Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add filters

Document Type
Year range
1.
PLoS Biol ; 19(4): e3001135, 2021 04.
Article in English | MEDLINE | ID: covidwho-1508487

ABSTRACT

Identifying the animal reservoirs from which zoonotic viruses will likely emerge is central to understanding the determinants of disease emergence. Accordingly, there has been an increase in studies attempting zoonotic "risk assessment." Herein, we demonstrate that the virological data on which these analyses are conducted are incomplete, biased, and rapidly changing with ongoing virus discovery. Together, these shortcomings suggest that attempts to assess zoonotic risk using available virological data are likely to be inaccurate and largely only identify those host taxa that have been studied most extensively. We suggest that virus surveillance at the human-animal interface may be more productive.


Subject(s)
Environmental Monitoring , Virus Diseases , Zoonoses/etiology , Zoonoses/prevention & control , Animals , Biodiversity , Disease Reservoirs/classification , Disease Reservoirs/statistics & numerical data , Environmental Monitoring/methods , Environmental Monitoring/standards , Host Specificity/genetics , Humans , Metagenomics/methods , Metagenomics/organization & administration , Metagenomics/standards , Phylogeny , Risk Assessment , Risk Factors , Selection Bias , Virus Diseases/epidemiology , Virus Diseases/etiology , Virus Diseases/prevention & control , Virus Diseases/transmission , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Viruses/pathogenicity , Zoonoses/epidemiology , Zoonoses/virology
2.
Appl Environ Microbiol ; 87(22): e0121521, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1494942

ABSTRACT

Fomites can represent a reservoir for pathogens, which may be subsequently transferred from surfaces to skin. In this study, we aim to understand how different factors (including virus type, surface type, time since last hand wash, and direction of transfer) affect virus transfer rates, defined as the fraction of virus transferred, between fingerpads and fomites. To determine this, 360 transfer events were performed with 20 volunteers using Phi6 (a surrogate for enveloped viruses), MS2 (a surrogate for nonenveloped viruses), and three clean surfaces (stainless steel, painted wood, and plastic). Considering all transfer events (all surfaces and both transfer directions combined), the mean transfer rates of Phi6 and MS2 were 0.17 and 0.26, respectively. Transfer of MS2 was significantly higher than that of Phi6 (P < 0.05). Surface type was a significant factor that affected the transfer rate of Phi6: Phi6 is more easily transferred to and from stainless steel and plastic than to and from painted wood. Direction of transfer was a significant factor affecting MS2 transfer rates: MS2 is more easily transferred from surfaces to fingerpads than from fingerpads to surfaces. Data from these virus transfer events, and subsequent transfer rate distributions, provide information that can be used to refine quantitative microbial risk assessments. This study provides a large-scale data set of transfer events with a surrogate for enveloped viruses, which extends the reach of the study to the role of fomites in the transmission of human enveloped viruses like influenza and SARS-CoV-2. IMPORTANCE This study created a large-scale data set for the transfer of enveloped viruses between skin and surfaces. The data set produced by this study provides information on modeling the distribution of enveloped and nonenveloped virus transfer rates, which can aid in the implementation of risk assessment models in the future. Additionally, enveloped and nonenveloped viruses were applied to experimental surfaces in an equivalent matrix to avoid matrix effects, so results between different viral species can be directly compared without confounding effects of different matrices. Our results indicating how virus type, surface type, time since last hand wash, and direction of transfer affect virus transfer rates can be used in decision-making processes to lower the risk of viral infection from transmission through fomites.


Subject(s)
Fingers/virology , Fomites/virology , Virus Physiological Phenomena , Bacteriophage phi 6/physiology , Bacteriophage phi 6/ultrastructure , Fomites/classification , Hand Hygiene , Humans , Levivirus/physiology , Levivirus/ultrastructure , Viral Envelope/ultrastructure , Virus Diseases/transmission , Virus Diseases/virology , Viruses/ultrastructure
3.
Viruses ; 13(2)2021 02 23.
Article in English | MEDLINE | ID: covidwho-1389526

ABSTRACT

A challenging debate has arisen on the role of veterinary expertise in facing the SARS-CoV-2 pandemic. It seems totally unreasonable that in most countries, veterinary diagnostic and tracing forces were not deployed at the start to perform strategic tasks, which could have mitigated the outcome of this dramatic health emergency. Erasing the invisible line between human and veterinary virology will empower the response to future pandemics.


