Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 405
Filter
Add filters

Document Type
Year range
1.
Front Cell Infect Microbiol ; 10: 596166, 2020.
Article in English | MEDLINE | ID: covidwho-1574497

ABSTRACT

Viral infections continue to cause considerable morbidity and mortality around the world. Recent rises in these infections are likely due to complex and multifactorial external drivers, including climate change, the increased mobility of people and goods and rapid demographic change to name but a few. In parallel with these external factors, we are gaining a better understanding of the internal factors associated with viral immunity. Increasingly the gastrointestinal (GI) microbiome has been shown to be a significant player in the host immune system, acting as a key regulator of immunity and host defense mechanisms. An increasing body of evidence indicates that disruption of the homeostasis between the GI microbiome and the host immune system can adversely impact viral immunity. This review aims to shed light on our understanding of how host-microbiota interactions shape the immune system, including early life factors, antibiotic exposure, immunosenescence, diet and inflammatory diseases. We also discuss the evidence base for how host commensal organisms and microbiome therapeutics can impact the prevention and/or treatment of viral infections, such as viral gastroenteritis, viral hepatitis, human immunodeficiency virus (HIV), human papilloma virus (HPV), viral upper respiratory tract infections (URTI), influenza and SARS CoV-2. The interplay between the gastrointestinal microbiome, invasive viruses and host physiology is complex and yet to be fully characterized, but increasingly the evidence shows that the microbiome can have an impact on viral disease outcomes. While the current evidence base is informative, further well designed human clinical trials will be needed to fully understand the array of immunological mechanisms underlying this intricate relationship.


Subject(s)
Dysbiosis/virology , Microbiota/immunology , Probiotics/therapeutic use , Virus Diseases/immunology , Virus Diseases/microbiology , Animals , COVID-19/immunology , Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Host Microbial Interactions , Humans , SARS-CoV-2/isolation & purification , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
2.
Methods Mol Biol ; 2410: 229-263, 2022.
Article in English | MEDLINE | ID: covidwho-1575944

ABSTRACT

Vaccines are one of mankind's greatest medical advances, and their use has drastically reduced and in some cases eliminated (e.g., smallpox) disease and death caused by infectious agents. Traditional vaccine modalities including live-attenuated pathogen vaccines, wholly inactivated pathogen vaccines, and protein-based pathogen subunit vaccines have successfully been used to create efficacious vaccines against measles, mumps, rubella, polio, and yellow fever. These traditional vaccine modalities, however, take many months to years to develop and have thus proven less effective for use in creating vaccines to emerging or reemerging infectious diseases (EIDs) including influenza, Human immunodeficiency virus (HIV), dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), Middle East respiratory syndrome (MERS), and the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV and SARS-CoV-2). As factors such as climate change and increased globalization continue to increase the pace of EID development, newer vaccine modalities are required to develop vaccines that can prevent or attenuate EID outbreaks throughout the world. One such modality, DNA vaccines, has been studied for over 30 years and has numerous qualities that make them ideal for meeting the challenge of EIDs including; (1) DNA vaccine candidates can be designed within hours of publishing of a pathogens genetic sequence; (2) they can be manufactured cheaply and rapidly in large quantities; (3) they are thermostable and have reduced requirement for a cold-chain during distribution, and (4) they have a remarkable safety record in the clinic. Optimizations made in plasmid design as well as in DNA vaccine delivery have greatly improved the immunogenicity of these vaccines. Here we describe the process of making a DNA vaccine to an EID pathogen and describe methods used for assessing the immunogenicity and protective efficacy of DNA vaccines in small animal models.


