Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Viruses ; 14(5)2022 04 26.
Article in English | MEDLINE | ID: covidwho-1810327

ABSTRACT

Background: Nanosilver possesses antiviral, antibacterial, anti-inflammatory, anti-angiogenesis, antiplatelet, and anticancer properties. The development of disinfectants, inactivated vaccines, and combined etiotropic and immunomodulation therapy against respiratory viral infections, including COVID-19, remains urgent. Aim: Our goal was to determine the SARS-CoV-2 molecular targets (genomic RNA and the structural virion proteins S and N) for silver-containing nanomaterials. Methods: SARS-CoV-2 gene cloning, purification of S2 and N recombinant proteins, viral RNA isolation from patients' blood samples, reverse transcription with quantitative real-time PCR ((RT)2-PCR), ELISA, and multiplex immunofluorescent analysis with magnetic beads (xMAP) for detection of 17 inflammation markers. Results: Fluorescent Ag nanoclusters (NCs) less than 2 nm with a few recovered silver atoms, citrate coated Ag nanoparticles (NPs) with diameters of 20-120 nm, and nanoconjugates of 50-150 nm consisting of Ag NPs with different protein envelopes were constructed from AgNO3 and analyzed by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible light absorption, and fluorescent spectroscopy. SARS-CoV-2 RNA isolated from COVID-19 patients' blood samples was completely cleaved with the artificial RNase complex compound Li+[Ag+2Cys2-(OH-)2(NH3)2] (Ag-2S), whereas other Ag-containing materials provided partial RNA degradation only. Treatment of the SARS-CoV-2 S2 and N recombinant antigens with AgNO3 and Ag NPs inhibited their binding with specific polyclonal antibodies, as shown by ELISA. Fluorescent Ag NCs with albumin or immunoglobulins, Ag-2S complex, and nanoconjugates of Ag NPs with protein shells had no effect on the interaction between coronavirus recombinant antigens and antibodies. Reduced production of a majority of the 17 inflammation biomarkers after treatment of three human cell lines with nanosilver was demonstrated by xMAP. Conclusion: The antiviral properties of the silver nanomaterials against SARS-CoV-2 coronavirus differed. The small-molecular-weight artificial RNase Ag-2S provided exhaustive RNA destruction but could not bind with the SARS-CoV-2 recombinant antigens. On the contrary, Ag+ ions and Ag NPs interacted with the SARS-CoV-2 recombinant antigens N and S but were less efficient at performing viral RNA cleavage. One should note that SARS-CoV-2 RNA was more stable than MS2 phage RNA. The isolated RNA of both the MS2 phage and SARS-CoV-2 were more degradable than the MS2 phage and coronavirus particles in patients' blood, due to the protection with structural proteins. To reduce the risk of the virus resistance, a combined treatment with Ag-2S and Ag NPs could be used. To prevent cytokine storm during the early stages of respiratory infections with RNA-containing viruses, nanoconjugates of Ag NPs with surface proteins could be recommended.


Subject(s)
COVID-19 , Metal Nanoparticles , Antiviral Agents/pharmacology , Cations , Cystine , Humans , Inflammation , Nanoconjugates , RNA, Viral/genetics , Recombinant Proteins , Ribonucleases , SARS-CoV-2/genetics , Silver/pharmacology , Virion/chemistry
2.
J Virol ; 96(2): e0106021, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1759286