Subject(s)
Contact Tracing , Pandemics/prevention & control , Veterinary Medicine , Viral Zoonoses , Virus Diseases , Animals , Humans , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Virus Diseases/epidemiology , Virus Diseases/transmission , Virus Diseases/veterinary
4.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166264, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1385051

ABSTRACT

The molecular evolution of life on earth along with changing environmental, conditions has rendered mankind susceptible to endemic and pandemic emerging infectious diseases. The effects of certain systemic viral and bacterial infections on morbidity and mortality are considered as examples of recent emerging infections. Here we will focus on three examples of infections that are important in pregnancy and early childhood: SARS-CoV-2 virus, Zika virus, and Mycoplasma species. The basic structural characteristics of these infectious agents will be examined, along with their general pathogenic mechanisms. Coronavirus infections, such as caused by the SARS-CoV-2 virus, likely evolved from zoonotic bat viruses to infect humans and cause a pandemic that has been the biggest challenge for humanity since the Spanish Flu pandemic of the early 20th century. In contrast, Zika Virus infections represent an expanding infectious threat in the context of global climate change. The relationship of these infections to pregnancy, the vertical transmission and neurological sequels make these viruses highly relevant to the topics of this special issue. Finally, mycoplasmal infections have been present before mankind evolved, but they were rarely identified as human pathogens until recently, and they are now recognized as important coinfections that are able to modify the course and prognosis of various infectious diseases and other chronic illnesses. The infectious processes caused by these intracellular microorganisms are examined as well as some general aspects of their pathogeneses, clinical presentations, and diagnoses. We will finally consider examples of treatments that have been used to reduce morbidity and mortality of these infections and discuss briefly the current status of vaccines, in particular, against the SARS-CoV-2 virus. It is important to understand some of the basic features of these emerging infectious diseases and the pathogens involved in order to better appreciate the contributions of this special issue on how infectious diseases can affect human pregnancy, fetuses and neonates.


Subject(s)
Bacterial Infections/prevention & control , Communicable Diseases/transmission , Virus Diseases/prevention & control , Bacterial Infections/history , Bacterial Infections/transmission , COVID-19/metabolism , COVID-19/prevention & control , Communicable Diseases/virology , Female , History, 19th Century , History, 20th Century , History, 21st Century , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical/history , Mycoplasma/pathogenicity , Mycoplasma Infections/metabolism , Mycoplasma Infections/prevention & control , Pregnancy , Pregnant Women , SARS-CoV-2/pathogenicity , Virus Diseases/history , Virus Diseases/transmission , Zika Virus/pathogenicity , Zika Virus Infection/metabolism , Zika Virus Infection/prevention & control
5.
Environ Sci Pollut Res Int ; 28(40): 56376-56391, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1384555

ABSTRACT

It is important to know whether SARS-CoV-2 is spread through the air conditioning systems. Taking the central air conditioning system as an example, we analyze the mechanism and potential health risk of respiratory virus transmission in air-conditioned rooms and propose a method to study the risk of virus transmission in central air conditioning systems by investigating the data from medical experiments. The virus carrying capacity and the decay characteristics of indoor pathogen droplets are studied in this research. Additionally, the effects of air temperature and relative humidity on the virus survival in the air or on surfaces are investigated. The removal efficiency of infectious droplet nuclei by using an air conditioning filter was then determined. Thus, the transmission risk during the operation of the centralized air conditioning system is evaluated. The results show that the indoor temperature and humidity are controlled in the range of 20-25 °C and 40-70% by central air conditioning during the epidemic period, which not only benefits the health and comfort of residents, but also weakens the vitality of the virus. The larger the droplet size, the longer the viruses survive. Since the filter efficiency of the air conditioning filter increases with the increase in particle size, increasing the number of air changes of the circulating air volume can accelerate the removal of potential pathogen particles. Therefore, scientific operation of centralized air conditioning systems during the epidemic period has more advantages than disadvantages.


