Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Influenza Other Respir Viruses ; 16(4): 780-788, 2022 07.
Article in English | MEDLINE | ID: covidwho-2052612

ABSTRACT

BACKGROUND: Influenza causes significant morbidity and mortality in the United States. Among patients infected with influenza, the presence of bacterial co-infection is associated with worse clinical outcomes; less is known regarding the clinical importance of viral co-infections. The objective of this study was to determine rates of viral co-infections in emergency department (ED) patients with confirmed influenza and association of co-infection with disease severity. METHODS: Secondary analysis of a biorepository and clinical database from a parent study where rapid influenza testing was implemented in four U.S. academic EDs, during the 2014-2015 influenza season. Patients were systematically tested for influenza virus using a validated clinical decision guideline. Demographic and clinical data were extracted from medical records; nasopharyngeal specimens from influenza-positive patients were tested for viral co-infections (ePlex, Genmark Diagnostics). Patterns of viral co-infections were evaluated using chi-square analysis. The association of viral co-infection with hospital admission was assessed using univariate and multivariate regression. RESULTS: The overall influenza A/B positivity rate was 18.1% (1071/5919). Of the 999 samples with ePlex results, the prevalence of viral co-infections was 7.9% (79/999). The most common viral co-infection was rhinovirus/enterovirus (RhV/EV), at 3.9% (39/999). The odds of hospital admission (OR 2.33, 95% CI: 1.01-5.34) increased significantly for those with viral co-infections (other than RhV/EV) versus those with influenza A infection only. CONCLUSION: Presence of viral co-infection (other than RhV/EV) in ED influenza A/B positive patients was independently associated with increased risk of hospital admission. Further research is needed to determine clinical utility of ED multiplex testing.


Subject(s)
Coinfection , Influenza, Human , Orthomyxoviridae , Respiratory Tract Infections , Virus Diseases , Viruses , Coinfection/epidemiology , Hospitalization , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Respiratory Tract Infections/epidemiology , Virus Diseases/complications , Virus Diseases/epidemiology
2.
Int J Mol Sci ; 23(17)2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2023752

ABSTRACT

Viral respiratory tract infections are associated with asthma development and exacerbation in children and adults. In the course of immune responses to viruses, airway epithelial cells are the initial platform of innate immunity against viral invasion. Patients with severe asthma are more vulnerable than those with mild to moderate asthma to viral infections. Furthermore, in most cases, asthmatic patients tend to produce lower levels of antiviral cytokines than healthy subjects, such as interferons produced from immune effector cells and airway epithelial cells. The epithelial inflammasome appears to contribute to asthma exacerbation through overactivation, leading to self-damage, despite its naturally protective role against infectious pathogens. Given the mixed and complex immune responses in viral-infection-induced asthma exacerbation, this review examines the diverse roles of airway epithelial immunity and related potential therapeutic targets and discusses the mechanisms underlying the heterogeneous manifestations of asthma exacerbations.


Subject(s)
Asthma , Virus Diseases , Child , Cytokines , Humans , Immunity, Innate , Interferons , Virus Diseases/complications
3.
J Paediatr Child Health ; 58(10): 1741-1746, 2022 10.
Article in English | MEDLINE | ID: covidwho-2019512

ABSTRACT

Globally, respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in young children, and the association between severe RSV disease and later recurrent wheeze and asthma is well established. Whilst a causal link between RSV and wheeze/asthma is not yet proven, immunological evidence suggests skewing towards a Th2-type response, and dampening of IFN-γ antiviral immunity during RSV infection underpins airway hyper-reactivity in a subset of susceptible children after RSV infection. Age at primary RSV infection, viral co-infection and genetic influences may act as effect-modifiers. Despite the significant morbidity and mortality burden of RSV disease in children, there is currently no licensed vaccine. Recent advancements in RSV preventatives, including long-acting monoclonal antibodies and maternal vaccinations, show significant promise and we are on the cusp of a new era in RSV prevention. However, the potential impact of RSV preventatives on subsequent wheeze and asthma remains unclear. The ongoing COVID-19 pandemic and associated public health measures have disrupted the usual seasonality of RSV. Whilst this has posed challenges for health-care services it has also enhanced our understanding of RSV transmission. The near absence of RSV cases during the first year of the pandemic in the context of strict public health measures has provided a rare opportunity to study the impact of delayed age of primary RSV infection on asthma prevalence. In this review, we summarise current understanding of the association between RSV, recurrent wheeze and asthma with a focus on pathophysiology, preventative strategies and future research priorities.