ABSTRACT

Rhinoviruses (RVs) cause recurrent infections of the nasal and pulmonary tracts, life-threatening conditions in chronic respiratory illness patients, predisposition of children to asthmatic exacerbation, and large economic cost. RVs are difficult to treat. They rapidly evolve resistance and are genetically diverse. Here, we provide insight into RV drug resistance mechanisms against chemical compounds neutralizing low pH in endolysosomes. Serial passaging of RV-A16 in the presence of the vacuolar proton ATPase inhibitor bafilomycin A1 (BafA1) or the endolysosomotropic agent ammonium chloride (NH4Cl) promoted the emergence of resistant virus populations. We found two reproducible point mutations in viral proteins 1 and 3 (VP1 and VP3), A2526G (serine 66 to asparagine [S66N]), and G2274U (cysteine 220 to phenylalanine [C220F]), respectively. Both mutations conferred cross-resistance to BafA1, NH4Cl, and the protonophore niclosamide, as identified by massive parallel sequencing and reverse genetics, but not the double mutation, which we could not rescue. Both VP1-S66 and VP3-C220 locate at the interprotomeric face, and their mutations increase the sensitivity of virions to low pH, elevated temperature, and soluble intercellular adhesion molecule 1 receptor. These results indicate that the ability of RV to uncoat at low endosomal pH confers virion resistance to extracellular stress. The data endorse endosomal acidification inhibitors as a viable strategy against RVs, especially if inhibitors are directly applied to the airways. IMPORTANCE Rhinoviruses (RVs) are the predominant agents causing the common cold. Anti-RV drugs and vaccines are not available, largely due to rapid evolutionary adaptation of RVs giving rise to resistant mutants and an immense diversity of antigens in more than 160 different RV types. In this study, we obtained insight into the cell biology of RVs by harnessing the ability of RVs to evolve resistance against host-targeting small chemical compounds neutralizing endosomal pH, an important cue for uncoating of normal RVs. We show that RVs grown in cells treated with inhibitors of endolysosomal acidification evolved capsid mutations yielding reduced virion stability against elevated temperature, low pH, and incubation with recombinant soluble receptor fragments. This fitness cost makes it unlikely that RV mutants adapted to neutral pH become prevalent in nature. The data support the concept of host-directed drug development against respiratory viruses in general, notably at low risk of gain-of-function mutations.


Subject(s)
Capsid/chemistry , Mutation/drug effects , Rhinovirus/physiology , Virus Uncoating/physiology , Antiviral Agents/pharmacology , Capsid/drug effects , Capsid Proteins/genetics , Capsid Proteins/metabolism , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Endosomes/chemistry , Endosomes/drug effects , Endosomes/metabolism , HeLa Cells , Humans , Hydrogen-Ion Concentration , Intercellular Adhesion Molecule-1/metabolism , Protein Conformation , Rhinovirus/chemistry , Rhinovirus/drug effects , Rhinovirus/genetics , Virion/chemistry , Virion/genetics , Virion/metabolism , Virus Internalization/drug effects , Virus Uncoating/drug effects , Virus Uncoating/genetics
3.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166347, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1636951

ABSTRACT

As epitomised by the COVID-19 pandemic, diseases caused by viruses are one of the greatest health and economic burdens to human society. Viruses are 'nanostructures', and their small size (typically less than 200 nm in diameter) can make it challenging to obtain images of their morphology and structure. Recent advances in fluorescence microscopy have given rise to super-resolution techniques, which have enabled the structure of viruses to be visualised directly at a resolution in the order of 20 nm. This mini-review discusses how recent state-of-the-art super-resolution imaging technologies are providing new nanoscale insights into virus structure.


Subject(s)
Microscopy, Fluorescence , Viruses/chemistry , Humans , Imaging, Three-Dimensional , Virion/chemistry
4.
Sci Rep ; 11(1): 20323, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1467136

ABSTRACT

This study aimed to develop a highly sensitive SARS-CoV-2 nucleocapsid antigen assay using the single molecule array (Simoa) technology and compare it with real time RT-PCR as used in routine clinical practice with the ambition to achieve a comparative technical and clinical sensitivity. Samples were available from 148 SARS-CoV-2 real time RT-PCR positive and 73 SARS-CoV-2 real time RT-PCR negative oropharyngeal swabs. For determination of technical sensitivity SARS-CoV-2 virus culture material was used. The samples were treated with lysis buffer and analyzed using both an in-house and a pre-commercial SARS-CoV-2 nucleocapsid antigen assay on Simoa. Both nucleocapsid antigen assays have a technical sensitivity corresponding to around 100 SARS-CoV-2 RNA molecules/mL. Using a cut-off at 0.1 pg/mL the pre-commercial SARS-CoV-2 nucleocapsid antigen assay had a sensitivity of 96% (95% CI 91.4-98.5%) and specificity of 100% (95% CI 95.1-100%). In comparison the in-house nucleocapsid antigen assay had sensitivity of 95% (95% CI 89.3-98.1%) and a specificity of 100% (95% CI 95.1-100%) using a cut-off at 0.01 pg/mL. The two SARS-CoV-2 nucleocapsid antigen assays correlated with r = 0.91 (P < 0.0001). The in-house and the pre-commercial SARS-CoV-2 nucleocapsid antigen assay demonstrated technical and clinical sensitivity comparable to real-time RT-PCR methods for identifying SARS-CoV-2 infected patients and thus can be used clinically as well as serve as a reference method for antigen Point of Care Testing.


