Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Rev Assoc Med Bras (1992) ; 68(10): 1476-1480, 2022.
Article in English | MEDLINE | ID: covidwho-2140985

ABSTRACT

OBJECTIVE: This study aimed to investigate the effect of mutations by comparing wild-type SARS-CoV-2 and Omicron regarding clinical features in patients with COVID-19. It also aimed to assess whether SARS-CoV-2 cycle threshold value could predict COVID-19 severity. METHODS: A total of 960 wild-type and 411 Omicron variant patients with positive results in SARS-CoV-2 real-time reverse transcriptase polymerase chain reaction test from oropharyngeal and/or nasopharyngeal samples during their hospital admissions were included in this retrospective study. The reference symptoms of the patients were obtained from the hospital database. The correlation between chest computed tomography findings and the "cycle threshold" of patients with wild-type SARS-CoV-2 was assessed. RESULTS: Cough, fever, shortness of breath, loss of taste and smell, and diarrhea were found to be statistically significantly higher (p=0.001; 0.001; 0.001; 0.001; and 0.006; respectively) in the wild-type cohort, while in the Omicron cohort, sore throat and headache were found to be statistically significantly higher (p=0.001 and 0.003, respectively). An inverse relationship was found between chest computed tomography findings and viral load. CONCLUSION: This study revealed that the Omicron variant tended to infect predominantly the upper respiratory tract and showed decreased lung infectivity, and the disease progressed with a milder clinical course. Therefore, the study showed that the tropism of the virus was changed and the viral phenotype was affected. It was also found that SARS-CoV-2 viral load did not predict COVID-19 severity in patients with wild-type SARS-CoV-2.


Subject(s)
COVID-19 , Pneumonia , Humans , Retrospective Studies , SARS-CoV-2/genetics , Viral Tropism
2.
J Pathol ; 258(3): 211-212, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2013710

ABSTRACT

SARS-CoV-2 virus, the cause of COVID-19 disease, establishes infection in the human body via interaction with the angiotensin-converting enzyme 2 (ACE2) receptor on cell membranes. The lung is the major organ affected, and all respiratory epithelium from nose to alveolus is infectable. A recent study published in The Journal of Pathology looked at a wide range of other human tissues, mostly autopsy-derived, to identify susceptible cells. The virus (associated with ACE2) is found in all endothelial cells (an important finding), renal and biliary epithelium, in megakaryocytes, and occasionally in hepatocytes. It was not found in heart myofibres or brain neurones but is present in gut myenteric plexus cells. This work confirms previous work on SARS-CoV-2-infectable cells, and so supports investigations into the pathogenesis of COVID-19 disease as it affects (or does not directly affect) the different organs. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Endothelial Cells/metabolism , Endothelial Cells/virology , Humans , SARS-CoV-2/isolation & purification , Viral Tropism
3.
Proc Natl Acad Sci U S A ; 119(30): e2122236119, 2022 07 26.
Article in English | MEDLINE | ID: covidwho-1947759

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. Neurological symptoms, which range in severity, accompany as many as one-third of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized stem-cell-derived cortical organoids as well as primary human cortical tissue, both from developmental and adult stages. We find significant and predominant infection in cortical astrocytes in both primary tissue and organoid cultures, with minimal infection of other cortical populations. Infected and bystander astrocytes have a corresponding increase in inflammatory gene expression, reactivity characteristics, increased cytokine and growth factor signaling, and cellular stress. Although human cortical cells, particularly astrocytes, have no observable ACE2 expression, we find high levels of coronavirus coreceptors in infected astrocytes, including CD147 and DPP4. Decreasing coreceptor abundance and activity reduces overall infection rate, and increasing expression is sufficient to promote infection. Thus, we find tropism of SARS-CoV-2 for human astrocytes resulting in inflammatory gliosis-type injury that is dependent on coronavirus coreceptors.