Subject(s)
Asthma , COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Virus Diseases , Antibodies, Monoclonal , Antiviral Agents/therapeutic use , Asthma/epidemiology , Asthma/etiology , Asthma/prevention & control , Child , Child, Preschool , Humans , Infant , Pandemics , Respiratory Sounds/etiology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Virus Diseases/complications
4.
Obstet Gynecol ; 140(3): 514-517, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1985133

ABSTRACT

BACKGROUND: Nonsexually acquired genital ulcers have been described among girls who are prepubertal after various viral illnesses due to mucosal inflammation from an immunologic response. Until recently, nonsexually acquired genital ulcers have only been associated with viral infections. CASE: We present a case of an adolescent girl developing nonsexually acquired genital ulcers after both her first and second coronavirus disease 2019 (COVID-19) vaccine doses. Her course followed an expected timeline for severity and resolution of ulcers. CONCLUSIONS: Aphthous ulcers may arise from inflammatory effects of COVID-19 vaccination. Clinical monitoring after COVID-19 vaccination from all formulations should include assessment for nonsexually acquired genital ulcers if vaginal pain is reported.


Subject(s)
COVID-19 Vaccines , COVID-19 , Stomatitis, Aphthous , Virus Diseases , Vulvar Diseases , Adolescent , Female , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Stomatitis, Aphthous/complications , Ulcer/diagnosis , Ulcer/etiology , Vaccination , Virus Diseases/complications , Vulvar Diseases/complications
5.
Int Rev Neurobiol ; 165: 1-16, 2022.
Article in English | MEDLINE | ID: covidwho-1982432

ABSTRACT

There are several known causes of secondary parkinsonism, the most common being head trauma, stroke, medications, or infections. A growing body of evidence suggests that viral agents may trigger parkinsonian symptoms, but the exact pathological mechanisms are still unknown. In some cases, lesions or inflammatory processes in the basal ganglia or substantia nigra have been found to cause reversible or permanent impairment of the dopaminergic pathway, leading to the occurrence of extrapyramidal symptoms. This chapter reviews current data regarding the viral agents commonly associated with parkinsonism, such as Epstein Barr virus (EBV), hepatitis viruses, human immunodeficiency virus (HIV), herpes viruses, influenza virus, coxsackie virus, and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). We present possible risk factors, proposed pathophysiology mechanisms, published case reports, common associations, and prognosis in order to offer a concise overview of the viral spectrum involved in parkinsonism.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Parkinsonian Disorders , Virus Diseases , COVID-19/complications , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/diagnosis , Herpesvirus 4, Human , Humans , SARS-CoV-2 , Virus Diseases/complications
6.
Turk J Pediatr ; 64(3): 549-557, 2022.
Article in English | MEDLINE | ID: covidwho-1975713