Subject(s)
COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Antigens, Viral/immunology , COVID-19 Serological Testing/methods , Coronavirus Nucleocapsid Proteins/analysis , Denmark , Diagnostic Tests, Routine , Humans , Immunoenzyme Techniques , Nasopharynx/virology , Nucleocapsid/analysis , Nucleocapsid/immunology , Phosphoproteins/analysis , Phosphoproteins/immunology , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Single Molecule Imaging/methods , Virion/chemistry
5.
Virus Res ; 305: 198555, 2021 11.
Article in English | MEDLINE | ID: covidwho-1412516

ABSTRACT

Inactivated viral preparations are important resources in vaccine and antisera industry. Of the many vaccines that are being developed against COVID-19, inactivated whole-virus vaccines are also considered effective. ß-propiolactone (BPL) is a widely used chemical inactivator of several viruses. Here, we analyze various concentrations of BPL to effectively inactivate SARS-CoV-2 and their effects on the biochemical properties of the virion particles. BPL at 1:2000 (v/v) concentrations effectively inactivated SARS-CoV-2. However, higher BPL concentrations resulted in the loss of both protein content as well as the antigenic integrity of the structural proteins. Higher concentrations also caused substantial aggregation of the virion particles possibly resulting in insufficient inactivation, and a loss in antigenic potential. We also identify that the viral RNA content in the culture supernatants can be a direct indicator of their antigenic content. Our findings may have important implications in the vaccine and antisera industry during COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Vaccines/chemistry , Propiolactone/pharmacology , SARS-CoV-2/drug effects , Virion/drug effects , Virus Inactivation/drug effects , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Flocculation/drug effects , Humans , Immune Sera/chemistry , RNA, Viral/chemistry , RNA, Viral/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Vaccines, Inactivated , Vero Cells , Virion/chemistry , Virion/immunology
6.
Biosensors (Basel) ; 11(8)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1354921

ABSTRACT

The global damage that a widespread viral infection can cause is evident from the ongoing COVID-19 pandemic. The importance of virus detection to prevent the spread of viruses has been reaffirmed by the pandemic and the associated social and economic damage. Surface plasmon resonance (SPR) in microscale and localized SPR (LSPR) in nanoscale virus sensing systems are thought to be useful as next-generation detection methods. Many studies have been conducted on ultra-sensitive technologies, especially those based on signal amplification. In some cases, it has been reported that even a low viral load can be measured, indicating that the virus can be detected in patients even in the early stages of the viral infection. These findings corroborate that SPR and LSPR are effective in minimizing false-positives and false-negatives that are prevalent in the existing virus detection techniques. In this review, the methods and signal responses of SPR and LSPR-based virus detection technologies are summarized. Furthermore, this review surveys some of the recent developments reported and discusses the limitations of SPR and LSPR-based virus detection as the next-generation detection technologies.


Subject(s)
Metal Nanoparticles/chemistry , SARS-CoV-2/physiology , Surface Plasmon Resonance/methods , Virion/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Dengue Virus/isolation & purification , Dengue Virus/physiology , Humans , Limit of Detection , Orthomyxoviridae/isolation & purification , Orthomyxoviridae/physiology , Point-of-Care Systems , SARS-CoV-2/isolation & purification , Virion/chemistry
7.
Nature ; 588(7838): 498-502, 2020 12.
Article in English | MEDLINE | ID: covidwho-1343462

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virions are surrounded by a lipid bilayer from which spike (S) protein trimers protrude1. Heavily glycosylated S trimers bind to the angiotensin-converting enzyme 2 receptor and mediate entry of virions into target cells2-6. S exhibits extensive conformational flexibility: it modulates exposure of its receptor-binding site and subsequently undergoes complete structural rearrangement to drive fusion of viral and cellular membranes2,7,8. The structures and conformations of soluble, overexpressed, purified S proteins have been studied in detail using cryo-electron microscopy2,7,9-12, but the structure and distribution of S on the virion surface remain unknown. Here we applied cryo-electron microscopy and tomography to image intact SARS-CoV-2 virions and determine the high-resolution structure, conformational flexibility and distribution of S trimers in situ on the virion surface. These results reveal the conformations of S on the virion, and provide a basis from which to understand interactions between S and neutralizing antibodies during infection or vaccination.


