Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: covidwho-1444233

ABSTRACT

Considering the current dramatic and fatal situation due to the high spreading of SARS-CoV-2 infection, there is an urgent unmet medical need to identify novel and effective approaches for prevention and treatment of Coronavirus disease (COVID 19) by re-evaluating and repurposing of known drugs. For this, tomatidine and patchouli alcohol have been selected as potential drugs for combating the virus. The hit compounds were subsequently docked into the active site and molecular docking analyses revealed that both drugs can bind the active site of SARS-CoV-2 3CLpro, PLpro, NSP15, COX-2 and PLA2 targets with a number of important binding interactions. To further validate the interactions of promising compound tomatidine, Molecular dynamics study of 100 ns was carried out towards 3CLpro, NSP15 and COX-2. This indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. Post dynamic MM-GBSA analysis of molecular dynamics data showed promising mean binding free energy 47.4633 ± 9.28, 51.8064 ± 8.91 and 54.8918 ± 7.55 kcal/mol, respectively. Likewise, in silico ADMET studies of the selected ligands showed excellent pharmacokinetic properties with good absorption, bioavailability and devoid of toxicity. Therefore, patchouli alcohol and especially, tomatidine may provide prospect treatment options against SARS-CoV-2 infection by potentially inhibiting virus duplication though more research is guaranteed and secured.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Endoribonucleases/antagonists & inhibitors , SARS-CoV-2/enzymology , Sesquiterpenes/pharmacology , Tomatine/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/metabolism , Endoribonucleases/metabolism , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/drug effects , Tomatine/pharmacology , Viral Nonstructural Proteins/metabolism
2.
Enzymes ; 49: 63-82, 2021.
Article in English | MEDLINE | ID: covidwho-1432697

ABSTRACT

The therapeutic targeting of the nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase (RdRp) of the Hepatitis C Virus (HCV) with nucleotide analogs led to a deep understanding of this enzymes structure, function and substrate specificity. Unlike previously studied DNA polymerases including the reverse transcriptase of Human Immunodeficiency Virus, development of biochemical assays for HCV RdRp proved challenging due to low solubility of the full-length protein and inefficient acceptance of exogenous primer/templates. Despite the poor apparent specific activity, HCV RdRp was found to support rapid and processive transcription once elongation is initiated in vitro consistent with its high level of viral replication in the livers of patients. Understanding of the substrate specificity of HCV RdRp led to the discovery of the active triphosphate of sofosbuvir as a nonobligate chain-terminator of viral RNA transcripts. The ternary crystal structure of HCV RdRp, primer/template, and incoming nucleotide showed the interaction between the nucleotide analog and the 2'-hydroxyl binding pocket and how an unfit mutation of serine 282 to threonine results in resistance by interacting with the uracil base and modified 2'-position of the analog. Host polymerases mediate off-target toxicity of nucleotide analogs and the active metabolite of sofosbuvir was found to not be efficiently incorporated by host polymerases including the mitochondrial RNA polymerase (POLRMT). Knowledge from studying inhibitors of HCV RdRp serves to advance antiviral drug discovery for other emerging RNA viruses including the discovery of remdesivir as an inhibitor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), the virus that causes COVID-19.


Subject(s)
Hepacivirus , Sofosbuvir/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Hepacivirus/drug effects , Hepacivirus/enzymology , RNA, Viral , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2
3.
Future Med Chem ; 13(4): 363-378, 2021 02.
Article in English | MEDLINE | ID: covidwho-1389653

ABSTRACT

Background: The SARS-CoV-2 3CLpro is one of the primary targets for designing new and repurposing known drugs. Methodology: A virtual screening of molecules from the Natural Product Atlas was performed, followed by molecular dynamics simulations of the most potent inhibitor bound to two conformations of the protease and into two binding sites. Conclusion: Eight molecules with appropriate ADMET properties are suggested as potential inhibitors. The greatest benefit of this study is the demonstration that these ligands can bind in the catalytic site but also to the groove between domains II and III, where they interact with a series of residues which have an important role in the dimerization and the maturation process of the enzyme.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , SARS-CoV-2/drug effects , Binding Sites , COVID-19/drug therapy , COVID-19/prevention & control , Computational Biology , Drug Design , Drug Repositioning , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleosides/pharmacology , Peptide Hydrolases/chemistry , Protease Inhibitors/chemistry , Protein Binding , Protein Multimerization , Software , Viral Nonstructural Proteins/antagonists & inhibitors
4.
FEBS J ; 288(17): 5130-5147, 2021 09.
Article in English | MEDLINE | ID: covidwho-1388264