Subject(s)
Astrocytes , Cerebral Cortex , SARS-CoV-2 , Viral Tropism , Angiotensin-Converting Enzyme 2/metabolism , Astrocytes/enzymology , Astrocytes/virology , Cerebral Cortex/virology , Humans , Organoids/virology , Primary Cell Culture , SARS-CoV-2/physiology
4.
Eur Respir J ; 60(6)2022 Dec.
Article in English | MEDLINE | ID: covidwho-1902346

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilises the angiotensin-converting enzyme 2 (ACE2) transmembrane peptidase as cellular entry receptor. However, whether SARS-CoV-2 in the alveolar compartment is strictly ACE2-dependent and to what extent virus-induced tissue damage and/or direct immune activation determines early pathogenesis is still elusive. METHODS: Spectral microscopy, single-cell/-nucleus RNA sequencing or ACE2 "gain-of-function" experiments were applied to infected human lung explants and adult stem cell derived human lung organoids to correlate ACE2 and related host factors with SARS-CoV-2 tropism, propagation, virulence and immune activation compared to SARS-CoV, influenza and Middle East respiratory syndrome coronavirus (MERS-CoV). Coronavirus disease 2019 (COVID-19) autopsy material was used to validate ex vivo results. RESULTS: We provide evidence that alveolar ACE2 expression must be considered scarce, thereby limiting SARS-CoV-2 propagation and virus-induced tissue damage in the human alveolus. Instead, ex vivo infected human lungs and COVID-19 autopsy samples showed that alveolar macrophages were frequently positive for SARS-CoV-2. Single-cell/-nucleus transcriptomics further revealed nonproductive virus uptake and a related inflammatory and anti-viral activation, especially in "inflammatory alveolar macrophages", comparable to those induced by SARS-CoV and MERS-CoV, but different from NL63 or influenza virus infection. CONCLUSIONS: Collectively, our findings indicate that severe lung injury in COVID-19 probably results from a macrophage-triggered immune activation rather than direct viral damage of the alveolar compartment.


Subject(s)
COVID-19 , Influenza, Human , Adult , Humans , Angiotensin-Converting Enzyme 2 , Lung/pathology , Macrophages, Alveolar/metabolism , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Viral Tropism
5.
Transbound Emerg Dis ; 69(5): e3297-e3304, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1879106

ABSTRACT

The ongoing coronavirus disease 2019 pandemic and its overlap with the influenza season lead to concerns over severe disease caused by the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) co-infections. Using a Syrian hamster co-infection model with SARS-CoV-2 and the pandemic influenza virus A/California/04/2009 (H1N1), we found (a) more severe disease in co-infected animals, compared to those infected with influenza virus alone but not SARS-CoV-2 infection alone; (b) altered haematological changes in only co-infected animals and (c) altered influenza virus tropism in the respiratory tracts of co-infected animals. Overall, our study revealed that co-infection with SARS-CoV-2 and influenza virus is associated with altered disease severity and tissue tropism, as well as haematological changes, compared to infection with either virus alone.


Subject(s)
COVID-19 , Coinfection , Influenza A Virus, H1N1 Subtype , Influenza, Human , Rodent Diseases , Animals , COVID-19/veterinary , Coinfection/veterinary , Cricetinae , Humans , Mesocricetus , SARS-CoV-2 , Viral Tropism
6.
Viruses ; 12(11)2020 10 25.
Article in English | MEDLINE | ID: covidwho-896046

ABSTRACT

The ability to detect and respond to varying oxygen tension is an essential prerequisite to life. Several mechanisms regulate the cellular response to oxygen including the prolyl hydroxylase domain (PHD)/factor inhibiting HIF (FIH)-hypoxia inducible factor (HIF) pathway, cysteamine (2-aminoethanethiol) dioxygenase (ADO) system, and the lysine-specific demethylases (KDM) 5A and KDM6A. Using a systems-based approach we discuss the literature on oxygen sensing pathways in the context of virus replication in different tissues that experience variable oxygen tension. Current information supports a model where the PHD-HIF pathway enhances the replication of viruses infecting tissues under low oxygen, however, the reverse is true for viruses with a selective tropism for higher oxygen environments. Differences in oxygen tension and associated HIF signaling may play an important role in viral tropism and pathogenesis. Thus, pharmaceutical agents that modulate HIF activity could provide novel treatment options for viral infections and associated pathological conditions.