Subject(s)
Cryoelectron Microscopy , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/ultrastructure , Virion/chemistry , Virion/ultrastructure , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cell Line, Tumor , Humans , Models, Molecular , Pliability , Protein Conformation , Protein Multimerization , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/isolation & purification , Virion/isolation & purification , Virion/metabolism
8.
Int J Mol Sci ; 22(13)2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1285390

ABSTRACT

During this global pandemic, cryo-EM has made a great impact on the structure determination of COVID-19 proteins. However, nearly all high-resolution results are based on data acquired on state-of-the-art microscopes where their availability is restricted to a number of centers across the globe with the studies on infectious viruses being further regulated or forbidden. One potential remedy is to employ multipurpose microscopes. Here, we investigated the capability of 200 kV multipurpose microscopes equipped with a direct electron camera in determining the structures of infectious particles. We used 30 nm particles of the grouper nerve necrosis virus as a test sample and obtained the cryo-EM structure with a resolution as high as ∼2.7 Šfrom a setting that used electron counting. For comparison, we tested a high-end cryo-EM (Talos Arctica) using a similar virus (Macrobrachium rosenbergii nodavirus) to obtain virtually the same resolution. Those results revealed that the resolution is ultimately limited by the depth of field. Our work updates the density maps of these viruses at the sub-3Šlevel to allow for building accurate atomic models from de novo to provide structural insights into the assembly of the capsids. Importantly, this study demonstrated that multipurpose TEMs are capable of the high-resolution cryo-EM structure determination of infectious particles and is thus germane to the research on pandemics.


Subject(s)
Cryoelectron Microscopy , Microscopy, Electron, Transmission , SARS-CoV-2/physiology , Virion/chemistry , COVID-19/pathology , COVID-19/virology , Humans , Imaging, Three-Dimensional , Models, Molecular , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification
9.
Nat Commun ; 12(1): 3917, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1281717

ABSTRACT

SARS-CoV-2 carries the largest single-stranded RNA genome and is the causal pathogen of the ongoing COVID-19 pandemic. How the SARS-CoV-2 RNA genome is folded in the virion remains unknown. To fill the knowledge gap and facilitate structure-based drug development, we develop a virion RNA in situ conformation sequencing technology, named vRIC-seq, for probing viral RNA genome structure unbiasedly. Using vRIC-seq data, we reconstruct the tertiary structure of the SARS-CoV-2 genome and reveal a surprisingly "unentangled globule" conformation. We uncover many long-range duplexes and higher-order junctions, both of which are under purifying selections and contribute to the sequential package of the SARS-CoV-2 genome. Unexpectedly, the D614G and the other two accompanying mutations may remodel duplexes into more stable forms. Lastly, the structure-guided design of potent small interfering RNAs can obliterate the SARS-CoV-2 in Vero cells. Overall, our work provides a framework for studying the genome structure, function, and dynamics of emerging deadly RNA viruses.


Subject(s)
COVID-19/pathology , RNA, Viral/chemistry , SARS-CoV-2/genetics , Sequence Analysis, RNA/methods , Virion/genetics , Animals , COVID-19/genetics , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Genome, Viral , Humans , Nucleic Acid Conformation , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Virion/chemistry , Virion/metabolism
10.
Biotechnol Bioeng ; 118(7): 2660-2675, 2021 07.
Article in English | MEDLINE | ID: covidwho-1176262

ABSTRACT

The importance of developing new vaccine technologies towards versatile platforms that can cope with global virus outbreaks has been evidenced with the most recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Virus-like particles (VLPs) are a highly immunogenic, safe, and robust approach that can be used to base several vaccine candidates on. Particularly, HIV-1 Gag VLPs is a flexible system comprising a Gag core surrounded by a lipid bilayer that can be modified to present diverse types of membrane proteins or antigens against several diseases, like influenza, dengue, West Nile virus, or human papillomavirus, where it has been proven successful. The size distribution and structural characteristics of produced VLPs vary depending on the cell line used to produce them. In this study, we established an analytical method of characterization for the Gag protein core and clarified the current variability of Gag stoichiometry in HIV-1 VLPs depending on the cell-based production platform, directly determining the number of Gag molecules per VLP in each case. Three Gag peptides have been validated to quantify the number of monomers using parallel reaction monitoring, an accurate and fast, mass-spectrometry-based method that can be used to assess the quality of the produced Gag VLPs regardless of the cell line used. An average of 3617 ± 17 monomers per VLP was obtained for HEK293, substantially varying between platforms, including mammalian and insect cells. This offers a key advantage in quantification and quality control methods to characterize VLP production at a large scale to accelerate new recombinant vaccine production technologies.