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is a degenerative disease distinguished by progressive epithelial secretory gland dysfunction associated with recurrent respiratory tract infections. Despite that bacteria have previously been studied as the main cause of CF airway damage, a strong effect of respiratory viral infections is also now recognized. We aimed to detect the relationship between viral infection and exacerbation in children with cystic fibrosis. METHODS: This is a cross sectional observational study recruiting 60 patients diagnosed as CF following in Cystic Fibrosis Clinic, Children`s Hospital, Cairo University, throughout a period of 7 months. Their age ranged from 6 months to 13 years. Patients had nasal swabs and sputum samples obtained when they developed respiratory exacerbations. Multiplex PCR (polymerase chain reaction) technique was used to detect respiratory viruses from nasal swabs. RESULTS: We detected viruses in 48 patients during exacerbation (80%), the most common virus was rhinovirus in 43.4% of patients, followed by bocavirus in 20%, adenovirus in 13.3%, enterovirus in 10% and human metapneumovirus in 6.7%. Co-infection with double viruses was detected in 10 patients. Bacterial infection was present in 56.7% of patients; the most common organism was Pseudomonas in 20% of patients, followed by Staphylococcus aureus, methicillin resistant Staphylococcus aureus, Klebsiella and Haemophilus influenzae. CRP was positive in 53.3% of patients. There was a significant relationship between sputum positive bacterial culture and each of influenza A virus, enterovirus and human metapneumovirus. CONCLUSIONS: This study demonstrated that exacerbation in cystic fibrosis may be exaggerated by viral infections such as influenza A and enterovirus necessitating hospitalization which shows the important protective role of vaccination. Also, a strong relationship was detected between some viruses such as enterovirus, human metapneumovirus and influenza and between bacterial infection.


Subject(s)
Bacterial Infections , Cystic Fibrosis , Influenza, Human , Methicillin-Resistant Staphylococcus aureus , Respiratory Tract Infections , Virus Diseases , Viruses , Bacteria , Bacterial Infections/complications , Bacterial Infections/epidemiology , Child , Cross-Sectional Studies , Cystic Fibrosis/complications , Humans , Infant , Influenza, Human/complications , Influenza, Human/diagnosis , Prospective Studies , Respiratory Tract Infections/complications , Respiratory Tract Infections/epidemiology , Virus Diseases/complications , Virus Diseases/epidemiology
7.
Sci Immunol ; 7(73): eabm7996, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1949936

ABSTRACT

The acute effects of various respiratory viral infections have been well studied, with extensive characterization of the clinical presentation as well as viral pathogenesis and host responses. However, over the course of the recent COVID-19 pandemic, the incidence and prevalence of chronic sequelae after acute viral infections have become increasingly appreciated as a serious health concern. Post-acute sequelae of COVID-19, alternatively described as "long COVID-19," are characterized by symptoms that persist for longer than 28 days after recovery from acute illness. Although there exists substantial heterogeneity in the nature of the observed sequelae, this phenomenon has also been observed in the context of other respiratory viral infections including influenza virus, respiratory syncytial virus, rhinovirus, severe acute respiratory syndrome coronavirus, and Middle Eastern respiratory syndrome coronavirus. In this Review, we discuss the various sequelae observed following important human respiratory viral pathogens and our current understanding of the immunological mechanisms underlying the failure of restoration of homeostasis in the lung.


Subject(s)
COVID-19 , Respiratory Tract Infections , Virus Diseases , COVID-19/complications , COVID-19/immunology , Coronavirus , Humans , Pandemics , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Virus Diseases/complications , Virus Diseases/immunology
8.
BMJ Open ; 12(6): e057957, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1902001