Subject(s)
Oxygen/metabolism , Signal Transduction , Viral Tropism , Virus Replication , Viruses/pathogenicity , Animals , Humans , Hypoxia , Hypoxia-Inducible Factor 1/metabolism , Mice , Repressor Proteins/metabolism , Viruses/classification , Viruses/metabolism
7.
Mucosal Immunol ; 14(3): 566-573, 2021 05.
Article in English | MEDLINE | ID: covidwho-1091501

ABSTRACT

Viral infections with SARS-CoV-2 can cause a multi-facetted disease, which is not only characterized by pneumonia and overwhelming systemic inflammatory immune responses, but which can also directly affect the digestive system and infect intestinal epithelial cells. Here, we review the current understanding of intestinal tropism of SARS-CoV-2 infection, its impact on mucosal function and immunology and summarize the effect of immune-suppression in patients with inflammatory bowel disease (IBD) on disease outcome of COVID-19 and discuss IBD-relevant implications for the clinical management of SARS-CoV-2 infected individuals.


Subject(s)
COVID-19/complications , COVID-19/immunology , Host-Pathogen Interactions/immunology , Immunity, Mucosal , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/immunology , SARS-CoV-2/physiology , Biomarkers , COVID-19/diagnosis , COVID-19/virology , Humans , Immunity, Innate , Inflammatory Bowel Diseases/diagnosis , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Severity of Illness Index , Symptom Assessment , Viral Tropism , Virus Internalization
8.
PLoS Pathog ; 17(2): e1009225, 2021 02.
Article in English | MEDLINE | ID: covidwho-1088773

ABSTRACT

Since the initial report of the novel Coronavirus Disease 2019 (COVID-19) emanating from Wuhan, China, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally. While the effects of SARS-CoV-2 infection are not completely understood, there appears to be a wide spectrum of disease ranging from mild symptoms to severe respiratory distress, hospitalization, and mortality. There are no Food and Drug Administration (FDA)-approved treatments for COVID-19 aside from remdesivir; early efforts to identify efficacious therapeutics for COVID-19 have mainly focused on drug repurposing screens to identify compounds with antiviral activity against SARS-CoV-2 in cellular infection systems. These screens have yielded intriguing hits, but the use of nonhuman immortalized cell lines derived from non-pulmonary or gastrointestinal origins poses any number of questions in predicting the physiological and pathological relevance of these potential interventions. While our knowledge of this novel virus continues to evolve, our current understanding of the key molecular and cellular interactions involved in SARS-CoV-2 infection is discussed in order to provide a framework for developing the most appropriate in vitro toolbox to support current and future drug discovery efforts.


Subject(s)
Drug Discovery , SARS-CoV-2/physiology , Viral Tropism , Virus Internalization , Virus Replication , COVID-19/virology , Cathepsins , Cell Line , Drug Development , Endocytosis , Furin , Humans , SARS-CoV-2/drug effects , Serine Endopeptidases , COVID-19 Drug Treatment
9.
mSphere ; 6(1)2021 02 17.
Article in English | MEDLINE | ID: covidwho-1088203

ABSTRACT

Many viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV), have a structure consisting of spikes protruding from an underlying spherical surface. Research in biological and colloidal sciences has revealed secrets of why spikes exist on virus surfaces. Specifically, the spikes favor virus attachment on surfaces via receptor-specific interactions (RSIs), mediate the membrane fusion, and determine or change viral tropism. The spikes also facilitate viruses to approach surfaces before attachment and subsequently escape back to the environment if RSIs do not occur (i.e., easy come and easy go). Therefore, virus spikes create the paradox of having a large capacity for binding with cells (high infectivity) and meanwhile great mobility in the environment. Such structure-function relationships have important implications for the fabrication of virus-like particles and analogous colloids (e.g., hedgehog- and raspberry-like particles) for applications such as the development of antiviral vaccines and drug delivery.