ABSTRACT

SARS-CoV-2 virus has triggered a global pandemic with devastating consequences. The understanding of fundamental aspects of this virus is of extreme importance. In this work, we studied the viral ribonuclease nsp14, one of the most interferon antagonists from SARS-CoV-2. Nsp14 is a multifunctional protein with two distinct activities, an N-terminal 3'-to-5' exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), both critical for coronaviruses life cycle, indicating nsp14 as a prominent target for the development of antiviral drugs. In coronaviruses, nsp14 ExoN activity is stimulated through the interaction with the nsp10 protein. We have performed a biochemical characterization of nsp14-nsp10 complex from SARS-CoV-2. We confirm the 3'-5' exoribonuclease and MTase activities of nsp14 and the critical role of nsp10 in upregulating the nsp14 ExoN activity. Furthermore, we demonstrate that SARS-CoV-2 nsp14 N7-MTase activity is functionally independent of the ExoN activity and nsp10. A model from SARS-CoV-2 nsp14-nsp10 complex allowed mapping key nsp10 residues involved in this interaction. Our results show that a stable interaction between nsp10 and nsp14 is required for the nsp14-mediated ExoN activity of SARS-CoV-2. We studied the role of conserved DEDD catalytic residues of SARS-CoV-2 nsp14 ExoN. Our results show that motif I of ExoN domain is essential for the nsp14 function, contrasting to the functionality of these residues in other coronaviruses, which can have important implications regarding the specific pathogenesis of SARS-CoV-2. This work unraveled a basis for discovering inhibitors targeting specific amino acids in order to disrupt the assembly of this complex and interfere with coronaviruses replication.


Subject(s)
COVID-19/genetics , Exoribonucleases/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Drug Design , Exoribonucleases/antagonists & inhibitors , Humans , Multiprotein Complexes/drug effects , Multiprotein Complexes/genetics , Protein Interaction Maps/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Virus Replication/genetics
5.
Molecules ; 25(19)2020 Oct 06.
Article in English | MEDLINE | ID: covidwho-1389458

ABSTRACT

A novel series of some hydrazones bearing thiazole moiety were generated via solvent-drop grinding of thiazole carbohydrazide 2 with various carbonyl compounds. Also, dehydrative-cyclocondensation of 2 with active methylene compounds or anhydrides gave the respective pyarzole or pyrazine derivatives. The structures of the newly synthesized compounds were established based on spectroscopic evidences and their alternative syntheses. Additionally, the anti-viral activity of all the products was tested against SARS-CoV-2 main protease (Mpro) using molecular docking combined with molecular dynamics simulation (MDS). The average binding affinities of the compounds 3a, 3b, and 3c (-8.1 ± 0.33 kcal/mol, -8.0 ± 0.35 kcal/mol, and -8.2 ± 0.21 kcal/mol, respectively) are better than that of the positive control Nelfinavir (-6.9 ± 0.51 kcal/mol). This shows the possibility of these three compounds to effectively bind to SARS-CoV-2 Mpro and hence, contradict the virus lifecycle.


Subject(s)
Antiviral Agents/chemical synthesis , Betacoronavirus/enzymology , Hydrazones/chemical synthesis , Protease Inhibitors/chemical synthesis , Pyrazines/chemical synthesis , Pyrazoles/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Betacoronavirus/chemistry , Betacoronavirus/drug effects , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Discovery , Humans , Hydrazones/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyrazines/pharmacology , Pyrazoles/pharmacology , SARS-CoV-2 , Thermodynamics , User-Computer Interface , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
6.
Biochemistry ; 59(39): 3741-3756, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-1387098

ABSTRACT

The SARS-CoV-2 main protease (Mpro) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new Mpro mutations arising over time. Identification and structural characterization of Mpro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine Mpro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.