ABSTRACT

OBJECTIVE: To identify aetiologies of childhood community-acquired pneumonia (CAP) based on a comprehensive diagnostic approach. DESIGN: 'Partnerships for Enhanced Engagement in Research-Pneumonia in Paediatrics (PEER-PePPeS)' study was an observational prospective cohort study conducted from July 2017 to September 2019. SETTING: Government referral teaching hospitals and satellite sites in three cities in Indonesia: Semarang, Yogyakarta and Tangerang. PARTICIPANTS: Hospitalised children aged 2-59 months who met the criteria for pneumonia were eligible. Children were excluded if they had been hospitalised for >24 hours; had malignancy or history of malignancy; a history of long-term (>2 months) steroid therapy, or conditions that might interfere with compliance with study procedures. MAIN OUTCOMES MEASURES: Causative bacterial, viral or mixed pathogen(s) for pneumonia were determined using microbiological, molecular and serological tests from routinely collected specimens (blood, sputum and nasopharyngeal swabs). We applied a previously published algorithm (PEER-PePPeS rules) to determine the causative pathogen(s). RESULTS: 188 subjects were enrolled. Based on our algorithm, 48 (25.5%) had a bacterial infection, 31 (16.5%) had a viral infection, 76 (40.4%) had mixed bacterial and viral infections, and 33 (17.6%) were unable to be classified. The five most common causative pathogens identified were Haemophilus influenzae non-type B (N=73, 38.8%), respiratory syncytial virus (RSV) (N=51, 27.1%), Klebsiella pneumoniae (N=43, 22.9%), Streptococcus pneumoniae (N=29, 15.4%) and Influenza virus (N=25, 13.3%). RSV and influenza virus diagnoses were highly associated with Indonesia's rainy season (November-March). The PCR assays on induced sputum (IS) specimens captured most of the pathogens identified in this study. CONCLUSIONS: Our study found that H. influenzae non-type B and RSV were the most frequently identified pathogens causing hospitalised CAP among Indonesian children aged 2-59 months old. Our study also highlights the importance of PCR for diagnosis and by extension, appropriate use of antimicrobials. TRAIL REGISTRATION NUMBER: NCT03366454.


Subject(s)
Community-Acquired Infections , Haemophilus influenzae type b , Pneumonia , Respiratory Syncytial Virus, Human , Virus Diseases , Child , Child, Hospitalized , Child, Preschool , Community-Acquired Infections/microbiology , Humans , Indonesia/epidemiology , Infant , Pneumonia/etiology , Prospective Studies , Virus Diseases/complications
9.
Neuropharmacology ; 209: 109023, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1821424

ABSTRACT

Acute neurological alterations have been associated with SARS-CoV-2 infection. Additionally, it is becoming clear that coronavirus disease 2019 (COVID-19) survivors may experience long-term neurological abnormalities, including cognitive deficits and mood alterations. The mechanisms underlying acute and long-term impacts of COVID-19 in the brain are being actively investigated. Due to the heterogeneous manifestations of neurological outcomes, it is possible that different mechanisms operate following SARS-CoV-2 infection, which may include direct brain infection by SARS-CoV-2, mechanisms resulting from hyperinflammatory systemic disease, or a combination of both. Inflammation is a core feature of COVID-19, and both central and systemic inflammation are known to lead to acute and persistent neurological alterations in other diseases. Here, we review evidence indicating that COVID-19 is associated with neuroinflammation, along with blood-brain barrier dysfunction. Similar neuroinflammatory signatures have been associated with Alzheimer's disease and major depressive disorder. Current evidence demonstrates that patients with pre-existing cognitive and neuropsychiatric deficits show worse outcomes upon infection by SARS-CoV-2 and, conversely, COVID-19 survivors may be at increased risk of developing dementia and mood disorders. Considering the high prevalence of COVID-19 patients that recovered from infection in the world and the alarming projections for the prevalence of dementia and depression, investigation of possible molecular similarities between those diseases may shed light on mechanisms leading to long-term neurological abnormalities in COVID-19 survivors.


Subject(s)
COVID-19/complications , Cognitive Dysfunction/etiology , Depression/etiology , Neuroinflammatory Diseases/physiopathology , Affect/physiology , Blood-Brain Barrier/metabolism , COVID-19/physiopathology , Cognitive Dysfunction/physiopathology , Depression/physiopathology , Humans , Inflammation/physiopathology , SARS-CoV-2 , Virus Diseases/complications
11.
Front Immunol ; 13: 816619, 2022.
Article in English | MEDLINE | ID: covidwho-1809388

ABSTRACT

Infections during pregnancy can seriously damage fetal neurodevelopment by aberrantly activating the maternal immune system, directly impacting fetal neural cells. Increasing evidence suggests that these adverse impacts involve alterations in neural stem cell biology with long-term consequences for offspring, including neurodevelopmental disorders such as autism spectrum disorder, schizophrenia, and cognitive impairment. Here we review how maternal infection with viruses such as Influenza A, Cytomegalovirus, and Zika during pregnancy can affect the brain development of offspring by promoting the release of maternal pro-inflammatory cytokines, triggering neuroinflammation of the fetal brain, and/or directly infecting fetal neural cells. In addition, we review insights into how these infections impact human brain development from studies with animal models and brain organoids. Finally, we discuss how maternal infection with SARS-CoV-2 may have consequences for neurodevelopment of the offspring.