Subject(s)
Air Conditioning , Air Pollution, Indoor , COVID-19 , Viruses , Air Microbiology , Air Pollution, Indoor/analysis , COVID-19/transmission , Humans , Humidity , SARS-CoV-2 , Virus Diseases/transmission
6.
Int Health ; 12(2): 77-85, 2020 02 12.
Article in English | MEDLINE | ID: covidwho-1387916

ABSTRACT

BACKGROUND: Strategies are urgently needed to mitigate the risk of zoonotic disease emergence in southern China, where pathogens with zoonotic potential are known to circulate in wild animal populations. However, the risk factors leading to emergence are poorly understood, which presents a challenge in developing appropriate mitigation strategies for local communities. METHODS: Residents in rural communities of Yunnan, Guangxi and Guangdong provinces were recruited and enrolled in this study. Data were collected through ethnographic interviews and field observations, and thematically coded and analysed to identify both risk and protective factors for zoonotic disease emergence at the individual, community and policy levels. RESULTS: Eighty-eight ethnographic interviews and 55 field observations were conducted at nine selected sites. Frequent human-animal interactions and low levels of environmental biosecurity in local communities were identified as risks for zoonotic disease emergence. Policies and programmes existing in the communities provide opportunities for zoonotic risk mitigation. CONCLUSIONS: This study explored the relationship among zoonotic risk and human behaviour, environment and policies in rural communities in southern China. It identifies key behavioural risk factors that can be targeted for development of tailored risk-mitigation strategies to reduce the threat of novel zoonoses.


Subject(s)
Animals, Wild/virology , Communicable Diseases, Emerging/transmission , Coronavirus Infections/transmission , Disease Outbreaks/prevention & control , Pneumonia, Viral/transmission , Rural Population , Virus Diseases/transmission , Zoonoses/transmission , Adolescent , Adult , Animals , Betacoronavirus , COVID-19 , China/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Female , Health Knowledge, Attitudes, Practice , Humans , Interviews as Topic , Male , Middle Aged , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Qualitative Research , Risk Factors , SARS-CoV-2 , Severe Acute Respiratory Syndrome , Virus Diseases/epidemiology , Young Adult , Zoonoses/epidemiology , Zoonoses/virology
8.
Science ; 373(6558)2021 08 27.
Article in English | MEDLINE | ID: covidwho-1376452

ABSTRACT

The COVID-19 pandemic has revealed critical knowledge gaps in our understanding of and a need to update the traditional view of transmission pathways for respiratory viruses. The long-standing definitions of droplet and airborne transmission do not account for the mechanisms by which virus-laden respiratory droplets and aerosols travel through the air and lead to infection. In this Review, we discuss current evidence regarding the transmission of respiratory viruses by aerosols-how they are generated, transported, and deposited, as well as the factors affecting the relative contributions of droplet-spray deposition versus aerosol inhalation as modes of transmission. Improved understanding of aerosol transmission brought about by studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires a reevaluation of the major transmission pathways for other respiratory viruses, which will allow better-informed controls to reduce airborne transmission.


Subject(s)
Air Microbiology , COVID-19/transmission , Respiratory Tract Infections/transmission , SARS-CoV-2 , Virus Diseases/transmission , Virus Physiological Phenomena , Aerosols , COVID-19/virology , Disease Transmission, Infectious , Humans , Microbial Viability , Particle Size , Respiratory System/virology , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Viral Load , Virus Diseases/virology , Viruses/isolation & purification
9.
Lancet Infect Dis ; 21(9): e296-e301, 2021 09.
Article in English | MEDLINE | ID: covidwho-1371553