Subject(s)
Communicable Diseases, Emerging , Vaccines, DNA , Viral Vaccines , Animals , COVID-19 , Communicable Diseases, Emerging/prevention & control , Humans , Immunity , SARS Virus , SARS-CoV-2 , Vaccines, Attenuated/immunology , Vaccines, DNA/immunology , Vaccines, Inactivated/immunology , Vaccines, Synthetic/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
3.
Methods Mol Biol ; 2410: 149-175, 2022.
Article in English | MEDLINE | ID: covidwho-1575668

ABSTRACT

Coronaviruses are causative agents of different zoonosis including SARS, MERS, or COVID-19 in humans. The high transmission rate of coronaviruses, the time-consuming development of efficient anti-infectives and vaccines, the possible evolutionary adaptation of the virus to conventional vaccines, and the challenge to cover broad human population worldwide are the major reasons that made it challenging to avoid coronaviruses outbreaks. Although, a plethora of different approaches are being followed to design and develop vaccines against coronaviruses, most of them target subunits, full-length single, or only a very limited number of proteins. Vaccine targeting multiple proteins or even the entire proteome of the coronavirus is yet to come. In the present chapter, we will be discussing multi-epitope vaccine (MEV) and multi-patch vaccine (MPV) approaches to design and develop efficient and sustainably successful strategies against coronaviruses. MEV and MPV utilize highly conserved, potentially immunogenic epitopes and antigenic patches, respectively, and hence they have the potential to target large number of coronavirus proteins or even its entire proteome, allowing us to combat the challenge of its evolutionary adaptation. In addition, the large number of human leukocyte antigen (HLA) alleles targeted by the chosen specific epitopes enables MEV and MPV to cover broader global population.


Subject(s)
COVID-19 , Coronavirus Infections/prevention & control , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Viral Vaccines , Antigens, Viral/immunology , COVID-19/prevention & control , Humans , Proteome , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Vaccines/immunology
5.
Viruses ; 13(12)2021 11 30.
Article in English | MEDLINE | ID: covidwho-1542802

ABSTRACT

Human Norovirus is currently the main viral cause of acute gastroenteritis (AGEs) in most countries worldwide. Nearly 50 years after the discovery of the "Norwalk virus" by Kapikian and colleagues, the scientific and medical community continue to generate new knowledge on the full biological and disease spectrum of Norovirus infection. Nevertheless, several areas remain incompletely understood due to the serious constraints to effectively replicate and propagate the virus. Here, we present a narrated historic perspective and summarize our current knowledge, including insights and reflections on current points of interest for a broad medical community, including clinical and molecular epidemiology, viral-host-microbiota interactions, antivirals, and vaccine prototypes. We also include a reflection on the present and future impacts of the COVID-19 pandemic on Norovirus infection and disease.


Subject(s)
Caliciviridae Infections/epidemiology , Caliciviridae Infections/prevention & control , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Norovirus/physiology , Antiviral Agents , COVID-19/epidemiology , COVID-19/prevention & control , Caliciviridae Infections/microbiology , Caliciviridae Infections/virology , Gastroenteritis/microbiology , Gastroenteritis/virology , Gastrointestinal Microbiome , Host-Pathogen Interactions , Humans , Norovirus/genetics , Norovirus/immunology , SARS-CoV-2 , Viral Vaccines/immunology
6.
Biomed Pharmacother ; 144: 112282, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1517062

ABSTRACT

Six months after the publication of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) sequence, a record number of vaccine candidates were listed, and quite a number of them have since been approved for emergency use against the novel coronavirus disease 2019 (COVID-19). This unprecedented pharmaceutical feat did not only show commitment, creativity and collaboration of the scientific community, but also provided a swift solution that prevented global healthcare system breakdown. Notwithstanding, the available data show that most of the approved COVID-19 vaccines protect only a proportion of recipients against severe disease but do not prevent clinical manifestation of COVID-19. There is therefore the need to probe further to establish whether these vaccines can induce sterilizing immunity, otherwise, COVID-19 vaccination would have to become a regular phenomenon. The emergence of SARS-CoV-2 variants could further affect the capability of the available COVID-19 vaccines to prevent infection and protect recipients from a severe form of the disease. These notwithstanding, data about which vaccine(s), if any, can confer sterilizing immunity are unavailable. Here, we discuss the immune responses to viral infection with emphasis on COVID-19, and the specific adaptive immune response to SARS-CoV-2 and how it can be harnessed to develop COVID-19 vaccines capable of conferring sterilizing immunity. We further propose factors that could be considered in the development of COVID-19 vaccines capable of stimulating sterilizing immunity. Also, an old, but effective vaccine development technology that can be applied in the development of COVID-19 vaccines with sterilizing immunity potential is reviewed.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , T-Lymphocytes, Helper-Inducer/immunology , COVID-19 Vaccines/administration & dosage , Humans , SARS-CoV-2/drug effects , T-Lymphocytes, Helper-Inducer/drug effects , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
7.
Curr Protein Pept Sci ; 22(4): 273-289, 2021 Oct 26.
Article in English | MEDLINE | ID: covidwho-1515505