Subject(s)
COVID-19/transmission , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Animals , HIV/metabolism , HIV/pathogenicity , HIV Infections/transmission , Humans , Viral Proteins/metabolism , Viral Tropism/physiology , Virus Internalization
10.
Arch Virol ; 166(3): 733-753, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1064515

ABSTRACT

The chronic dysfunction of neuronal cells, both central and peripheral, a characteristic of neurological disorders, may be caused by irreversible damage and cell death. In 2016, more than 276 million cases of neurological disorders were reported worldwide. Moreover, neurological disorders are the second leading cause of death. Generally, the etiology of neurological diseases is not fully understood. Recent studies have related the onset of neurological disorders to viral infections, which may cause neurological symptoms or lead to immune responses that trigger these pathological signs. Currently, this relationship is mostly based on epidemiological data on infections and seroprevalence of patients who present with neurological disorders. The number of studies aiming to elucidate the mechanism of action by which viral infections may directly or indirectly contribute to the development of neurological disorders has been increasing over the years but these studies are still scarce. Comprehending the pathogenesis of these diseases and exploring novel theories may favor the development of new strategies for diagnosis and therapy in the future. Therefore, the objective of the present study was to review the main pieces of evidence for the relationship between viral infection and neurological disorders such as Alzheimer's disease, Parkinson's disease, Guillain-Barré syndrome, multiple sclerosis, and epilepsy. Viruses belonging to the families Herpesviridae, Orthomyxoviridae, Flaviviridae, and Retroviridae have been reported to be involved in one or more of these conditions. Also, neurological symptoms and the future impact of infection with SARS-CoV-2, a member of the family Coronaviridae that is responsible for the COVID-19 pandemic that started in late 2019, are reported and discussed.


Subject(s)
COVID-19/pathology , Nervous System Diseases/virology , Viral Tropism/physiology , Alzheimer Disease/virology , COVID-19/virology , Epilepsy/virology , Flaviviridae/metabolism , Guillain-Barre Syndrome/virology , Herpesviridae/metabolism , Humans , Multiple Sclerosis/virology , Nervous System Diseases/pathology , Orthomyxoviridae/metabolism , Parkinson Disease/virology , Retroviridae/metabolism , SARS-CoV-2/metabolism
11.
Drug Discov Ther ; 14(6): 262-272, 2021 Jan 23.
Article in English | MEDLINE | ID: covidwho-1067907

ABSTRACT

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in 2019 in Wuhan, China. Clinically, respiratory tract symptoms as well as other organs disorders are observed in patients positively diagnosed coronavirus disease 2019 (COVID-19). In addition, neurological symptoms, mainly anosmia, ageusia and headache were observed in many patients. Once in the central nervous system (CNS), the SARS-CoV-2 can reside either in a quiescent latent state, or eventually in actively state leading to severe acute encephalitis, characterized by neuroinflammation and prolonged neuroimmune activation. SRAS-CoV-2 requires angiotensin-converting enzyme 2 (ACE2) as a cell entry receptor. The expression of this receptor in endothelial cells of blood-brain barrier (BBB) shows that SRAS-CoV-2 may have higher neuroinvasive potential compared to known coronaviruses. This review summarizes available information regarding the impact of SRAS-CoV-2 in the brain and tended to identify its potential pathways of neuroinvasion. We offer also an understanding of the long-term impact of latently form of SARS-CoV-2 on the development of neurodegenerative disorders. As a conclusion, the persistent infection of SRAS-CoV-2 in the brain could be involved on human neurodegenerative diseases that evolve a gradual process, perhapes, over several decades.


Subject(s)
COVID-19/virology , Central Nervous System Viral Diseases/virology , Neurodegenerative Diseases/virology , Neurons/virology , SARS-CoV-2/pathogenicity , Viral Tropism , Animals , COVID-19/complications , Central Nervous System Viral Diseases/metabolism , Central Nervous System Viral Diseases/pathology , Host-Pathogen Interactions , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Virus Latency
12.
Br J Haematol ; 193(1): 43-51, 2021 04.
Article in English | MEDLINE | ID: covidwho-1066629
13.
Nature ; 589(7841): 270-275, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065893