ABSTRACT

Adherence to non-pharmaceutical interventions to prevent the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been highly variable across settings, particularly in the USA. In this Personal View, we review data supporting the importance of the viral inoculum (the dose of viral particles from an infected source over time) in increasing the probability of infection in respiratory, gastrointestinal, and sexually transmitted viral infections in humans. We also review the available evidence linking the relationship of the viral inoculum to disease severity. Non-pharmaceutical interventions might reduce the susceptibility to SARS-CoV-2 infection by reducing the viral inoculum when there is exposure to an infectious source. Data from physical sciences research suggest that masks protect the wearer by filtering virus from external sources, and others by reducing expulsion of virus by the wearer. Social distancing, handwashing, and improved ventilation also reduce the exposure amount of viral particles from an infectious source. Maintaining and increasing non-pharmaceutical interventions can help to quell SARS-CoV-2 as we enter the second year of the pandemic. Finally, we argue that even as safe and effective vaccines are being rolled out, non-pharmaceutical interventions will continue to play an essential role in suppressing SARS-CoV-2 transmission until equitable and widespread vaccine administration has been completed.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/methods , SARS-CoV-2 , Virus Diseases/prevention & control , COVID-19/transmission , Hand Disinfection , Humans , Masks/virology , Physical Distancing , Severity of Illness Index , Ventilation , Virus Diseases/transmission
11.
Indoor Air ; 31(6): 1759-1775, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1293053

ABSTRACT

This paper applies the Rudnick and Milton method through the dynamic evaluation of the probability of airborne contagion, redefining all parameters and variables in discretized form. To adapt the calculation of the risk of contagion to real needs, scenarios are used to define the presence of people, infected subjects, the hourly production of the quanta of infection, and the calculation of the concentration of CO2 produced by exhalation in the air. Three case studies are discussed: a school, an office, a commercial activity. Complex scenarios include environmental sanitization, a variable number of people, and the possibility of simulating work shifts. The dynamic evaluation of the quanta of infection is also estimated, not foreseen by the Rudnick and Milton model, and involves updating the average values of the equivalent fraction of the indoor air with an improvement in the accuracy of the calculation due to the reduction of improper peaks of the stationary variables.


Subject(s)
Air Pollution, Indoor , Virus Diseases , Aerosols , Air Microbiology , COVID-19 , Humans , Risk Assessment , SARS-CoV-2 , Virus Diseases/transmission
13.
Am J Infect Control ; 49(9): 1142-1145, 2021 09.
Article in English | MEDLINE | ID: covidwho-1265628

ABSTRACT

BACKGROUND: The study aimed to evaluate the distribution of circulating respiratory viral pathogens other than severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) during the first year of the coronavirus disease-2019 (COVID-19) pandemic with especially focusing on the effects of the national-based mitigation strategies. METHODS: This single-center study was conducted between March 11, 2020-March 11, 2021. All children who were tested by polymerase chain reaction on nasopharyngeal swabs for SARS-CoV-2 and other common respiratory viral pathogens were included in the study. RESULTS: A total of 995 children with suspected COVID-19 admitted to the study center. Of these, 513 patients who were tested by polymerase chain reaction for both SARS-CoV-2 and common respiratory viral pathogens were included in the final analysis. Two hundred ninety-five patients were (57.5%) male. The median age was 3 years of age (27 days-17 years). A total of 321 viral pathogens identified in 310 (n: 310/513, 60.4%) patients, and 11 of them (n: 11/310, 3.5%) had co-detection with more than 1 virus. The most common detected virus was rhinovirus (n: 156/513, 30.4%), and SARS-CoV-2 (n: 122/513, 23.8%) followed by respiratory syncytial virus (n: 18/513, 3.5%). The influenza virus was detected in 2 patients (0.4%). A total of 193 patients were negative for both SARS-CoV-2 and other pathogens. CONCLUSIONS: There is a decline in the frequency of all viral pathogens like SARS-CoV-2 in correlation with the national-based mitigation strategies against COVID-19 during the pandemic.