ABSTRACT

Innate immunity is the first line of defence elicited by the host immune system to fight against invading pathogens such as viruses and bacteria. From this elementary immune response, the more complex antigen-specific adaptive responses are recruited to provide a long-lasting memory against the pathogens. Innate immunity gets activated when the host cell utilizes a diverse set of receptors known as pattern recognition receptors (PRR) to recognize the viruses that have penetrated the host and responds with cellular processes like complement system, phagocytosis, cytokine release and inflammation and destruction of NK cells. Viral RNA or DNA or viral intermediate products are recognized by receptors like toll-like receptors(TLRs), nucleotide oligomerization domain (NOD)-like receptors (NLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) thereby, inducing type I interferon response (IFN) and other proinflammatory cytokines in infected cells or other immune cells. But certain viruses can evade the host innate immune response to replicate efficiently, triggering the spread of the viral infection. The present review describes the similarity in the mechanism chosen by viruses from different families -HIV, SARSCoV- 2 and Nipah viruses to evade the innate immune response and how efficiently they establish the infection in the host. The review also addresses the stages of developments of various vaccines against these viral diseases and the challenges encountered by the researchers during vaccine development.


Subject(s)
COVID-19/virology , HIV Infections/virology , Henipavirus Infections/virology , RNA, Viral/immunology , Viral Vaccines/immunology , Viruses , Animals , Humans , Immune Evasion , Immunity, Innate , Viruses/genetics , Viruses/immunology
8.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1481965

ABSTRACT

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Subject(s)
Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , RNA, Viral/administration & dosage , Replicon , Viral Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Defective Viruses/genetics , Defective Viruses/immunology , Female , Gene Deletion , Genes, env , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/pathogenicity , RNA, Viral/genetics , RNA, Viral/immunology , Vaccines, DNA , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence/genetics , Virulence/immunology
9.
Viruses ; 13(10)2021 10 19.
Article in English | MEDLINE | ID: covidwho-1481014

ABSTRACT

The H1N1 pandemic of 2009-2010, MERS epidemic of 2012, Ebola epidemics of 2013-2016 and 2018-2020, Zika epidemic of 2015-2016, and COVID-19 pandemic of 2019-2021, are recent examples in the long history of epidemics that demonstrate the enormous global impact of viral infection. The rapid development of safe and effective vaccines and therapeutics has proven vital to reducing morbidity and mortality from newly emerging viruses. Structural biology methods can be used to determine how antibodies elicited during infection or vaccination target viral proteins and identify viral epitopes that correlate with potent neutralization. Here we review how structural and molecular biology approaches have contributed to our understanding of antibody recognition of pathogenic viruses, specifically HIV-1, SARS-CoV-2, and Zika. Determining structural correlates of neutralization of viruses has guided the design of vaccines, monoclonal antibodies, and small molecule inhibitors in response to the global threat of viral epidemics.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , HIV-1/immunology , SARS-CoV-2/immunology , Zika Virus/immunology , Acquired Immunodeficiency Syndrome/immunology , Acquired Immunodeficiency Syndrome/prevention & control , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , Crystallography, X-Ray , Humans , Viral Vaccines/immunology , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control
10.
Cell Rep ; 37(5): 109929, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1466097