ABSTRACT

There is an urgent need to create novel models using human disease-relevant cells to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology and to facilitate drug screening. Here, as SARS-CoV-2 primarily infects the respiratory tract, we developed a lung organoid model using human pluripotent stem cells (hPSC-LOs). The hPSC-LOs (particularly alveolar type-II-like cells) are permissive to SARS-CoV-2 infection, and showed robust induction of chemokines following SARS-CoV-2 infection, similar to what is seen in patients with COVID-19. Nearly 25% of these patients also have gastrointestinal manifestations, which are associated with worse COVID-19 outcomes1. We therefore also generated complementary hPSC-derived colonic organoids (hPSC-COs) to explore the response of colonic cells to SARS-CoV-2 infection. We found that multiple colonic cell types, especially enterocytes, express ACE2 and are permissive to SARS-CoV-2 infection. Using hPSC-LOs, we performed a high-throughput screen of drugs approved by the FDA (US Food and Drug Administration) and identified entry inhibitors of SARS-CoV-2, including imatinib, mycophenolic acid and quinacrine dihydrochloride. Treatment at physiologically relevant levels of these drugs significantly inhibited SARS-CoV-2 infection of both hPSC-LOs and hPSC-COs. Together, these data demonstrate that hPSC-LOs and hPSC-COs infected by SARS-CoV-2 can serve as disease models to study SARS-CoV-2 infection and provide a valuable resource for drug screening to identify candidate COVID-19 therapeutics.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/virology , Colon/cytology , Drug Evaluation, Preclinical/methods , Lung/cytology , Organoids/drug effects , Organoids/virology , SARS-CoV-2/drug effects , Animals , COVID-19/prevention & control , Colon/drug effects , Colon/virology , Drug Approval , Female , Heterografts/drug effects , Humans , In Vitro Techniques , Lung/drug effects , Lung/virology , Male , Mice , Organoids/cytology , Organoids/metabolism , SARS-CoV-2/genetics , United States , United States Food and Drug Administration , Viral Tropism , Virus Internalization/drug effects , COVID-19 Drug Treatment
14.
ACS Chem Neurosci ; 12(4): 573-580, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1065791

ABSTRACT

Long-COVID is a postviral illness that can affect survivors of COVID-19, regardless of initial disease severity or age. Symptoms of long-COVID include fatigue, dyspnea, gastrointestinal and cardiac problems, cognitive impairments, myalgia, and others. While the possible causes of long-COVID include long-term tissue damage, viral persistence, and chronic inflammation, the review proposes, perhaps for the first time, that persistent brainstem dysfunction may also be involved. This hypothesis can be split into two parts. The first is the brainstem tropism and damage in COVID-19. As the brainstem has a relatively high expression of ACE2 receptor compared with other brain regions, SARS-CoV-2 may exhibit tropism therein. Evidence also exists that neuropilin-1, a co-receptor of SARS-CoV-2, may be expressed in the brainstem. Indeed, autopsy studies have found SARS-CoV-2 RNA and proteins in the brainstem. The brainstem is also highly prone to damage from pathological immune or vascular activation, which has also been observed in autopsy of COVID-19 cases. The second part concerns functions of the brainstem that overlap with symptoms of long-COVID. The brainstem contains numerous distinct nuclei and subparts that regulate the respiratory, cardiovascular, gastrointestinal, and neurological processes, which can be linked to long-COVID. As neurons do not readily regenerate, brainstem dysfunction may be long-lasting and, thus, is long-COVID. Indeed, brainstem dysfunction has been implicated in other similar disorders, such as chronic pain and migraine and myalgic encephalomyelitis or chronic fatigue syndrome.


Subject(s)
Brain Diseases/physiopathology , Brain Stem/physiopathology , COVID-19/complications , Inflammation/physiopathology , Thrombosis/physiopathology , Angiotensin-Converting Enzyme 2/metabolism , Brain Diseases/metabolism , Brain Diseases/virology , Brain Stem/blood supply , Brain Stem/metabolism , Brain Stem/virology , COVID-19/metabolism , COVID-19/physiopathology , Humans , Inflammation/metabolism , Inflammation/virology , Neuropilin-1/metabolism , RNA, Viral/isolation & purification , RNA, Viral/metabolism , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Thrombosis/metabolism , Thrombosis/virology , Viral Tropism , Post-Acute COVID-19 Syndrome
15.
Ocul Surf ; 19: 176-182, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065413