Subject(s)
Autism Spectrum Disorder , COVID-19 , Virus Diseases , Zika Virus Infection , Zika Virus , Animals , Autism Spectrum Disorder/etiology , Brain , Cytokines , Female , Pregnancy , SARS-CoV-2 , Virus Diseases/complications
12.
Br J Gen Pract ; 72(716): e217-e224, 2022 03.
Article in English | MEDLINE | ID: covidwho-1608429

ABSTRACT

BACKGROUND: There is little evidence about the relationship between aetiology, illness severity, and clinical course of respiratory tract infections (RTIs) in primary care. Understanding these associations would aid in the development of effective management strategies for these infections. AIM: To investigate whether clinical presentation and illness course differ between RTIs where a viral pathogen was detected and those where a potential bacterial pathogen was found. DESIGN AND SETTING: Post hoc analysis of data from a pragmatic randomised trial on the effects of oseltamivir in patients with flu-like illness in primary care (n = 3266) in 15 European countries. METHOD: Patient characteristics and their signs and symptoms of disease were registered at baseline. Nasopharyngeal (adults) or nasal and pharyngeal (children) swabs were taken for polymerase chain reaction analysis. Patients were followed up until 28 days after inclusion. Regression models and Kaplan-Meier curves were used to analyse the relationship between aetiology, clinical presentation at baseline, and course of disease including complications. RESULTS: Except for a less prominent congested nose (odds ratio [OR] 0.55, 95% confidence interval [CI] = 0.35 to 0.86) and acute cough (OR 0.42, 95% CI = 0.27 to 0.65) in patients with flu-like illness in whom a possible bacterial pathogen was isolated, there were no clear clinical differences in presentations between those with a possible bacterial aetiology compared with those with a viral aetiology. Also, course of disease and complications were not related to aetiology. CONCLUSION: Given current available microbiological tests and antimicrobial treatments, and outside pandemics such as COVID-19, microbiological testing in primary care patients with flu-like illness seems to have limited value. A wait-and-see policy in most of these patients with flu-like illness seems the best option.


Subject(s)
COVID-19 , Respiratory Tract Infections , Virus Diseases , Adult , Child , Humans , Pandemics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , SARS-CoV-2 , Virus Diseases/complications , Virus Diseases/diagnosis , Virus Diseases/epidemiology
13.
Congenit Anom (Kyoto) ; 62(2): 54-67, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1594077

ABSTRACT

Intrauterine viruses can infect the decidua and placenta and cause adverse effects on the fetus during gestation. This review discusses the contribution of various viral infections to miscarriage and the molecular mechanisms by which viruses can cause devastating effects on healthy fetuses and induce miscarriage. Severe acute respiratory syndrome coronavirus 2 as newly emerged coronavirus was considered here, due to the concerns about its role during pregnancy and inducing miscarriage, as well. In this narrative review, an extensive literature search was conducted to find all studies investigating viral infections in miscarriage and their molecular mechanisms published over the past 20 years. The results of various studies investigating the roles of 20 viral infections in miscarriage are presented. Then, the mechanisms of pregnancy loss in viral infections were addressed, including alteration of trophoblast invasion and placental dysfunction, inducing excessive maternal immune response, and inducing apoptosis in the placental tissue. Viruses may cause pregnancy loss through different mechanisms and our knowledge about these mechanisms can be helpful for controlling or preventing viral infections and achieving a successful pregnancy.


