosage , Viral Load/drug effects , Antigens, Viral/blood , Antiviral Agents/pharmacokinetics , Dose-Response Relationship, Drug , Humans , Immunoglobulins/blood , Viral Load/physiology
SELECTION OF CITATIONS
SEARCH DETAIL