ABSTRACT

Oculo-centric factors may provide a key to understanding invasion success by SARS-CoV-2, a highly contagious, potentially lethal, virus with ocular tropism. Respiratory infection transmission via the eye and lacrimal-nasal pathway elucidated during the 1918 influenza pandemic, remains to be explored in this crisis. The eye and its adnexae represent a large surface area directly exposed to airborne viral particles and hand contact. The virus may bind to corneal and conjunctival angiotensin converting enzyme 2 (ACE2) receptors and potentially to the lipophilic periocular skin and superficial tear film with downstream carriage into the nasopharynx and subsequent access to the lungs and gut. Adenoviruses and influenza viruses share this ocular tropism and despite differing ocular and systemic manifestations and disease patterns, common lessons, particularly in management, emerge. Slit lamp usage places ophthalmologists at particular risk of exposure to high viral loads (and poor prognosis) and as for adenoviral epidemics, this may be a setting for disease transmission. Local, rather than systemic treatments blocking virus binding in this pathway (advocated for adenovirus) are worth considering. This pathway is accessible with eye drops or aerosols containing drugs which appear efficacious via systemic administration. A combination such as hydroxychloroquine, azithromycin and zinc, all of which have previously been used topically in the eye and which work at least in part by blocking ACE2 receptors, may offer a safe, cost-effective and resource-sparing intervention.


Subject(s)
COVID-19/transmission , Conjunctiva/virology , Cornea/virology , Antiviral Agents/administration & dosage , COVID-19/prevention & control , Humans , Ophthalmic Solutions/administration & dosage , Ophthalmology , Pandemics , SARS-CoV-2 , Viral Tropism
16.
Lancet Microbe ; 1(6): e245-e253, 2020 10.
Article in English | MEDLINE | ID: covidwho-1065709

ABSTRACT

BACKGROUND: Severe COVID-19 has a high mortality rate. Comprehensive pathological descriptions of COVID-19 are scarce and limited in scope. We aimed to describe the histopathological findings and viral tropism in patients who died of severe COVID-19. METHODS: In this case series, patients were considered eligible if they were older than 18 years, with premortem diagnosis of severe acute respiratory syndrome coronavirus 2 infection and COVID-19 listed clinically as the direct cause of death. Between March 1 and April 30, 2020, full post-mortem examinations were done on nine patients with confirmed COVID-19, including sampling of all major organs. A limited autopsy was done on one additional patient. Histochemical and immunohistochemical analyses were done, and histopathological findings were reported by subspecialist pathologists. Viral quantitative RT-PCR analysis was done on tissue samples from a subset of patients. FINDINGS: The median age at death of our cohort of ten patients was 73 years (IQR 52-79). Thrombotic features were observed in at least one major organ in all full autopsies, predominantly in the lung (eight [89%] of nine patients), heart (five [56%]), and kidney (four [44%]). Diffuse alveolar damage was the most consistent lung finding (all ten patients); however, organisation was noted in patients with a longer clinical course. We documented lymphocyte depletion (particularly CD8-positive T cells) in haematological organs and haemophagocytosis. Evidence of acute tubular injury was noted in all nine patients examined. Major unexpected findings were acute pancreatitis (two [22%] of nine patients), adrenal micro-infarction (three [33%]), pericarditis (two [22%]), disseminated mucormycosis (one [10%] of ten patients), aortic dissection (one [11%] of nine patients), and marantic endocarditis (one [11%]). Viral genomes were detected outside of the respiratory tract in four of five patients. The presence of subgenomic viral RNA transcripts provided evidence of active viral replication outside the respiratory tract in three of five patients. INTERPRETATION: Our series supports clinical data showing that the four dominant interrelated pathological processes in severe COVID-19 are diffuse alveolar damage, thrombosis, haemophagocytosis, and immune cell depletion. Additionally, we report here several novel autopsy findings including pancreatitis, pericarditis, adrenal micro-infarction, secondary disseminated mucormycosis, and brain microglial activation, which require additional investigation to understand their role in COVID-19. FUNDING: Imperial Biomedical Research Centre, Wellcome Trust, Biotechnology and Biological Sciences Research Council.