Subject(s)
Vaccines, Virus-Like Particle , Virion , gag Gene Products, Human Immunodeficiency Virus , COVID-19 Vaccines , HEK293 Cells , HIV-1/genetics , Humans , Virion/chemistry , Virion/genetics , gag Gene Products, Human Immunodeficiency Virus/analysis , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics
11.
Viruses ; 13(4)2021 03 26.
Article in English | MEDLINE | ID: covidwho-1154536

ABSTRACT

The risk posed by Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) dictates that live-virus research is conducted in a biosafety level 3 (BSL3) facility. Working with SARS-CoV-2 at lower biosafety levels can expedite research yet requires the virus to be fully inactivated. In this study, we validated and compared two protocols for inactivating SARS-CoV-2: heat treatment and ultraviolet irradiation. The two methods were optimized to render the virus completely incapable of infection while limiting the destructive effects of inactivation. We observed that 15 min of incubation at 65 °C completely inactivates high titer viral stocks. Complete inactivation was also achieved with minimal amounts of UV power (70,000 µJ/cm2), which is 100-fold less power than comparable studies. Once validated, the two methods were then compared for viral RNA quantification, virion purification, and antibody detection assays. We observed that UV irradiation resulted in a 2-log reduction of detectable genomes compared to heat inactivation. Protein yield following virion enrichment was equivalent for all inactivation conditions, but the quality of resulting viral proteins and virions were differentially impacted depending on inactivation method and time. Here, we outline the strengths and weaknesses of each method so that investigators might choose the one which best meets their research goals.


Subject(s)
COVID-19/virology , Disinfection/methods , SARS-CoV-2/radiation effects , Virion/radiation effects , Virus Inactivation/radiation effects , Disinfection/instrumentation , Hot Temperature , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Ultraviolet Rays , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/chemistry , Virion/genetics , Virion/physiology
12.
Adv Colloid Interface Sci ; 290: 102400, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1116130

ABSTRACT

We review concepts involved in describing the chemodynamic features of nanoparticles and apply the framework to gain physicochemical insights into interactions between SARS-CoV-2 virions and airborne particulate matter (PM). Our analysis is highly pertinent given that the World Health Organisation acknowledges that SARS-CoV-2 may be transmitted by respiratory droplets, and the US Center for Disease Control and Prevention recognises that airborne transmission of SARS-CoV-2 can occur. In our theoretical treatment, the virion is assimilated to a core-shell nanoparticle, and contributions of various interaction energies to the virion-PM association (electrostatic, hydrophobic, London-van der Waals, etc.) are generically included. We review the limited available literature on the physicochemical features of the SARS-CoV-2 virion and identify knowledge gaps. Despite the lack of quantitative data, our conceptual framework qualitatively predicts that virion-PM entities are largely able to maintain equilibrium on the timescale of their diffusion towards the host cell surface. Comparison of the relevant mass transport coefficients reveals that virion biointernalization demand by alveolar host cells may be greater than the diffusive supply. Under such conditions both the free and PM-sorbed virions may contribute to the transmitted dose. This result points to the potential for PM to serve as a shuttle for delivery of virions to host cell targets. Thus, our critical review reveals that the chemodynamics of virion-PM interactions may play a crucial role in the transmission of COVID-19, and provides a sound basis for explaining reported correlations between episodes of air pollution and outbreaks of COVID-19.