ABSTRACT

Current coronavirus (CoV) vaccines primarily target immunodominant epitopes in the S1 subunit, which are poorly conserved and susceptible to escape mutations, thus threatening vaccine efficacy. Here, we use structure-guided protein engineering to remove the S1 subunit from the Middle East respiratory syndrome (MERS)-CoV spike (S) glycoprotein and develop stabilized stem (SS) antigens. Vaccination with MERS SS elicits cross-reactive ß-CoV antibody responses and protects mice against lethal MERS-CoV challenge. High-throughput screening of antibody-secreting cells from MERS SS-immunized mice led to the discovery of a panel of cross-reactive monoclonal antibodies. Among them, antibody IgG22 binds with high affinity to both MERS-CoV and severe acute respiratory syndrome (SARS)-CoV-2 S proteins, and a combination of electron microscopy and crystal structures localizes the epitope to a conserved coiled-coil region in the S2 subunit. Passive transfer of IgG22 protects mice against both MERS-CoV and SARS-CoV-2 challenge. Collectively, these results provide a proof of principle for cross-reactive CoV antibodies and inform the development of pan-CoV vaccines and therapeutic antibodies.


Subject(s)
Antibodies, Viral/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Reactions , Drug Design , Epitope Mapping , Female , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Viral Vaccines/immunology
12.
mBio ; 12(5): e0181321, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1462901

ABSTRACT

Vaccines pave the way out of the SARS-CoV-2 pandemic. Besides mRNA and adenoviral vector vaccines, effective protein-based vaccines are needed for immunization against current and emerging variants. We have developed a virus-like particle (VLP)-based vaccine using the baculovirus-insect cell expression system, a robust production platform known for its scalability, low cost, and safety. Baculoviruses were constructed encoding SARS-CoV-2 spike proteins: full-length S, stabilized secreted S, or the S1 domain. Since subunit S only partially protected mice from SARS-CoV-2 challenge, we produced S1 for conjugation to bacteriophage AP205 VLP nanoparticles using tag/catcher technology. The S1 yield in an insect-cell bioreactor was ∼11 mg/liter, and authentic protein folding, efficient glycosylation, partial trimerization, and ACE2 receptor binding was confirmed. Prime-boost immunization of mice with 0.5 µg S1-VLPs showed potent neutralizing antibody responses against Wuhan and UK/B.1.1.7 SARS-CoV-2 variants. This two-component nanoparticle vaccine can now be further developed to help alleviate the burden of COVID-19. IMPORTANCE Vaccination is essential to reduce disease severity and limit the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Protein-based vaccines are useful to vaccinate the world population and to boost immunity against emerging variants. Their safety profiles, production costs, and vaccine storage temperatures are advantageous compared to mRNA and adenovirus vector vaccines. Here, we use the versatile and scalable baculovirus expression vector system to generate a two-component nanoparticle vaccine to induce potent neutralizing antibody responses against SARS-CoV-2 variants. These nanoparticle vaccines can be quickly adapted as boosters by simply updating the antigen component.


Subject(s)
Antibodies, Neutralizing/metabolism , Nanoparticles/metabolism , SARS-CoV-2/metabolism , Animals , COVID-19/immunology , Female , Glycosylation , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , Sf9 Cells , Viral Vaccines/immunology
13.
Biomed Res Int ; 2021: 7251119, 2021.
Article in English | MEDLINE | ID: covidwho-1455778

ABSTRACT

Background: B.1.617.1, a variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causing respiratory illness is responsible for the second wave of COVID-19 and associated with a high incidence of infectivity and mortality. To mitigate the B.1.617.1 variant of SARS-CoV-2, deciphering the protein structure and immunological responses by employing bioinformatics tools for data mining and analysis is pivotal. Objectives: Here, an in silico approach was employed for deciphering the structure and immune function of the subunit of spike (S) protein of SARS-CoV-2 B.1.617.1 variant. Methods: The partial amino acid sequence of SARS-CoV-2 B.1.617.1 variant S protein was analyzed, and its putative secondary and tertiary structure was predicted. Immunogenic analyses including B- and T-cell epitopes, interferon-gamma (IFN-γ) response, chemokine, and protective antigens for SARS-CoV 2 S proteins were predicted using appropriate tools. Results: B.1.617.1 variant S protein sequence was found to be highly stable and amphipathic. ABCpred and CTLpred analyses led to the identification of two potential antigenic B cell and T cell epitopes with starting amino acid positions at 60 and 82 (for B cell epitopes) and 54 and 98 (for T cell epitopes) having prediction scores > 0.8. Further, RAMPAGE tool was used for determining the allowed and disallowed regions of the three-dimensional predicted structure of SARS-CoV-2 B.1.617.1 variant S protein. Conclusion: Together, the in silico analysis revealed the predicted structure of partial S protein, immunogenic properties, and possible regions for S protein of SARS-CoV-2 and provides a valuable prelude for engineering the targeted vaccine or drug against B.1.617.1 variant of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Algorithms , Amino Acid Sequence , COVID-19/immunology , COVID-19/metabolism , Computational Biology/methods , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Immunogenicity, Vaccine , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Viral Vaccines/immunology
15.
Viruses ; 13(7)2021 06 24.
Article in English | MEDLINE | ID: covidwho-1389547