Subject(s)
COVID-19 , Mucormycosis , Pancreatitis , Pericarditis , Thrombosis , Acute Disease , COVID-19/epidemiology , Humans , Infarction/pathology , Lung/pathology , Mucormycosis/pathology , Pancreatitis/pathology , Pericarditis/pathology , SARS-CoV-2 , Thrombosis/pathology , United Kingdom/epidemiology , Viral Tropism
17.
ACS Chem Neurosci ; 12(4): 573-580, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1062730

ABSTRACT

Long-COVID is a postviral illness that can affect survivors of COVID-19, regardless of initial disease severity or age. Symptoms of long-COVID include fatigue, dyspnea, gastrointestinal and cardiac problems, cognitive impairments, myalgia, and others. While the possible causes of long-COVID include long-term tissue damage, viral persistence, and chronic inflammation, the review proposes, perhaps for the first time, that persistent brainstem dysfunction may also be involved. This hypothesis can be split into two parts. The first is the brainstem tropism and damage in COVID-19. As the brainstem has a relatively high expression of ACE2 receptor compared with other brain regions, SARS-CoV-2 may exhibit tropism therein. Evidence also exists that neuropilin-1, a co-receptor of SARS-CoV-2, may be expressed in the brainstem. Indeed, autopsy studies have found SARS-CoV-2 RNA and proteins in the brainstem. The brainstem is also highly prone to damage from pathological immune or vascular activation, which has also been observed in autopsy of COVID-19 cases. The second part concerns functions of the brainstem that overlap with symptoms of long-COVID. The brainstem contains numerous distinct nuclei and subparts that regulate the respiratory, cardiovascular, gastrointestinal, and neurological processes, which can be linked to long-COVID. As neurons do not readily regenerate, brainstem dysfunction may be long-lasting and, thus, is long-COVID. Indeed, brainstem dysfunction has been implicated in other similar disorders, such as chronic pain and migraine and myalgic encephalomyelitis or chronic fatigue syndrome.


Subject(s)
Brain Diseases/physiopathology , Brain Stem/physiopathology , COVID-19/complications , Inflammation/physiopathology , Thrombosis/physiopathology , Angiotensin-Converting Enzyme 2/metabolism , Brain Diseases/metabolism , Brain Diseases/virology , Brain Stem/blood supply , Brain Stem/metabolism , Brain Stem/virology , COVID-19/metabolism , COVID-19/physiopathology , Humans , Inflammation/metabolism , Inflammation/virology , Neuropilin-1/metabolism , RNA, Viral/isolation & purification , RNA, Viral/metabolism , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Thrombosis/metabolism , Thrombosis/virology , Viral Tropism , Post-Acute COVID-19 Syndrome
18.
PLoS Pathog ; 17(1): e1009233, 2021 01.
Article in English | MEDLINE | ID: covidwho-1040062

ABSTRACT

The spike (S) protein of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) binds to a host cell receptor which facilitates viral entry. A polybasic motif detected at the cleavage site of the S protein has been shown to broaden the cell tropism and transmissibility of the virus. Here we examine the properties of SARS-CoV-2 variants with mutations at the S protein cleavage site that undergo inefficient proteolytic cleavage. Virus variants with S gene mutations generated smaller plaques and exhibited a more limited range of cell tropism compared to the wild-type strain. These alterations were shown to result from their inability to utilize the entry pathway involving direct fusion mediated by the host type II transmembrane serine protease, TMPRSS2. Notably, viruses with S gene mutations emerged rapidly and became the dominant SARS-CoV-2 variants in TMPRSS2-deficient cells including Vero cells. Our study demonstrated that the S protein polybasic cleavage motif is a critical factor underlying SARS-CoV-2 entry and cell tropism. As such, researchers should be alert to the possibility of de novo S gene mutations emerging in tissue-culture propagated virus strains.