Subject(s)
COVID-19 , Coinfection , Virus Diseases/transmission , Viruses , Adolescent , COVID-19/transmission , Child , Child, Preschool , Coinfection/epidemiology , Humans , Infant , Infant, Newborn , Male , Pandemics
14.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166198, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1263225

ABSTRACT

Some maternal infections, contracted before or during pregnancy, can be transmitted to the fetus, during gestation (congenital infection), during labor and childbirth (perinatal infection) and through breastfeeding (postnatal infection). The agents responsible for these infections can be viruses, bacteria, protozoa, fungi. Among the viruses most frequently responsible for congenital infections are Cytomegalovirus (CMV), Herpes simplex 1-2, Herpes virus 6, Varicella zoster. Moreover Hepatitis B and C virus, HIV, Parvovirus B19 and non-polio Enteroviruses when contracted during pregnancy may involve the fetus or newborn at birth. Recently, new viruses have emerged, SARS-Cov-2 and Zika virus, of which we do not yet fully know the characteristics and pathogenic power when contracted during pregnancy. Viral infections in pregnancy can damage the fetus (spontaneous abortion, fetal death, intrauterine growth retardation) or the newborn (congenital anomalies, organ diseases with sequelae of different severity). Some risk factors specifically influence the incidence of transmission to the fetus: the timing of the infection in pregnancy, the order of the infection, primary or reinfection or chronic, the duration of membrane rupture, type of delivery, socio-economic conditions and breastfeeding. Frequently infected neonates, symptomatic at birth, have worse outcomes than asymptomatic. Many asymptomatic babies develop long term neurosensory outcomes. The way in which the virus interacts with the maternal immune system, the maternal-fetal interface and the placenta explain these results and also the differences that are observed from time to time in the fetal­neonatal outcomes of maternal infections. The maternal immune system undergoes functional adaptation during pregnancy, once thought as physiological immunosuppression. This adaptation, crucial for generating a balance between maternal immunity and fetus, is necessary to promote and support the pregnancy itself and the growth of the fetus. When this adaptation is upset by the viral infection, the balance is broken, and the infection can spread and lead to the adverse outcomes previously described. In this review we will describe the main viral harmful infections in pregnancy and the potential mechanisms of the damages on the fetus and newborn.


Subject(s)
Congenital Abnormalities/etiology , Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious , Virus Diseases/complications , Animals , COVID-19/complications , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/transmission , Congenital Abnormalities/diagnosis , Congenital Abnormalities/prevention & control , Cytomegalovirus/isolation & purification , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Infections/transmission , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/prevention & control , Pregnancy Outcome , SARS-CoV-2/isolation & purification , Virus Diseases/diagnosis , Virus Diseases/prevention & control , Virus Diseases/transmission , Zika Virus/isolation & purification , Zika Virus Infection/complications , Zika Virus Infection/diagnosis , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission
16.
Epidemiol Infect ; 149: e96, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1182771

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pandemic. Prevention and control strategies require an improved understanding of SARS-CoV-2 dynamics. We did a rapid review of the literature on SARS-CoV-2 viral dynamics with a focus on infective dose. We sought comparisons of SARS-CoV-2 with other respiratory viruses including SARS-CoV-1 and Middle East respiratory syndrome coronavirus. We examined laboratory animal and human studies. The literature on infective dose, transmission and routes of exposure was limited specially in humans, and varying endpoints were used for measurement of infection. Despite variability in animal studies, there was some evidence that increased dose at exposure correlated with higher viral load clinically, and severe symptoms. Higher viral load measures did not reflect coronavirus disease 2019 severity. Aerosol transmission seemed to raise the risk of more severe respiratory complications in animals. An accurate quantitative estimate of the infective dose of SARS-CoV-2 in humans is not currently feasible and needs further research. Our review suggests that it is small, perhaps about 100 particles. Further work is also required on the relationship between routes of transmission, infective dose, co-infection and outcomes.