Subject(s)
Betacoronavirus/enzymology , Betacoronavirus/genetics , Models, Molecular , Mutation , Viral Nonstructural Proteins/genetics , Catalytic Domain , Drug Discovery , Evolution, Molecular , Humans , Molecular Structure , Phylogeny , Protease Inhibitors/chemistry , SARS-CoV-2 , Sequence Analysis, Protein , Viral Nonstructural Proteins/antagonists & inhibitors
7.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: covidwho-1369236

ABSTRACT

Coronavirus protease nsp5 (Mpro, 3CLpro) remains a primary target for coronavirus therapeutics due to its indispensable and conserved role in the proteolytic processing of the viral replicase polyproteins. In this review, we discuss the diversity of known coronaviruses, the role of nsp5 in coronavirus biology, and the structure and function of this protease across the diversity of known coronaviruses, and evaluate past and present efforts to develop inhibitors to the nsp5 protease with a particular emphasis on new and mostly unexplored potential targets of inhibition. With the recent emergence of pandemic SARS-CoV-2, this review provides novel and potentially innovative strategies and directions to develop effective therapeutics against the coronavirus protease nsp5.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Protease Inhibitors/therapeutic use , Amino Acid Sequence , COVID-19/virology , Coronavirus/enzymology , Coronavirus/metabolism , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Humans , Phylogeny , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism
8.
Nat Commun ; 12(1): 4848, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354102

ABSTRACT

There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.


Subject(s)
Methyltransferases/chemistry , RNA Helicases/chemistry , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Apoenzymes/chemistry , Apoenzymes/metabolism , Binding Sites , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Models, Molecular , Phosphates/chemistry , Phosphates/metabolism , Protein Conformation , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , SARS-CoV-2/enzymology , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
9.
Antiviral Res ; 193: 105142, 2021 09.
Article in English | MEDLINE | ID: covidwho-1321985

ABSTRACT

SARS-CoV-2, the cause of the currently ongoing COVID-19 pandemic, encodes its own mRNA capping machinery. Insights into this capping system may provide new ideas for therapeutic interventions and drug discovery. In this work, we employ a previously developed Py-FLINT screening approach to study the inhibitory effects of compounds against the cap guanine N7-methyltransferase enzyme, which is involved in SARS-CoV-2 mRNA capping. We screened five commercially available libraries (7039 compounds in total) to identify 83 inhibitors with IC50 < 50 µM, which were further validated using RP HPLC and dot blot assays. Novel fluorescence anisotropy binding assays were developed to examine the targeted binding site. The inhibitor structures were analyzed for structure-activity relationships in order to define common structural patterns. Finally, the most potent inhibitors were tested for antiviral activity on SARS-CoV-2 in a cell based assay.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Methyltransferases/antagonists & inhibitors , Nucleotidyltransferases/antagonists & inhibitors , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , COVID-19/virology , Cell Line , Exoribonucleases/antagonists & inhibitors , Exoribonucleases/metabolism , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Methyltransferases/metabolism , Nucleotidyltransferases/metabolism , RNA Caps , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
10.
PLoS One ; 16(7): e0253364, 2021.
Article in English | MEDLINE | ID: covidwho-1315884

ABSTRACT

Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle.


Subject(s)
Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Single-Chain Antibodies/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , A549 Cells , Antigen-Antibody Complex , Humans , Inhibitory Concentration 50 , RNA-Dependent RNA Polymerase/immunology , RNA-Dependent RNA Polymerase/metabolism , Single-Chain Antibodies/immunology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism
11.
Biochem J ; 478(13): 2425-2443, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1289982