Subject(s)
COVID-19/transmission , Epithelial Cells/virology , Particulate Matter/chemistry , SARS-CoV-2/chemistry , Virion/chemistry , Aerosols , Biomechanical Phenomena , COVID-19/virology , Diffusion , Humans , Hydrophobic and Hydrophilic Interactions , Models, Chemical , Nanoparticles/chemistry , Pulmonary Alveoli/virology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Static Electricity , Virion/metabolism , Virion/pathogenicity , Virus Internalization , Water/chemistry
13.
IEEE Trans Vis Comput Graph ; 27(2): 722-732, 2021 02.
Article in English | MEDLINE | ID: covidwho-1066570

ABSTRACT

We present a new technique for the rapid modeling and construction of scientifically accurate mesoscale biological models. The resulting 3D models are based on a few 2D microscopy scans and the latest knowledge available about the biological entity, represented as a set of geometric relationships. Our new visual-programming technique is based on statistical and rule-based modeling approaches that are rapid to author, fast to construct, and easy to revise. From a few 2D microscopy scans, we determine the statistical properties of various structural aspects, such as the outer membrane shape, the spatial properties, and the distribution characteristics of the macromolecular elements on the membrane. This information is utilized in the construction of the 3D model. Once all the imaging evidence is incorporated into the model, additional information can be incorporated by interactively defining the rules that spatially characterize the rest of the biological entity, such as mutual interactions among macromolecules, and their distances and orientations relative to other structures. These rules are defined through an intuitive 3D interactive visualization as a visual-programming feedback loop. We demonstrate the applicability of our approach on a use case of the modeling procedure of the SARS-CoV-2 virion ultrastructure. This atomistic model, which we present here, can steer biological research to new promising directions in our efforts to fight the spread of the virus.


Subject(s)
COVID-19/virology , Models, Molecular , Models, Statistical , SARS-CoV-2 , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/ultrastructure , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Virion/chemistry , Virion/ultrastructure
14.
Biochem Biophys Res Commun ; 534: 343-346, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-1064871

ABSTRACT

SARS-CoV-2 is a novel coronavirus which has caused the COVID-19 pandemic. Other known coronaviruses show a strong pattern of seasonality, with the infection cases in humans being more prominent in winter. Although several plausible origins of such seasonal variability have been proposed, its mechanism is unclear. SARS-CoV-2 is transmitted via airborne droplets ejected from the upper respiratory tract of the infected individuals. It has been reported that SARS-CoV-2 can remain infectious for hours on surfaces. As such, the stability of viral particles both in liquid droplets as well as dried on surfaces is essential for infectivity. Here we have used atomic force microscopy to examine the structural stability of individual SARS-CoV-2 virus like particles at different temperatures. We demonstrate that even a mild temperature increase, commensurate with what is common for summer warming, leads to dramatic disruption of viral structural stability, especially when the heat is applied in the dry state. This is consistent with other existing non-mechanistic studies of viral infectivity, provides a single particle perspective on viral seasonality, and strengthens the case for a resurgence of COVID-19 in winter.


Subject(s)
COVID-19/transmission , SARS-CoV-2/chemistry , Temperature , COVID-19/epidemiology , COVID-19/virology , Humans , Microscopy, Atomic Force/methods , Pandemics , SARS-CoV-2/physiology , Seasons , Virion/chemistry
15.
Anal Chem ; 93(5): 2950-2958, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1041144

ABSTRACT

There is an urgent need for ultrarapid testing regimens to detect the severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] infections in real-time within seconds to stop its spread. Current testing approaches for this RNA virus focus primarily on diagnosis by RT-qPCR, which is time-consuming, costly, often inaccurate, and impractical for general population rollout due to the need for laboratory processing. The latency until the test result arrives with the patient has led to further virus spread. Furthermore, latest antigen rapid tests still require 15-30 min processing time and are challenging to handle. Despite increased polymerase chain reaction (PCR)-test and antigen-test efforts, the pandemic continues to evolve worldwide. Herein, we developed a superfast, reagent-free, and nondestructive approach of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy with subsequent chemometric analysis toward the prescreening of virus-infected samples. Contrived saliva samples spiked with inactivated γ-irradiated COVID-19 virus particles at levels down to 1582 copies/mL generated infrared (IR) spectra with a good signal-to-noise ratio. Predominant virus spectral peaks are tentatively associated with nucleic acid bands, including RNA. At low copy numbers, the presence of a virus particle was found to be capable of modifying the IR spectral signature of saliva, again with discriminating wavenumbers primarily associated with RNA. Discrimination was also achievable following ATR-FTIR spectral analysis of swabs immersed in saliva variously spiked with virus. Next, we nested our test system in a clinical setting wherein participants were recruited to provide demographic details, symptoms, parallel RT-qPCR testing, and the acquisition of pharyngeal swabs for ATR-FTIR spectral analysis. Initial categorization of swab samples into negative versus positive COVID-19 infection was based on symptoms and PCR results (n = 111 negatives and 70 positives). Following training and validation (using n = 61 negatives and 20 positives) of a genetic algorithm-linear discriminant analysis (GA-LDA) algorithm, a blind sensitivity of 95% and specificity of 89% was achieved. This prompt approach generates results within 2 min and is applicable in areas with increased people traffic that require sudden test results such as airports, events, or gate controls.