Subject(s)
COVID-19/transmission , SARS-CoV-2/pathogenicity , Viral Load , Adenoviridae/pathogenicity , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Communicable Disease Control , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Cricetinae , Enterovirus/pathogenicity , Ferrets , Humans , Macaca mulatta , Mice , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Orthomyxoviridae/pathogenicity , Respiratory Syncytial Viruses/pathogenicity , Rhinovirus/pathogenicity , SARS Virus/pathogenicity , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Virus Diseases/epidemiology , Virus Diseases/transmission , Virus Diseases/virology
17.
Curr Opin Neurol ; 34(3): 410-416, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1153309

ABSTRACT

PURPOSE OF REVIEW: The COVID-19 pandemic has cast increased attention on emerging infections. Clinicians and public health experts should be aware of emerging infectious causes of encephalitis, mechanisms by which they are transmitted, and clinical manifestations of disease. RECENT FINDINGS: A number of arthropod-borne viral infections -- transmitted chiefly by mosquitoes and ticks -- have emerged in recent years to cause outbreaks of encephalitis. Examples include Powassan virus in North America, Chikungunya virus in Central and South America, and tick-borne encephalitis virus in Europe. Many of these viruses exhibit complex life cycles and can infect multiple host animals in addition to humans. Factors thought to influence emergence of these diseases, including changes in climate and land use, are also believed to underlie the emergence of the rickettsial bacterium Orientia tsutsugamushi, now recognized as a major causative agent of acute encephalitis syndrome in South Asia. In addition, the COVID-19 pandemic has highlighted the role of bats as carriers of viruses. Recent studies have begun to uncover mechanisms by which the immune systems of bats are poised to allow for viral tolerance. Several bat-borne infections, including Nipah virus and Ebola virus, have resulted in recent outbreaks of encephalitis. SUMMARY: Infectious causes of encephalitis continue to emerge worldwide, in part because of climate change and human impacts on the environment. Expansion of surveillance measures will be critical in rapid diagnosis and limiting of outbreaks in the future.


Subject(s)
COVID-19/complications , Encephalitis, Arbovirus/transmission , Encephalitis/etiology , Virus Diseases/complications , Animals , Humans , Pandemics , Public Health Surveillance , Virus Diseases/transmission
18.
J Clin Virol ; 137: 104795, 2021 04.
Article in English | MEDLINE | ID: covidwho-1135438

ABSTRACT

BACKGROUND: Since the worldwide spread of SARS-CoV-2, different European countries reacted with temporary national lockdowns with the aim to limit the virus transmission in the population. Also Austria started a lockdown of public life in March 2020. OBJECTIVES: In this study we investigated whether the circulation of different respiratory virus infections in Austria, as assessed by the established respiratory virus surveillance system, is affected by these measures as well and may reflect the success of the lockdown in limiting respiratory virus transmission. STUDY DESIGN: Sentinel data obtained for influenza virus, respiratory syncytial virus, human metapneumovirus and rhinovirus cases were analyzed and compared between the season 2019/2020 and the five previous seasons. RESULTS: We observed a rapid and statistically significant reduction of cumulative cases for all these viruses within short time after the lockdown in March 2020, compared to previous seasons (each p < 0.001). Also, sentinel screening for SARS-CoV-2 infections was performed and a decrease of SARS-CoV-2 was seen after the lockdown. While for the seasonally occurring viruses as influenza, respiratory syncytial virus or human metapneumovirus the lockdown led to the end of the annual epidemics, a re-increase of rhinovirus infections was observed after liberalization of numerous lockdown measures. CONCLUSIONS: Our data provide evidence that occurrence of different respiratory virus infections reflect not only the efficiency of lockdown measures taken against SARS-CoV-2 but it shows also the effects of lockdown releases on the transmission of respiratory viruses.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Austria/epidemiology , COVID-19/transmission , Epidemics , Humans , Influenza, Human/virology , Metapneumovirus/isolation & purification , Orthomyxoviridae/isolation & purification , Public Health Surveillance , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Tract Infections/transmission , Respiratory Tract Infections/virology , Retrospective Studies , Rhinovirus/isolation & purification , SARS-CoV-2/isolation & purification , Seasons , Virus Diseases/epidemiology , Virus Diseases/prevention & control , Virus Diseases/transmission , Virus Diseases/virology
19.
PLoS One ; 16(3): e0248282, 2021.
Article in English | MEDLINE | ID: covidwho-1124945