Subject(s)
Abortion, Spontaneous , COVID-19 , Pregnancy Complications, Infectious , Virus Diseases , Female , Humans , Infectious Disease Transmission, Vertical , Placenta , Pregnancy , SARS-CoV-2 , Virus Diseases/complications
14.
J Pediatr ; 242: 18-24, 2022 03.
Article in English | MEDLINE | ID: covidwho-1587166

ABSTRACT

OBJECTIVE: To identify the etiologies of viral myocarditis in children in the pre-coronavirus disease 2019 era. STUDY DESIGN: This was a retrospective review of all patients (age <18 years) diagnosed with myocarditis and hospitalized at Rady Children's Hospital San Diego between 2000 and 2018. RESULTS: Twenty-nine patients met inclusion criteria. Of 28 (97%) patients who underwent testing for viruses, polymerase chain reaction was used in 24 of 28 (86% of cases), and 16 of 24 (67%) detected a virus. Pathogens were rhinovirus (6), influenza A/B (4), respiratory syncytial virus (RSV) (3), coronavirus (3), parvovirus B19 (2), adenovirus (2), and coxsackie B5 virus, enterovirus, and parainfluenza virus type 2 in one case each. Six (21%) patients had no pathogen detected but imaging and other laboratory test results were compatible with myocarditis. Age 0-2 years was associated with RSV, influenza A/B, coronavirus, and enteroviruses (P < .001). Twenty-one patients (72%) experienced full clinical recovery. Three patients (10%) required venoarterial extracorporeal membrane oxygenation (VA-ECMO), and all 3 recovered. Three others (10%) required and underwent successful cardiac transplantation without complications. Two patients (7%) died 9-10 days after hospitalization (1 had RSV and 1 had influenza A/B). Two other patients presented with complete atrioventricular block; 1 case (rhinovirus) resolved spontaneously, and 1 (coronavirus) resolved after support with VA-ECMO. Age <2 years, female sex, lower ejection fraction at admission, and greater initial and peak levels of brain natriuretic peptide were significant predictors of critical outcomes (use of VA-ECMO, listing for cardiac transplantation, and death). CONCLUSIONS: Viral nucleic acid-based testing revealed a wider spectrum of viruses that could be associated with myocarditis in children than previously reported and traditionally anticipated. A predilection of certain pathogens in the very young patients was observed. Whether the observed range of viral agents reflects an undercurrent of change in viral etiology or viral detection methods is unclear, but the wider spectrum of viral pathogens found underscores the usefulness of polymerase chain reaction testing to explore possible viral etiologies of myocarditis in children.


Subject(s)
Myocarditis/etiology , Myocarditis/virology , Virus Diseases/complications , Viruses/pathogenicity , Adolescent , California/epidemiology , Child , Child, Preschool , Female , Hospitals, Pediatric , Humans , Infant , Male , Myocarditis/diagnosis , Myocarditis/therapy , Polymerase Chain Reaction , Retrospective Studies
15.
Pediatr Pulmonol ; 57(2): 361-366, 2022 02.
Article in English | MEDLINE | ID: covidwho-1499312

ABSTRACT

IMPORTANCE: The spectrum of complications of COVID-19 in children, including the effect of COVID-19 on later viral infection, is not known. OBJECTIVE: To examine the features of children hospitalized for respiratory illness with history of prior COVID-19. DESIGN: Retrospective observational case series at a single pediatric quaternary medical center in New York City. Data were obtained from review of medical records. PARTICIPANTS: Children with prior mild or asymptomatic COVID-19 and no known risk factors for severe respiratory disease, who were hospitalized at our center for acute respiratory illness from October 2020 to May 2021, were reviewed. MAIN OUTCOMES AND MEASURES: Co-morbidities, history of prior COVID-19 symptoms, respiratory viral panel findings, acuity of illness, degree of respiratory decompensation based on support and interventions required, duration of hospitalization, and overall clinical course were assessed from the medical record. RESULTS: This study included 5 patients (median age, 4 years; age range: 0.8-9 years; 4 [80%] male). All had positive COVID-19 serology, 1 (20%) had mild symptoms, while the others had no symptoms of prior Sars-CoV-2 infection, 3 (60%) had asthma, and the remaining had no co-morbidities. All were admitted between April and May 2021. Two were re-admitted for respiratory symptoms in the subsequent 3 months. CONCLUSIONS AND RELEVANCE: This case series describes a possible association between severe lower respiratory tract infection and prior mild COVID-19 in children. Larger cohort studies describing the respiratory effects of prior COVID-19 in children are needed.