Subject(s)
Algorithms , COVID-19/diagnosis , SARS-CoV-2/physiology , Spectroscopy, Fourier Transform Infrared/methods , Virion/chemistry , COVID-19/virology , Discriminant Analysis , Gamma Rays , Humans , Point-of-Care Testing , Principal Component Analysis , SARS-CoV-2/isolation & purification , Saliva/virology , Sensitivity and Specificity , Signal-To-Noise Ratio , Virion/radiation effects , Virus Inactivation
16.
Nano Lett ; 21(6): 2675-2680, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1039625

ABSTRACT

SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, displays a corona-shaped layer of spikes which play a fundamental role in the infection process. Recent structural data suggest that the spikes possess orientational freedom and the ribonucleoproteins segregate into basketlike structures. How these structural features regulate the dynamic and mechanical behavior of the native virion are yet unknown. By imaging and mechanically manipulating individual, native SARS-CoV-2 virions with atomic force microscopy, here, we show that their surface displays a dynamic brush owing to the flexibility and rapid motion of the spikes. The virions are highly compliant and able to recover from drastic mechanical perturbations. Their global structure is remarkably temperature resistant, but the virion surface becomes progressively denuded of spikes upon thermal exposure. The dynamics and the mechanics of SARS-CoV-2 are likely to affect its stability and interactions.


Subject(s)
COVID-19/virology , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology , Virion/chemistry , Virion/physiology , Biomechanical Phenomena , Hot Temperature , Humans , Microscopy, Atomic Force , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology , Pandemics , Protein Conformation , Protein Stability , SARS-CoV-2/ultrastructure , Single Molecule Imaging , Spike Glycoprotein, Coronavirus/ultrastructure , Thermodynamics , Virion/ultrastructure
17.
Emerg Microbes Infect ; 9(1): 2653-2662, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-977352

ABSTRACT

In the face of COVID-19 pandemic caused by the newly emerged SARS-CoV-2, an inactivated, Vero cell-based, whole virion vaccine candidate has been developed and entered into phase III clinical trials within six months. Biochemical and immunogenic characterization of structural proteins and their post-translational modifications in virions, the end-products of the vaccine candidate, would be essential for the quality control and process development of vaccine products and for studying the immunogenicity and pathogenesis of SARS-CoV-2. By using a panel of rabbit antisera against virions and five structural proteins together with a convalescent serum, the spike (S) glycoprotein was shown to be N-linked glycosylated, PNGase F-sensitive, endoglycosidase H-resistant and cleaved by Furin-like proteases into S1 and S2 subunits. The full-length S and S1/S2 subunits could form homodimers/trimers. The membrane (M) protein was partially N-linked glycosylated; the accessory protein 3a existed in three different forms, indicative of cleavage and dimerization. Furthermore, analysis of the antigenicity of these proteins and their post-translationally modified forms demonstrated that S protein induced the strongest antibody response in both convalescent and immunized animal sera. Interestingly, immunization with the inactivated vaccine did not elicit antibody response against the S2 subunit, whereas strong antibody response against both S1 and S2 subunits was detected in the convalescent serum. Moreover, vaccination stimulated stronger antibody response against S multimers than did the natural infection. This study revealed that the native S glycoprotein stimulated neutralizing antibodies, while bacterially-expressed S fragments did not. The study on S modifications would facilitate design of S-based anti-SARS-CoV-2 vaccines.