ABSTRACT

The coronavirus disease 2019 (COVID-19) global pandemic has turned into the largest public health and economic crisis in recent history impacting virtually all sectors of society. There is a need for effective therapeutics to battle the ongoing pandemic. Repurposing existing drugs with known pharmacological safety profiles is a fast and cost-effective approach to identify novel treatments. The COVID-19 etiologic agent is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded positive-sense RNA virus. Coronaviruses rely on the enzymatic activity of the replication-transcription complex (RTC) to multiply inside host cells. The RTC core catalytic component is the RNA-dependent RNA polymerase (RdRp) holoenzyme. The RdRp is one of the key druggable targets for CoVs due to its essential role in viral replication, high degree of sequence and structural conservation and the lack of homologues in human cells. Here, we have expressed, purified and biochemically characterised active SARS-CoV-2 RdRp complexes. We developed a novel fluorescence resonance energy transfer-based strand displacement assay for monitoring SARS-CoV-2 RdRp activity suitable for a high-throughput format. As part of a larger research project to identify inhibitors for all the enzymatic activities encoded by SARS-CoV-2, we used this assay to screen a custom chemical library of over 5000 approved and investigational compounds for novel SARS-CoV-2 RdRp inhibitors. We identified three novel compounds (GSK-650394, C646 and BH3I-1) and confirmed suramin and suramin-like compounds as in vitro SARS-CoV-2 RdRp activity inhibitors. We also characterised the antiviral efficacy of these drugs in cell-based assays that we developed to monitor SARS-CoV-2 growth.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Drug Evaluation, Preclinical , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Animals , Benzoates/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Chlorocebus aethiops , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Enzyme Assays , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Holoenzymes/metabolism , Reproducibility of Results , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Suramin/pharmacology , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
12.
Biochem J ; 478(13): 2481-2497, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1289949

ABSTRACT

The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Exoribonucleases/antagonists & inhibitors , Methyltransferases/antagonists & inhibitors , RNA Caps/metabolism , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Chlorobenzenes/pharmacology , Chlorocebus aethiops , Enzyme Assays , Exoribonucleases/genetics , Exoribonucleases/isolation & purification , Exoribonucleases/metabolism , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Indazoles/pharmacology , Indenes/pharmacology , Indoles/pharmacology , Methyltransferases/genetics , Methyltransferases/isolation & purification , Methyltransferases/metabolism , Nitriles/pharmacology , Phenothiazines/pharmacology , Purines/pharmacology , Reproducibility of Results , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Substrate Specificity , Trifluperidol/pharmacology , Vero Cells , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/isolation & purification , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/isolation & purification , Viral Regulatory and Accessory Proteins/metabolism
13.
Biochem J ; 478(13): 2405-2423, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1292181

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here, we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterized pharmaceuticals for nsp13 inhibitors using a fluorescence resonance energy transfer-based high-throughput screening approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , RNA Helicases/antagonists & inhibitors , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Chlorocebus aethiops , Enzyme Assays , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , RNA Helicases/metabolism , Reproducibility of Results , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Suramin/pharmacology , Vero Cells , Viral Nonstructural Proteins/metabolism
14.
Biochem J ; 478(13): 2399-2403, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1290629

ABSTRACT

The coronavirus pandemic has had a huge impact on public health with over 165 million people infected, 3.4 million deaths and a hugely deleterious effect on most economies. While vaccination effectively protects against the disease it is likely that viruses will evolve that can replicate in hosts immunised with the present vaccines. Thus, there is a great unmet need for effective antivirals that can block the development of serious disease in infected patients. The seven papers published in this issue of the Biochemical Journal address this need by expressing and purifying components required for viral replication, developing biochemical assays for these components and using the assays to screen a library of pre-existing pharmaceuticals for drugs that inhibited the target in vitro and inhibited viral replication in cell culture. The candidate drugs obtained are potential antivirals that may protect against SARS-CoV-2 infection. While not all the antiviral candidates will make it through to the clinic, they will be useful tool compounds and can act as the starting point for further drug discovery programmes.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Drug Evaluation, Preclinical , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , Virus Replication/drug effects , Humans , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
15.
Biochem J ; 478(13): 2533-2535, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1290318

ABSTRACT

In response to the COVID-19 pandemic, we began a project in March 2020 to identify small molecule inhibitors of SARS-CoV-2 enzymes from a library of chemical compounds containing many established pharmaceuticals. Our hope was that inhibitors we found might slow the replication of the SARS-CoV-2 virus in cells and ultimately be useful in the treatment of COVID-19. The seven accompanying manuscripts describe the results of these chemical screens. This overview summarises the main highlights from these screens and discusses the implications of our results and how our results might be exploited in future.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Enzyme Assays , Humans , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Viral Nonstructural Proteins/metabolism
16.
Biochem J ; 478(13): 2445-2464, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1290093

ABSTRACT

SARS-CoV-2 is a coronavirus that emerged in 2019 and rapidly spread across the world causing a deadly pandemic with tremendous social and economic costs. Healthcare systems worldwide are under great pressure, and there is an urgent need for effective antiviral treatments. The only currently approved antiviral treatment for COVID-19 is remdesivir, an inhibitor of viral genome replication. SARS-CoV-2 proliferation relies on the enzymatic activities of the non-structural proteins (nsp), which makes them interesting targets for the development of new antiviral treatments. With the aim to identify novel SARS-CoV-2 antivirals, we have purified the exoribonuclease/methyltransferase (nsp14) and its cofactor (nsp10) and developed biochemical assays compatible with high-throughput approaches to screen for exoribonuclease inhibitors. We have screened a library of over 5000 commercial compounds and identified patulin and aurintricarboxylic acid (ATA) as inhibitors of nsp14 exoribonuclease in vitro. We found that patulin and ATA inhibit replication of SARS-CoV-2 in a VERO E6 cell-culture model. These two new antiviral compounds will be valuable tools for further coronavirus research as well as potentially contributing to new therapeutic opportunities for COVID-19.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Exoribonucleases/antagonists & inhibitors , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Animals , Aurintricarboxylic Acid/pharmacology , Chlorocebus aethiops , Enzyme Assays , Exoribonucleases/metabolism , Fluorescence , High-Throughput Screening Assays , Patulin/pharmacology , Reproducibility of Results , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Vero Cells , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism
17.
Biochem J ; 478(13): 2465-2479, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1290092

ABSTRACT

SARS-CoV-2 is responsible for COVID-19, a human disease that has caused over 2 million deaths, stretched health systems to near-breaking point and endangered economies of countries and families around the world. Antiviral treatments to combat COVID-19 are currently lacking. Remdesivir, the only antiviral drug approved for the treatment of COVID-19, can affect disease severity, but better treatments are needed. SARS-CoV-2 encodes 16 non-structural proteins (nsp) that possess different enzymatic activities with important roles in viral genome replication, transcription and host immune evasion. One key aspect of host immune evasion is performed by the uridine-directed endoribonuclease activity of nsp15. Here we describe the expression and purification of nsp15 recombinant protein. We have developed biochemical assays to follow its activity, and we have found evidence for allosteric behaviour. We screened a custom chemical library of over 5000 compounds to identify nsp15 endoribonuclease inhibitors, and we identified and validated NSC95397 as an inhibitor of nsp15 endoribonuclease in vitro. Although NSC95397 did not inhibit SARS-CoV-2 growth in VERO E6 cells, further studies will be required to determine the effect of nsp15 inhibition on host immune evasion.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Endoribonucleases/antagonists & inhibitors , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Animals , Chlorocebus aethiops , Endoribonucleases/isolation & purification , Endoribonucleases/metabolism , Enzyme Assays , Fluorescence , High-Throughput Screening Assays , In Vitro Techniques , Kinetics , Naphthoquinones/pharmacology , Reproducibility of Results , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , Small Molecule Libraries/chemistry , Solutions , Vero Cells , Viral Nonstructural Proteins/isolation & purification , Viral Nonstructural Proteins/metabolism
18.
Viruses ; 13(7)2021 06 24.
Article in English | MEDLINE | ID: covidwho-1289017