Subject(s)
COVID-19 , Virus Diseases , Child , Child, Preschool , Female , Hospitalization , Humans , Infant , Male , Retrospective Studies , SARS-CoV-2 , Virus Diseases/complications , Virus Diseases/epidemiology
16.
Rev Esp Quimioter ; 34 Suppl 1: 69-71, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1449589

ABSTRACT

There are few publications on the impact of coinfection and superinfection in patients with COVID-19. Patients with higher severity are much more prone to secondary bacterial, fungal or viral infections. The overuse of antimicrobials in many viral infections (including SARS-CoV-2 infections) undoubtedly contributes to the current antimicrobial resistance crisis. In the context of COVID-19, we are witnessing an increase in multidrug-resistant bacterial infections in our hospitals. The heterogeneity of published studies makes it critical to perform more large-scale studies to better understand the pathogenesis of coinfections or superinfections in the COVID-19 patient.


Subject(s)
COVID-19 , Coinfection , Superinfection , Virus Diseases , Humans , SARS-CoV-2 , Virus Diseases/complications
17.
Front Immunol ; 12: 722979, 2021.
Article in English | MEDLINE | ID: covidwho-1399139

ABSTRACT

The immunopathology of type I diabetes (T1D) presents a complicated case in part because of the multifactorial origin of this disease. Typically, T1D is thought to occur as a result of autoimmunity toward islets of Langerhans, resulting in the destruction of insulin-producing cells (ß cells) and thus lifelong reliance on exogenous insulin. However, that explanation obscures much of the underlying mechanism, and the actual precipitating events along with the associated actors (latent viral infection, diverse immune cell types and their roles) are not completely understood. Notably, there is a malfunctioning in the regulation of cytotoxic CD8+ T cells that target endocrine cells through antigen-mediated attack. Further examination has revealed the likelihood of an imbalance in distinct subpopulations of tolerogenic and cytotoxic natural killer (NK) cells that may be the catalyst of adaptive immune system malfunction. The contributions of components outside the immune system, including environmental factors such as chronic viral infection also need more consideration, and much of the recent literature investigating the origins of this disease have focused on these factors. In this review, the details of the immunopathology of T1D regarding NK cell disfunction is discussed, along with how those mechanisms stand within the context of general autoimmune disorders. Finally, the rarer cases of latent autoimmune, COVID-19 (viral), and immune checkpoint inhibitor (ICI) induced diabetes are discussed as their exceptional pathology offers insight into the evolution of the disease as a whole.


Subject(s)
Autoimmune Diseases/immunology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Autoantibodies/immunology , Autoimmune Diseases/pathology , COVID-19/complications , Diabetes Mellitus, Type 1/etiology , Humans , Insulin/metabolism , Insulin-Secreting Cells/immunology , Virus Diseases/complications
18.
Front Immunol ; 12: 659419, 2021.
Article in English | MEDLINE | ID: covidwho-1389180