ABSTRACT

Compliance with infection prevention and control (IPC) protocols is critical in minimizing the risk of coronavirus disease (COVID-19) infection among healthcare workers. However, data on IPC compliance among healthcare workers in COVID-19 treatment centers are unknown in Ghana. This study aims to assess IPC compliance among healthcare workers in Ghana's COVID-19 treatment centers. The study was a secondary analysis of data, which was initially collected to determine the level of risk of COVID-19 virus infection among healthcare workers in Ghana. Quantitative data were conveniently collected using the WHO COVID-19 risk assessment tool. We analyzed the data using descriptive statistics and logistic regression analyses. We observed that IPC compliance during healthcare interactions was 88.4% for hand hygiene and 90.6% for Personal Protective Equipment (PPE) usage; IPC compliance while performing aerosol-generating procedures (AGPs), was 97.5% for hand hygiene and 97.5% for PPE usage. For hand hygiene during healthcare interactions, lower compliance was seen among nonclinical staff [OR (odds ratio): 0.43; 95% CI (Confidence interval): 0.21-0.89], and healthcare workers with secondary level qualification (OR: 0.24; 95% CI: 0.08-0.71). Midwives (OR: 0.29; 95% CI: 0.09-0.93) and Pharmacists (OR: 0.15; 95% CI: 0.02-0.92) compliance with hand hygiene was significantly lower than registered nurses. For PPE usage during healthcare interactions, lower compliance was seen among healthcare workers who were separated/divorced/widowed (OR: 0.08; 95% CI: 0.01-0.43), those with secondary level qualifications (OR 0.08; 95% CI 0.01-0.43), non-clinical staff (OR 0.16 95% CI 0.07-0.35), cleaners (OR: 0.16; 95% CI: 0.05-0.52), pharmacists (OR: 0.07; 95% CI: 0.01-0.49) and among healthcare workers who reported of insufficiency of PPEs (OR: 0.33; 95% CI: 0.14-0.77). Generally, healthcare workers' infection prevention and control compliance were high, but this compliance differs across the different groups of health professionals in the treatment centers. Ensuring an adequate supply of IPC logistics coupled with behavior change interventions and paying particular attention to nonclinical staff is critical in minimizing the risk of COVID-19 transmission in the treatment centers.


Subject(s)
COVID-19/psychology , Guideline Adherence/trends , Health Personnel/psychology , Adult , COVID-19/epidemiology , Coronavirus Infections/prevention & control , Cross Infection/prevention & control , Cross-Sectional Studies , Female , Ghana/epidemiology , Health Knowledge, Attitudes, Practice , Humans , Infection Control/methods , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Knowledge , Male , Pandemics/prevention & control , Personal Protective Equipment/trends , SARS-CoV-2/pathogenicity , Surveys and Questionnaires , Virus Diseases/transmission
20.
Obstet Gynecol Clin North Am ; 48(1): 53-74, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1083654

ABSTRACT

Viral infections are common complications of pregnancy. Although some infections have maternal sequelae, many viral infections can be perinatally transmitted to cause congenital or chronic infection in fetuses or infants. Treatments of such infections are geared toward reducing maternal symptoms and complications and toward preventing maternal-to-child transmission of viruses. The authors review updates in the treatment of herpes simplex virus, cytomegalovirus, hepatitis B and C viruses, human immunodeficiency virus, and COVID-19 during pregnancy.


Subject(s)
Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious/therapy , Virus Diseases/therapy , Virus Diseases/transmission , Adult , Antiviral Agents/therapeutic use , COVID-19/therapy , COVID-19/transmission , Cytomegalovirus Infections/therapy , Cytomegalovirus Infections/transmission , Female , HIV Infections/therapy , HIV Infections/transmission , Hepatitis B/therapy , Hepatitis B/transmission , Hepatitis C/therapy , Hepatitis C/transmission , Herpes Simplex/therapy , Herpes Simplex/transmission , Humans , Infant , Pregnancy , Pregnancy Complications, Infectious/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...