Subject(s)
SARS-CoV-2/genetics , Serine Endopeptidases/deficiency , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Animals , Caco-2 Cells , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Mutation , SARS-CoV-2/classification , SARS-CoV-2/growth & development , SARS-CoV-2/physiology , Sequence Alignment , Serial Passage , Vero Cells , Viral Tropism
19.
J Mol Neurosci ; 71(11): 2192-2209, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1037256

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is an issue of global significance that has taken the lives of many across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for its pathogenesis. The pulmonary manifestations of COVID-19 have been well described in the literature. Initially, it was thought to be limited to the respiratory system; however, we now recognize that COVID-19 also affects several other organs, including the nervous system. Two similar human coronaviruses (CoV) that cause severe acute respiratory syndrome (SARS-CoV-1) and Middle East respiratory syndrome (MERS-CoV) are also known to cause disease in the nervous system. The neurological manifestations of SARS-CoV-2 infection are growing rapidly, as evidenced by several reports. There are several mechanisms responsible for such manifestations in the nervous system. For instance, post-infectious immune-mediated processes, direct virus infection of the central nervous system (CNS), and virus-induced hyperinflammatory and hypercoagulable states are commonly involved. Guillain-Barré syndrome (GBS) and its variants, dysfunction of taste and smell, and muscle injury are numerous examples of COVID-19 PNS (peripheral nervous system) disease. Likewise, hemorrhagic and ischemic stroke, encephalitis, meningitis, encephalopathy acute disseminated encephalomyelitis, endothelialitis, and venous sinus thrombosis are some instances of COVID-19 CNS disease. Due to multifactorial and complicated pathogenic mechanisms, COVID-19 poses a large-scale threat to the whole nervous system. A complete understanding of SARS-CoV-2 neurological impairments is still lacking, but our knowledge base is rapidly expanding. Therefore, we anticipate that this comprehensive review will provide valuable insights and facilitate the work of neuroscientists in unfolding different neurological dimensions of COVID-19 and other CoV associated abnormalities.


Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , Pandemics , SARS-CoV-2/pathogenicity , Adolescent , Adult , Angiotensin-Converting Enzyme 2/physiology , Asymptomatic Infections , Autoimmune Diseases of the Nervous System/etiology , Blood-Brain Barrier , COVID-19/immunology , COVID-19/physiopathology , Cerebrovascular Disorders/etiology , Child , Communicable Diseases, Emerging , Coronavirus Infections/complications , Humans , Hypoxia/etiology , Hypoxia/physiopathology , Nervous System/virology , Nervous System Diseases/immunology , Nervous System Diseases/physiopathology , Organ Specificity , Receptors, Virus/physiology , Severe Acute Respiratory Syndrome/complications , Synapses/virology , Viral Tropism , Young Adult
20.
Nephrology (Carlton) ; 26(3): 239-247, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1010961

ABSTRACT

Acute kidney injury (AKI) is a common complication, affecting up to 37% of hospitalized patients with SARS-CoV-2 infection and is proportional to its severity and portends poor prognosis. Diverse mechanisms have been proposed and studies reported conflicting results. Moreover, renal tropism of SARS-CoV-2 does not equate to its renal pathogenicity. For a virus to be pathogenic, in addition to its affinity (tropism) for specific tissue(s), host cells must allow viral entry, and discuss the important role played by transmembrane protease, serine 2 (TMPRSS2) and coexpression of both ACE2 and TMPRSS2 in the same cells is important to cause damage. Lack of coexpression of ACE2 and TMPRSS2 in the same cells of the kidneys is the limiting factor of SARS-CoV-2 direct effects in the kidney. We present the rationale and cumulative evidence supporting that AKI is secondary to hemodynamic and immunologic effects of SARS-CoV-2 infection than the direct injury or infection.


Subject(s)
Acute Kidney Injury , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Kidney , SARS-CoV-2 , Serine Endopeptidases/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/immunology , Acute Kidney Injury/physiopathology , COVID-19/complications , COVID-19/immunology , COVID-19/physiopathology , Hemodynamics , Humans , Immunity , Kidney/metabolism , Kidney/pathology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Viral Tropism
SELECTION OF CITATIONS
SEARCH DETAIL