ABSTRACT

Arenaviruses and coronaviruses include several human pathogenic viruses, such as Lassa virus, Lymphocytic choriomeningitis virus (LCMV), SARS-CoV, MERS-CoV, and SARS-CoV-2. Although these viruses belong to different virus families, they possess a common motif, the DED/EDh motif, known as an exonuclease (ExoN) motif. In this study, proof-of-concept studies, in which the DED/EDh motif in these viral proteins, NP for arenaviruses, and nsp14 for coronaviruses, could be a drug target, were performed. Docking simulation studies between two structurally different chemical compounds, ATA and PV6R, and the DED/EDh motifs in these viral proteins indicated that these compounds target DED/EDh motifs. The concentration which exhibited modest cell toxicity was used with these compounds to treat LCMV and SARS-CoV-2 infections in two different cell lines, A549 and Vero 76 cells. Both ATA and PV6R inhibited the post-entry step of LCMV and SARS-CoV-2 infection. These studies strongly suggest that DED/EDh motifs in these viral proteins could be a drug target to combat two distinct viral families, arenaviruses and coronaviruses.


Subject(s)
Antiviral Agents/pharmacology , Exoribonucleases/antagonists & inhibitors , Lymphocytic choriomeningitis virus/drug effects , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Virus Replication/drug effects , A549 Cells , Amino Acid Motifs , Animals , Chlorocebus aethiops , Drug Discovery , Humans , Molecular Docking Simulation , Vero Cells
19.
Molecules ; 26(13)2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1288958

ABSTRACT

Spanish flu, polio epidemics, and the ongoing COVID-19 pandemic are the most profound examples of severe widespread diseases caused by RNA viruses. The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands affordable and reliable assays for testing antivirals. To test inhibitors of viral proteases, we have developed an inexpensive high-throughput assay based on fluorescent energy transfer (FRET). We assayed an array of inhibitors for papain-like protease from SARS-CoV-2 and validated it on protease from the tick-borne encephalitis virus to emphasize its versatility. The reaction progress is monitored as loss of FRET signal of the substrate. This robust and reproducible assay can be used for testing the inhibitors in 96- or 384-well plates.


Subject(s)
Antiviral Agents/pharmacology , Fluorescence Resonance Energy Transfer/methods , High-Throughput Screening Assays/methods , Protease Inhibitors/pharmacology , RNA Viruses/enzymology , COVID-19/drug therapy , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/metabolism , Drug Evaluation, Preclinical , Encephalitis Viruses, Tick-Borne/enzymology , Fluorescent Dyes/chemistry , Humans , RNA Helicases/antagonists & inhibitors , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , SARS-CoV-2/enzymology , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
20.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1288906

ABSTRACT

Coronavirus disease (COVID)-19 is the leading global health threat to date caused by a severe acute respiratory syndrome coronavirus (SARS-CoV-2). Recent clinical trials reported that the use of Bruton's tyrosine kinase (BTK) inhibitors to treat COVID-19 patients could reduce dyspnea and hypoxia, thromboinflammation, hypercoagulability and improve oxygenation. However, the mechanism of action remains unclear. Thus, this study employs structure-based virtual screening (SBVS) to repurpose BTK inhibitors acalabrutinib, dasatinib, evobrutinib, fostamatinib, ibrutinib, inositol 1,3,4,5-tetrakisphosphate, spebrutinib, XL418 and zanubrutinib against SARS-CoV-2. Molecular docking is conducted with BTK inhibitors against structural and nonstructural proteins of SARS-CoV-2 and host targets (ACE2, TMPRSS2 and BTK). Molecular mechanics-generalized Born surface area (MM/GBSA) calculations and molecular dynamics (MD) simulations are then carried out on the selected complexes with high binding energy. Ibrutinib and zanubrutinib are found to be the most potent of the drugs screened based on the results of computational studies. Results further show that ibrutinib and zanubrutinib could exploit different mechanisms at the viral entry and replication stage and could be repurposed as potential inhibitors of SARS-CoV-2 pathogenesis.


Subject(s)
Adenine/analogs & derivatives , Drug Repositioning , Molecular Dynamics Simulation , Piperidines/chemistry , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , Pyrimidines/chemistry , Adenine/chemistry , Adenine/metabolism , Adenine/therapeutic use , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Humans , Molecular Docking Simulation , Piperidines/metabolism , Piperidines/therapeutic use , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/metabolism , Pyrazoles/therapeutic use , Pyrimidines/metabolism , Pyrimidines/therapeutic use , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Thermodynamics , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...