ABSTRACT

Highly pathogenic virus infections usually trigger cytokine storms, which may have adverse effects on vital organs and result in high mortalities. The two cytokines interleukin (IL)-4 and interferon (IFN)-γ play key roles in the generation and regulation of cytokine storms. However, it is still unclear whether the cytokine with the largest induction amplitude is the same under different virus infections. It is unknown which is the most critical and whether there are any mathematical formulas that can fit the changing rules of cytokines. Three coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2), three influenza viruses (2009H1N1, H5N1 and H7N9), Ebola virus, human immunodeficiency virus, dengue virus, Zika virus, West Nile virus, hepatitis B virus, hepatitis C virus, and enterovirus 71 were included in this analysis. We retrieved the cytokine fold change (FC), viral load, and clearance rate data from these highly pathogenic virus infections in humans and analyzed the correlations among them. Our analysis showed that interferon-inducible protein (IP)-10, IL-6, IL-8 and IL-17 are the most common cytokines with the largest induction amplitudes. Equations were obtained: the maximum induced cytokine (max) FC = IFN-γ FC × (IFN-γ FC/IL-4 FC) (if IFN-γ FC/IL-4 FC > 1); max FC = IL-4 FC (if IFN-γ FC/IL-4 FC < 1). For IFN-γ-inducible infections, 1.30 × log2 (IFN-γ FC) = log10 (viral load) - 2.48 - 2.83 × (clearance rate). The clinical relevance of cytokines and their antagonists is also discussed.


Subject(s)
Cytokine Release Syndrome/immunology , Cytokines/blood , Models, Immunological , Virus Diseases/complications , Biomarkers/blood , Biomarkers/metabolism , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/virology , Cytokines/immunology , Cytokines/metabolism , Humans , Viral Load/immunology , Virus Diseases/blood , Virus Diseases/immunology , Virus Diseases/virology
19.
Sci Rep ; 11(1): 8968, 2021 04 26.
Article in English | MEDLINE | ID: covidwho-1387471

ABSTRACT

A significant number of studies invoked diabetes as a risk factor for virus infections, but the issue remains controversial. We aimed to examine whether non-autoimmune diabetes mellitus enhances the risk of virus infections compared with the risk in healthy individuals without non-autoimmune diabetes mellitus. In this systematic review and meta-analysis, we assessed case-control and cohort studies on the association between non-autoimmune diabetes and viruses. We searched PubMed, Embase, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, and Web of Science with no language restriction, to identify articles published until February 15, 2021. The main outcome assessment was the risk of virus infection in individuals with non-autoimmune diabetes. We used a random-effects model to pool individual studies and assessed heterogeneity (I2) using the χ2 test on Cochrane's Q statistic. This study is registered with PROSPERO, number CRD42019134142. Out of 3136 articles identified, we included 68 articles (90 studies, as the number of virus and or diabetes phenotype varied between included articles). The summary OR between non-autoimmune diabetes and virus infections risk were, 10.8(95% CI: 10.3-11.4; 1-study) for SARS-CoV-2; 3.6(95%CI: 2.7-4.9, I2 = 91.7%; 43-studies) for HCV; 2.7(95% CI: 1.3-5.4, I2 = 89.9%, 8-studies;) for HHV8; 2.1(95% CI: 1.7-2.5; 1-study) for H1N1 virus; 1.6(95% CI: 1.2-2.13, I2 = 98.3%, 27-studies) for HBV; 1.5(95% CI: 1.1-2.0; 1-study) for HSV1; 3.5(95% CI: 0.6-18.3 , I2 = 83.9%, 5-studies) for CMV; 2.9(95% CI: 1-8.7, 1-study) for TTV; 2.6(95% CI: 0.7-9.1, 1-study) for Parvovirus B19; 0.7(95% CI: 0.3-1.5 , 1-study) for coxsackie B virus; and 0.2(95% CI: 0-6.2; 1-study) for HGV. Our findings suggest that, non-autoimmune diabetes is associated with increased susceptibility to viruses especially SARS-CoV-2, HCV, HHV8, H1N1 virus, HBV and HSV1. Thus, these viruses deserve more attention from diabetes health-care providers, researchers, policy makers, and stakeholders for improved detection, overall proper management, and efficient control of viruses in people with non-autoimmune diabetes.


Subject(s)
Diabetes Complications , Virus Diseases/complications , Case-Control Studies , Cohort Studies , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL