ABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a ß-coronavirus, is the causative agent of the COVID-19 pandemic. Like for other coronaviruses, its particles are composed of four structural proteins: spike (S), envelope (E), membrane (M), and nucleoprotein (N) proteins. The involvement of each of these proteins and their interactions are critical for assembly and production of ß-coronavirus particles. Here, we sought to characterize the interplay of SARS-CoV-2 structural proteins during the viral assembly process. By combining biochemical and imaging assays in infected versus transfected cells, we show that E and M regulate intracellular trafficking of S as well as its intracellular processing. Indeed, the imaging data reveal that S is relocalized at endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) or Golgi compartments upon coexpression of E or M, as observed in SARS-CoV-2-infected cells, which prevents syncytia formation. We show that a C-terminal retrieval motif in the cytoplasmic tail of S is required for its M-mediated retention in the ERGIC, whereas E induces S retention by modulating the cell secretory pathway. We also highlight that E and M induce a specific maturation of N-glycosylation of S, independently of the regulation of its localization, with a profile that is observed both in infected cells and in purified viral particles. Finally, we show that E, M, and N are required for optimal production of virus-like-particles. Altogether, these results highlight how E and M proteins may influence the properties of S proteins and promote the assembly of SARS-CoV-2 viral particles.
Subject(s)
Coronavirus Envelope Proteins/genetics , Nucleocapsid Proteins/genetics , SARS-CoV-2/growth & development , Spike Glycoprotein, Coronavirus/genetics , Viral Matrix Proteins/genetics , Virion/growth & development , Virus Assembly/physiology , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Envelope Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum/virology , Gene Expression , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Golgi Apparatus/virology , HEK293 Cells , Hepatocytes/metabolism , Hepatocytes/ultrastructure , Hepatocytes/virology , Host-Pathogen Interactions/genetics , Humans , Nucleocapsid Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Matrix Proteins/metabolism , Virion/genetics , Virion/metabolism , Virus Internalization , Virus Release/physiologyABSTRACT
In this study, we showed that a codon optimized version of the spike (S) protein of SARS-CoV-2 can migrate to the cell membrane. However, efficient production of Moloney murine leukemia (MLV) infectious viral particles was only achieved with stable expression of a shorter S version in C-terminal (ΔS) in MLV Gag-pol expressing cells. As compared to transient transfections, this platform generated viruses with a 1000-fold higher titer. ΔS was 15-times more efficiently incorporated into VLPs as compared to S, and that was not due to steric interference between the cytoplasmic tail and the MLV capsid, as similar differences were also observed with extracellular vesicles. The amount of ΔS incorporated into VLPs released from producer cells was high and estimated at 1.25 µg/mL S2 equivalent (S is comprised of S1 and S2). The resulting VLPs could potentially be used alone or as a boost of other immunization strategies for COVID-19.
Subject(s)
COVID-19 Vaccines/immunology , Spike Glycoprotein, Coronavirus/biosynthesis , Virion/genetics , Cell Line , Humans , Moloney murine leukemia virus/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Virion/immunologyABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. The 3' untranslated region (UTR) of this ß-CoV contains essential cis-acting RNA elements for the viral genome transcription and replication. These elements include an equilibrium between an extended bulged stem-loop (BSL) and a pseudoknot. The existence of such an equilibrium is supported by reverse genetic studies and phylogenetic covariation analysis and is further proposed as a molecular switch essential for the control of the viral RNA polymerase binding. Here, we report the SARS-CoV-2 3' UTR structures in cells that transcribe the viral UTRs harbored in a minigene plasmid and isolated infectious virions using a chemical probing technique, namely dimethyl sulfate (DMS)-mutational profiling with sequencing (MaPseq). Interestingly, the putative pseudoknotted conformation was not observed, indicating that its abundance in our systems is low in the absence of the viral nonstructural proteins (nsps). Similarly, our results also suggest that another functional cis-acting element, the three-helix junction, cannot stably form. The overall architectures of the viral 3' UTRs in the infectious virions and the minigene-transfected cells are almost identical.
Subject(s)
3' Untranslated Regions/genetics , COVID-19/virology , Nucleic Acid Conformation , Pandemics , RNA, Viral/genetics , SARS-CoV-2/genetics , Animals , Base Sequence , Cell Line , Conserved Sequence , Cricetinae , High-Throughput Nucleotide Sequencing , Humans , Mesocricetus , Models, Molecular , Plasmids , Point Mutation , Reverse Genetics/methods , SARS-CoV-2/physiology , Sequence Alignment , Sequence Homology, Nucleic Acid , Sulfuric Acid Esters , Transcription, Genetic , Virion/genetics , Virion/physiologyABSTRACT
The outbreak of novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. To meet the urgent and massive demand for the screening and diagnosis of infected individuals, many in vitro diagnostic assays using nucleic acid tests (NATs) have been urgently authorized by regulators worldwide. A reference standard with a well-characterized concentration or titer is of the utmost importance for the study of limit of detection (LoD), which is a crucial feature for a diagnostic assay. Although several reference standards of plasmids or synthetic RNA have already been announced, a reference standard for inactivated virus particles with an accurate concentration is still needed to evaluate the complete procedure. Here, we performed a collaborative study to estimate the NAT-detectable units as a viral genomic equivalent quantity (GEQ) of an inactivated whole-virus SARS-CoV-2 reference standard candidate using digital PCR (dPCR) on multiple commercialized platforms. The median of the quantification results (4.6 × 105 ± 6.5 × 104 GEQ/mL) was treated as the consensus true value of GEQ of virus particles in the reference standard. This reference standard was then used to challenge the LoDs of six officially approved diagnostic assays. Our study demonstrates that an inactivated whole virus quantified by dPCR can serve as a reference standard and provides a unified solution for assay development, quality control, and regulatory surveillance.
Subject(s)
COVID-19/diagnosis , Polymerase Chain Reaction/methods , RNA, Viral/analysis , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/standards , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/standards , Humans , Limit of Detection , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/standards , Polymerase Chain Reaction/standards , Polyproteins/genetics , Polyproteins/metabolism , Polyproteins/standards , Quality Control , RNA, Viral/metabolism , RNA, Viral/standards , Reagent Kits, Diagnostic , Reference Standards , SARS-CoV-2/isolation & purification , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/standards , Virion/genetics , Virion/isolation & purificationABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in December 2019 in Wuhan, China, and expeditiously spread across the globe causing a global pandemic. Research on SARS-CoV-2, as well as the closely related SARS-CoV-1 and MERS coronaviruses, is restricted to BSL-3 facilities. Such BSL-3 classification makes SARS-CoV-2 research inaccessible to the majority of functioning research laboratories in the United States; this becomes problematic when the collective scientific effort needs to be focused on such in the face of a pandemic. However, a minimal system capable of recapitulating different steps of the viral life cycle without using the virus' genetic material could increase accessibility. In this work, we assessed the four structural proteins from SARS-CoV-2 for their ability to form virus-like particles (VLPs) from human cells to form a competent system for BSL-2 studies of SARS-CoV-2. Herein, we provide methods and resources of producing, purifying, fluorescently and APEX2-labeling of SARS-CoV-2 VLPs for the evaluation of mechanisms of viral budding and entry as well as assessment of drug inhibitors under BSL-2 conditions. These systems should be useful to those looking to circumvent BSL-3 work with SARS-CoV-2 yet study the mechanisms by which SARS-CoV-2 enters and exits human cells.
Subject(s)
Coronavirus Envelope Proteins/genetics , Nucleocapsid Proteins/genetics , SARS-CoV-2/growth & development , Spike Glycoprotein, Coronavirus/genetics , Viral Matrix Proteins/genetics , Virion/growth & development , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Containment of Biohazards/classification , Coronavirus Envelope Proteins/metabolism , Gene Expression , Genes, Reporter , Government Regulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Electron , Nucleocapsid Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/metabolism , Viral Matrix Proteins/metabolism , Virion/genetics , Virion/metabolism , Virion/ultrastructure , Virus Assembly/physiology , Virus Internalization , Virus Release/physiologyABSTRACT
Human coronaviruses OC43 and HKU1 are respiratory pathogens of zoonotic origin that have gained worldwide distribution. OC43 apparently emerged from a bovine coronavirus (BCoV) spillover. All three viruses attach to 9-O-acetylated sialoglycans via spike protein S with hemagglutinin-esterase (HE) acting as a receptor-destroying enzyme. In BCoV, an HE lectin domain promotes esterase activity toward clustered substrates. OC43 and HKU1, however, lost HE lectin function as an adaptation to humans. Replaying OC43 evolution, we knocked out BCoV HE lectin function and performed forced evolution-population dynamics analysis. Loss of HE receptor binding selected for second-site mutations in S, decreasing S binding affinity by orders of magnitude. Irreversible HE mutations led to cooperativity in virus swarms with low-affinity S minority variants sustaining propagation of high-affinity majority phenotypes. Salvageable HE mutations induced successive second-site substitutions in both S and HE. Apparently, S and HE are functionally interdependent and coevolve to optimize the balance between attachment and release. This mechanism of glycan-based receptor usage, entailing a concerted, fine-tuned activity of two envelope protein species, is unique among CoVs, but reminiscent of that of influenza A viruses. Apparently, general principles fundamental to virion-sialoglycan interactions prompted convergent evolution of two important groups of human and animal pathogens.
Subject(s)
Coronavirus/physiology , Hemagglutinins, Viral/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Fusion Proteins/genetics , Virion/metabolism , Animals , Biological Evolution , Cell Line , Coronavirus/genetics , Coronavirus/metabolism , Coronavirus Infections/virology , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/metabolism , Coronavirus OC43, Human/physiology , Coronavirus, Bovine/genetics , Coronavirus, Bovine/metabolism , Coronavirus, Bovine/physiology , Hemagglutinins, Viral/chemistry , Hemagglutinins, Viral/metabolism , Humans , Lectins/genetics , Lectins/metabolism , Mice , Mutation , Protein Binding , Protein Domains , Receptors, Virus/metabolism , Selection, Genetic , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Virion/genetics , Virus Attachment , Virus ReleaseABSTRACT
WHO has declared the outbreak of COVID-19 as a public health emergency of international concern. The ever-growing new cases have called for an urgent emergency for specific anti-COVID-19 drugs. Three structural proteins (Membrane, Envelope and Nucleocapsid protein) play an essential role in the assembly and formation of the infectious virion particles. Thus, the present study was designed to identify potential drug candidates from the unique collection of 548 anti-viral compounds (natural and synthetic anti-viral), which target SARS-CoV-2 structural proteins. High-end molecular docking analysis was performed to characterize the binding affinity of the selected drugs-the ligand, with the SARS-CoV-2 structural proteins, while high-level Simulation studies analyzed the stability of drug-protein interactions. The present study identified rutin, a bioflavonoid and the antibiotic, doxycycline, as the most potent inhibitor of SARS-CoV-2 envelope protein. Caffeic acid and ferulic acid were found to inhibit SARS-CoV-2 membrane protein while the anti-viral agent's simeprevir and grazoprevir showed a high binding affinity for nucleocapsid protein. All these compounds not only showed excellent pharmacokinetic properties, absorption, metabolism, minimal toxicity and bioavailability but were also remain stabilized at the active site of proteins during the MD simulation. Thus, the identified lead compounds may act as potential molecules for the development of effective drugs against SARS-CoV-2 by inhibiting the envelope formation, virion assembly and viral pathogenesis.