ABSTRACT

Adenovirus vector-based genetic vaccines have emerged as a powerful strategy against the SARS-CoV-2 health crisis. This success is not unexpected because adenoviruses combine many desirable features of a genetic vaccine. They are highly immunogenic and have a low and well characterized pathogenic profile paired with technological approachability. Ongoing efforts to improve adenovirus-vaccine vectors include the use of rare serotypes and non-human adenoviruses. In this review, we focus on the viral capsid and how the choice of genotypes influences the uptake and subsequent subcellular sorting. We describe how understanding capsid properties, such as stability during the entry process, can change the fate of the entering particles and how this translates into differences in immunity outcomes. We discuss in detail how mutating the membrane lytic capsid protein VI affects species C viruses' post-entry sorting and briefly discuss if such approaches could have a wider implication in vaccine and/or vector development.


Subject(s)
Adenoviruses, Human/immunology , Adenoviruses, Human/physiology , Capsid/metabolism , Genetic Vectors , Viral Vaccines/immunology , Virus Internalization , Adaptive Immunity , Adenoviruses, Human/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Capsid/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Capsid Proteins/metabolism , Clinical Trials as Topic , Humans , Immunity, Innate , Mice , SARS-CoV-2/immunology
16.
Int J Mol Sci ; 22(3)2021 Jan 24.
Article in English | MEDLINE | ID: covidwho-1389388

ABSTRACT

The prevention and control of infectious diseases is crucial to the maintenance and protection of social and public healthcare. The global impact of SARS-CoV-2 has demonstrated how outbreaks of emerging and re-emerging infections can lead to pandemics of significant public health and socio-economic burden. Vaccination is one of the most effective approaches to protect against infectious diseases, and to date, multiple vaccines have been successfully used to protect against and eradicate both viral and bacterial pathogens. The main criterion of vaccine efficacy is the induction of specific humoral and cellular immune responses, and it is well established that immunogenicity depends on the type of vaccine as well as the route of delivery. In addition, antigen delivery to immune organs and the site of injection can potentiate efficacy of the vaccine. In light of this, microvesicles have been suggested as potential vehicles for antigen delivery as they can carry various immunogenic molecules including proteins, nucleic acids and polysaccharides directly to target cells. In this review, we focus on the mechanisms of microvesicle biogenesis and the role of microvesicles in infectious diseases. Further, we discuss the application of microvesicles as a novel and effective vaccine delivery system.


Subject(s)
COVID-19/prevention & control , Extracellular Vesicles/immunology , Immunologic Factors/immunology , SARS-CoV-2/immunology , Viral Vaccines/administration & dosage , Animals , COVID-19/immunology , Drug Delivery Systems/methods , Humans , Vaccination/methods , Viral Vaccines/immunology
17.
Cell Host Microbe ; 29(2): 160-164, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1385266

ABSTRACT

The emergence of alternate variants of SARS-CoV-2 due to ongoing adaptations in humans and following human-to-animal transmission has raised concern over the efficacy of vaccines against new variants. We describe human-to-animal transmission (zooanthroponosis) of SARS-CoV-2 and its implications for faunal virus persistence and vaccine-mediated immunity.


Subject(s)
COVID-19/veterinary , Communicable Diseases, Emerging/veterinary , SARS-CoV-2/pathogenicity , Zoonoses/transmission , Zoonoses/virology , Animals , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Humans , Immunity , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...