Subject(s)
COVID-19 Vaccines , Protein Processing, Post-Translational , SARS-CoV-2/isolation & purification , Viral Structural Proteins , Virion , Animals , Antigens, Viral/analysis , Antigens, Viral/metabolism , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Cattle , Chlorocebus aethiops , Humans , Rabbits , SARS-CoV-2/immunology , Vaccines, Inactivated/chemistry , Vaccines, Inactivated/immunology , Vero Cells , Viral Structural Proteins/chemistry , Viral Structural Proteins/immunology , Viral Structural Proteins/isolation & purification , Virion/chemistry , Virion/immunology , Virion/isolation & purification
18.
Biophys J ; 120(6): 1097-1104, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-947143

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. Computer simulations of complete viral particles can provide theoretical insights into large-scale viral processes including assembly, budding, egress, entry, and fusion. Detailed atomistic simulations are constrained to shorter timescales and require billion-atom simulations for these processes. Here, we report the current status and ongoing development of a largely "bottom-up" coarse-grained (CG) model of the SARS-CoV-2 virion. Data from a combination of cryo-electron microscopy (cryo-EM), x-ray crystallography, and computational predictions were used to build molecular models of structural SARS-CoV-2 proteins, which were then assembled into a complete virion model. We describe how CG molecular interactions can be derived from all-atom simulations, how viral behavior difficult to capture in atomistic simulations can be incorporated into the CG models, and how the CG models can be iteratively improved as new data become publicly available. Our initial CG model and the detailed methods presented are intended to serve as a resource for researchers working on COVID-19 who are interested in performing multiscale simulations of the SARS-CoV-2 virion.


Subject(s)
Molecular Dynamics Simulation , SARS-CoV-2/chemistry , Virion/chemistry , COVID-19 , Principal Component Analysis , Viral Proteins/chemistry
19.
Nat Commun ; 11(1): 5885, 2020 11 18.
Article in English | MEDLINE | ID: covidwho-933684

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID19 pandemic, is a highly pathogenic ß-coronavirus. As other coronaviruses, SARS-CoV-2 is enveloped, replicates in the cytoplasm and assembles at intracellular membranes. Here, we structurally characterize the viral replication compartment and report critical insights into the budding mechanism of the virus, and the structure of extracellular virions close to their native state by in situ cryo-electron tomography and subtomogram averaging. We directly visualize RNA filaments inside the double membrane vesicles, compartments associated with viral replication. The RNA filaments show a diameter consistent with double-stranded RNA and frequent branching likely representing RNA secondary structures. We report that assembled S trimers in lumenal cisternae do not alone induce membrane bending but laterally reorganize on the envelope during virion assembly. The viral ribonucleoprotein complexes (vRNPs) are accumulated at the curved membrane characteristic for budding sites suggesting that vRNP recruitment is enhanced by membrane curvature. Subtomogram averaging shows that vRNPs are distinct cylindrical assemblies. We propose that the genome is packaged around multiple separate vRNP complexes, thereby allowing incorporation of the unusually large coronavirus genome into the virion while maintaining high steric flexibility between the vRNPs.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/physiology , Virus Replication , A549 Cells , Animals , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/virology , Cryoelectron Microscopy , Cytoplasmic Vesicles/virology , Electron Microscope Tomography , Endoplasmic Reticulum/virology , Humans , Pandemics , Pneumonia, Viral/virology , RNA, Viral/chemistry , RNA, Viral/metabolism , SARS-CoV-2 , Vero Cells , Virion/chemistry , Virion/metabolism , Virus Assembly
20.
Nature ; 592(7852): 116-121, 2021 04.
Article in English | MEDLINE | ID: covidwho-892040

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein substitution D614G became dominant during the coronavirus disease 2019 (COVID-19) pandemic1,2. However, the effect of this variant on viral spread and vaccine efficacy remains to be defined. Here we engineered the spike D614G substitution in the USA-WA1/2020 SARS-CoV-2 strain, and found that it enhances viral replication in human lung epithelial cells and primary human airway tissues by increasing the infectivity and stability of virions. Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission. Sera from hamsters infected with D614 virus exhibit modestly higher neutralization titres against G614 virus than against D614 virus, suggesting that the mutation is unlikely to reduce the ability of vaccines in clinical trials to protect against COVID-19, and that therapeutic antibodies should be tested against the circulating G614 virus. Together with clinical findings, our work underscores the importance of this variant in viral spread and its implications for vaccine efficacy and antibody therapy.


Subject(s)
COVID-19/transmission , COVID-19/virology , Genetic Fitness , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , COVID-19/immunology , COVID-19 Vaccines/immunology , Cricetinae , Disease Models, Animal , Humans , Lung/virology , Male , Mesocricetus/virology , Models, Biological , Nasal Mucosa/virology , Neutralization Tests , Protein Stability , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Tissue Culture Techniques , Trachea/virology , Viral Load , Virion/chemistry , Virion/pathogenicity , Virion/physiology , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL