Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Viruses ; 14(5)2022 05 20.
Article in English | MEDLINE | ID: covidwho-1875810

ABSTRACT

Climate variability and anomalies are known drivers of the emergence and outbreaks of infectious diseases. In this study, we investigated the potential association between climate factors and anomalies, including El Niño Southern Oscillation (ENSO) and land surface temperature anomalies, as well as the emergence and spillover events of bat-borne viral diseases in humans and livestock in the Asia-Pacific region and the Arabian Peninsula. Our findings from time series analyses, logistic regression models, and structural equation modelling revealed that the spillover patterns of the Nipah virus in Bangladesh and the Hendra virus in Australia were differently impacted by climate variability and with different time lags. We also used event coincidence analysis to show that the emergence events of most bat-borne viral diseases in the Asia-Pacific region and the Arabian Peninsula were statistically associated with ENSO climate anomalies. Spillover patterns of the Nipah virus in Bangladesh and the Hendra virus in Australia were also significantly associated with these events, although the pattern and co-influence of other climate factors differed. Our results suggest that climate factors and anomalies may create opportunities for virus spillover from bats to livestock and humans. Ongoing climate change and the future intensification of El Niño events will therefore potentially increase the emergence and spillover of bat-borne viral diseases in the Asia-Pacific region and the Arabian Peninsula.


Subject(s)
Chiroptera , Hendra Virus , Nipah Virus , Virus Diseases , Animals , Asia/epidemiology , Humans , Virus Diseases/epidemiology , Virus Diseases/veterinary
2.
3.
Zool Res ; 42(5): 626-632, 2021 Sep 18.
Article in English | MEDLINE | ID: covidwho-1414833

ABSTRACT

Viruses can be transmitted from animals to humans (and vice versa) and across animal species. As such, host-virus interactions and transmission have attracted considerable attention. Non-human primates (NHPs), our closest evolutionary relatives, are susceptible to human viruses and certain pathogens are known to circulate between humans and NHPs. Here, we generated global statistics on VI-NHPs based on a literature search and public data mining. In total, 140 NHP species from 12 families are reported to be infected by 186 DNA and RNA virus species, 68.8% of which are also found in humans, indicating high potential for crossing species boundaries. The top 10 NHP species with high centrality in the NHP-virus network include two great apes (Pan troglodytes, Pongo pygmaeus) and eight Old World monkeys (Macaca mulatta, M. fascicularis, M. leonina, Papio cynocephalus, Cercopithecus ascanius, C. erythrotis, Chlorocebus aethiops, and Allochrocebus lhoesti). Given the wide distribution of Old World monkeys and their frequent contact with humans, there is a high risk of virus circulation between humans and such species. Thus, we suggest recurring epidemiological surveillance of NHPs, specifically Old World monkeys that are in frequent contact with humans, and other effective measures to prevent potential circulation and transmission of viruses. Avoidance of false positives and sampling bias should also be a focus in future work.


Subject(s)
Conservation of Natural Resources , Primates/virology , Public Health , Virus Diseases/veterinary , Viruses/classification , Animals , Animals, Wild , Global Health , Virus Diseases/epidemiology , Virus Diseases/virology
4.
Viruses ; 13(2)2021 02 23.
Article in English | MEDLINE | ID: covidwho-1389526

ABSTRACT

A challenging debate has arisen on the role of veterinary expertise in facing the SARS-CoV-2 pandemic. It seems totally unreasonable that in most countries, veterinary diagnostic and tracing forces were not deployed at the start to perform strategic tasks, which could have mitigated the outcome of this dramatic health emergency. Erasing the invisible line between human and veterinary virology will empower the response to future pandemics.


Subject(s)
Contact Tracing , Pandemics/prevention & control , Veterinary Medicine , Viral Zoonoses , Virus Diseases , Animals , Humans , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Virus Diseases/epidemiology , Virus Diseases/transmission , Virus Diseases/veterinary
5.
Viruses ; 13(8)2021 08 16.
Article in English | MEDLINE | ID: covidwho-1376993

ABSTRACT

Given the impact of pandemics due to viruses of bat origin, there is increasing interest in comparative investigation into the differences between bat and human immune responses. The practice of comparative biology can be enhanced by computational methods used for dynamic knowledge representation to visualize and interrogate the putative differences between the two systems. We present an agent based model that encompasses and bridges differences between bat and human responses to viral infection: the comparative biology immune agent based model, or CBIABM. The CBIABM examines differences in innate immune mechanisms between bats and humans, specifically regarding inflammasome activity and type 1 interferon dynamics, in terms of tolerance to viral infection. Simulation experiments with the CBIABM demonstrate the efficacy of bat-related features in conferring viral tolerance and also suggest a crucial role for endothelial inflammasome activity as a mechanism for bat systemic viral tolerance and affecting the severity of disease in human viral infections. We hope that this initial study will inspire additional comparative modeling projects to link, compare, and contrast immunological functions shared across different species, and in so doing, provide insight and aid in preparation for future viral pandemics of zoonotic origin.


Subject(s)
Chiroptera/immunology , Immunity, Innate , Virus Diseases/immunology , Virus Diseases/veterinary , Animals , Chiroptera/virology , Computer Simulation , Endothelium/physiology , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Interferon Type I/immunology , Interferon Type I/metabolism , Severity of Illness Index , Stress, Physiological , Viral Zoonoses , Virus Diseases/virology , Virus Physiological Phenomena , Virus Shedding
6.
Transbound Emerg Dis ; 68(4): 2616-2621, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1331776

ABSTRACT

Myxomatosis is an emergent disease in the Iberian hare, having been considered a rabbit disease for decades. Genome sequencing of the strains obtained from Iberian hares with myxomatosis showed these to be distinct from the classical ones that circulated in rabbits since the virus introduction in Europe, in 1952. The main genomic difference in this natural recombinant hare myxoma virus (ha-MYXV) is the presence of an additional 2.8 kb region disrupting the M009L gene and adding a set of genes homologous to the myxoma virus (MYXV) genes M060R, M061R, M064R, M065R and M066R originated in Poxviruses. After the emergence of this recombinant virus (ha-MYXV) in hares, in the summer of 2019, the ha-MYXV was not detected in rabbit surveys, suggesting an apparent species segregation with the MYXV classic strains persistently circulating in rabbits. Recently, a group of six unvaccinated European rabbits (Oryctolagus cuniculus cuniculus) from a backyard rabbitry in South Portugal developed signs of myxomatosis (anorexia, dyspnoea, oedema of eyelids, head, ears, external genitals and anus, and skin myxomas in the base of the ears). Five of them died within 24-48 hr of symptom onset. Molecular analysis revealed that only the recombinant MYXV was present. This is the first documented report of a recombinant hare myxoma virus in farm rabbits associated with high mortality, which increases the concern for the future of both the Iberian hare and wild rabbits and questions the safety of the rabbit industry. This highlights the urgent need to evaluate the efficacy of available vaccines against this new MYXV.


Subject(s)
Myxoma virus , Myxoma , Virus Diseases , Agriculture , Animals , Farms , Myxoma/veterinary , Myxoma virus/genetics , Rabbits , Virus Diseases/veterinary
7.
Adv Virus Res ; 110: 1-26, 2021.
Article in English | MEDLINE | ID: covidwho-1300028

ABSTRACT

Over the last two decades, the viromes of our closest relatives, the African great apes (AGA), have been intensively studied. Comparative approaches have unveiled diverse evolutionary patterns, highlighting both stable host-virus associations over extended evolutionary timescales and much more recent viral emergence events. In this chapter, we summarize these findings and outline how they have shed a new light on the origins and evolution of many human-infecting viruses. We also show how this knowledge can be used to better understand the evolution of human health in relation to viral infections.


Subject(s)
Hominidae , Virus Diseases , Viruses , Animals , Biological Evolution , DNA Viruses , Humans , Virus Diseases/veterinary , Viruses/genetics
8.
Viruses ; 13(1)2020 12 22.
Article in English | MEDLINE | ID: covidwho-1025055

ABSTRACT

Bats are often claimed to be a major source for future viral epidemics, as they are associated with several viruses with zoonotic potential. Here we describe the presence and biodiversity of bats associated with intensive pig farms devoted to the production of heavy pigs in northern Italy. Since chiropters or signs of their presence were not found within animal shelters in our study area, we suggest that fecal viruses with high environmental resistance have the highest likelihood for spillover through indirect transmission. In turn, we investigated the circulation of mammalian orthoreoviruses (MRVs), coronaviruses (CoVs) and astroviruses (AstVs) in pigs and bats sharing the same environment. Results of our preliminary study did not show any bat virus in pigs suggesting that spillover from these animals is rare. However, several AstVs, CoVs and MRVs circulated undetected in pigs. Among those, one MRV was a reassortant strain carrying viral genes likely acquired from bats. On the other hand, we found a swine AstV and a MRV strain carrying swine genes in bat guano, indicating that viral exchange at the bat-pig interface might occur more frequently from pigs to bats rather than the other way around. Considering the indoor farming system as the most common system in the European Union (EU), preventive measures should focus on biosecurity rather than displacement of bats, which are protected throughout the EU and provide critical ecosystem services for rural settings.


Subject(s)
Chiroptera , Swine , Animals , Biodiversity , Chiroptera/virology , DNA Viruses/classification , DNA Viruses/genetics , Ecosystem , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , Reassortant Viruses/genetics , Swine/virology , Swine Diseases/epidemiology , Swine Diseases/transmission , Swine Diseases/virology , Virus Diseases/veterinary
9.
PLoS Negl Trop Dis ; 14(10): e0008699, 2020 10.
Article in English | MEDLINE | ID: covidwho-932350

ABSTRACT

Surveillance of highly pathogenic viruses circulating in both human and animal populations is crucial to unveil endemic infections and potential zoonotic reservoirs. Monitoring the burden of disease by serological assay could be used as an early warning system for imminent outbreaks as an increased seroprevalance often precedes larger outbreaks. However, the multitude of highly pathogenic viruses necessitates the need to identify specific antibodies against several targets from both humans as well as from potential reservoir animals such as bats. In order to address this, we have developed a broadly reactive multiplex microsphere immunoassay (MMIA) for the detection of antibodies against several highly pathogenic viruses from both humans and animals. To this aim, nucleoproteins (NP) of Ebola virus (EBOV), Marburg virus (MARV) and nucleocapsid proteins (NP) of Crimean-Congo haemorrhagic fever virus, Rift Valley fever virus and Dobrava-Belgrade hantavirus were employed in a 5-plex assay for IgG detection. After optimisation, specific binding to each respective NP was shown by testing sera from humans and non-human primates with known infection status. The usefulness of our assay for serosurveillance was shown by determining the immune response against the NP antigens in a panel of 129 human serum samples collected in Guinea between 2011 and 2012 in comparison to a panel of 88 sera from the German blood bank. We found good agreement between our MMIA and commercial or in-house reference methods by ELISA or IIFT with statistically significant higher binding to both EBOV NP and MARV NP coupled microspheres in the Guinea panel. Finally, the MMIA was successfully adapted to detect antibodies from bats that had been inoculated with EBOV- and MARV- virus-like particles, highlighting the versatility of this technique and potentially enabling the monitoring of wildlife as well as human populations with this assay. We were thus able to develop and validate a sensitive and broadly reactive high-throughput serological assay which could be used as a screening tool to detect antibodies against several highly pathogenic viruses.


Subject(s)
Antibodies, Viral/blood , Immunoassay/methods , Microspheres , Nucleocapsid Proteins/immunology , Virus Diseases/veterinary , Animals , Chiroptera , Humans , Primates , Virus Diseases/diagnosis , Virus Diseases/virology
10.
Microb Physiol ; 30(1-6): 2-8, 2020.
Article in English | MEDLINE | ID: covidwho-783632

ABSTRACT

For decades it has been known that infectious agents including pathogenic protozoans, bacteria, and viruses, adapted to a particular animal host, can mutate to gain the ability to infect another host, and the mechanisms involved have been studied in great detail. Although an infectious agent in one animal can alter its host range with relative ease, no example of a plant virus changing its host organism to an animal has been documented. One prevalent pathway for the transmission of infectious agents between hosts involves ingestion of the flesh of one organism by another. In this article we document numerous examples of viral and prion diseases transmitted by eating animals. We suggest that the occurrence of cross-species viral epidemics can be substantially reduced by shifting to a more vegetarian diet and enforcing stricter laws that ban the slaughter and trade of wild and endangered species.


Subject(s)
Epidemics , Host Specificity , Plant Viruses , Virus Diseases/epidemiology , Virus Diseases/transmission , Virus Diseases/veterinary , Animals , Birds , COVID-19/epidemiology , COVID-19/transmission , COVID-19/veterinary , Coronavirus , Diet Therapy , Eating , Ebolavirus , HIV , Humans , Influenza in Birds , Marburgvirus , Orthomyxoviridae , Prion Diseases , SARS-CoV-2 , Viral Zoonoses
11.
Viruses ; 12(8)2020 08 14.
Article in English | MEDLINE | ID: covidwho-831474

ABSTRACT

To date, the microbiome, as well as the virome of the Croatian populations of bats, was unknown. Here, we present the results of the first viral metagenomic analysis of guano, feces and saliva (oral swabs) of seven bat species (Myotis myotis, Miniopterus schreibersii, Rhinolophus ferrumequinum, Eptesicus serotinus, Myotis blythii, Myotis nattereri and Myotis emarginatus) conducted in Mediterranean and continental Croatia. Viral nucleic acids were extracted from sample pools, and analyzed using Illumina sequencing. The presence of 63 different viral families representing all seven Baltimore groups were confirmed, most commonly insect viruses likely reflecting the diet of insectivorous bats. Virome compositions of our samples were largely impacted by the sample type: invertebrate-infecting viruses were most frequently found in feces, bacterial viruses in guano, whereas vertebrate-infecting viruses were most common in swabs. Most vertebrate-infecting virus sequences were assigned to retroviruses, parvoviruses, iridoviruses, and poxviruses. We further report the complete genome sequence of a novel adeno-associated virus, densovirus and a near complete length genome sequence of a novel iflavirus. Additionally, one of the most interesting findings in this study was the difference in viromes between two contrasting habitats, the continental and Mediterranean Croatia.


Subject(s)
Chiroptera/virology , Disease Reservoirs/veterinary , Ecosystem , Metagenome , Virome/genetics , Virus Diseases/veterinary , Animals , Croatia , Disease Reservoirs/virology , Feces/virology , High-Throughput Nucleotide Sequencing , Insect Viruses/classification , Metagenomics , Phylogeny , Saliva/virology , Sequence Analysis, DNA , Viruses/classification , Viruses/isolation & purification , Zoonoses/virology
12.
Poult Sci ; 99(2): 783-790, 2020 Feb.
Article in English | MEDLINE | ID: covidwho-829267

ABSTRACT

In the Mekong Delta region of Vietnam, small-scale chicken farming is common. However, high levels of disease or mortality in such flocks impair economic development and challenge the livelihoods of many rural households. We investigated 61 diseased small-scale flocks (122 chickens) for evidence of infection with 5 bacteria, 4 viruses, and helminths. Serological profiles (ELISA) were also determined against 6 of these pathogens. The aims of this study were the following: (1) to investigate the prevalence of different pathogens and to compare the probability of detection of bacterial pathogens using PCR and culture; (2) to investigate the relationship between detection of organisms in birds' tissues and the observed morbidity and mortality, as well as their antibody profile; and (3) to characterize risk factors for infection with specific viral or bacterial pathogens. We used PCR to test for viral (viruses causing infectious bronchitis [IB], highly pathogenic avian influenza [HPAI], Newcastle disease, and infectious bursal disease [IBD]) and bacterial pathogens (Mycoplasma gallisepticum, Pasteurella multocida, Avibacterium paragallinarum, and Ornithobacterium rhinotracheale [ORT]). The latter two were also investigated in respiratory tissues by conventional culture. Colisepticemic Escherichia coli was investigated by liver or spleen culture. In 49 of 61 (80.3%) flocks, at least one bacterial or viral pathogen was detected, and in 29 (47.5%) flocks, more than one pathogen was detected. A. paragallinarum was detected in 62.3% flocks, followed by M. gallisepticum (26.2%), viruses causing IBD (24.6%) and IB (21.3%), septicemic E. coli (14.8%), ORT (13.1%), and HPAI viruses (4.9%). Of all flocks, 67.2% flocks were colonized by helminths. Mortality was highest among flocks infected with HPAI (100%, interquartile range [IQR]: 81.6-100%) and lowest with flocks infected with ORT (5.3%, IQR: 1.1-9.0%). The results indicated slight agreement (kappa ≤ 0.167) between detection by PCR and culture for both A. paragallinarum and ORT, as well as between the presence of cestodes and ORT infection (kappa = 0.317). Control of A. paragallinarum, viruses causing HPAI, IBD, and IB, M. gallisepticum, and gastrointestinal helminths should be a priority in small-scale flocks.


Subject(s)
Bacterial Infections/veterinary , Chickens , Parasitic Diseases, Animal/epidemiology , Poultry Diseases/epidemiology , Virus Diseases/veterinary , Animals , Antibody Formation , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Morbidity , Mortality , Parasitic Diseases, Animal/parasitology , Polymerase Chain Reaction/veterinary , Poultry Diseases/microbiology , Poultry Diseases/parasitology , Poultry Diseases/virology , Prevalence , Risk Factors , Vietnam/epidemiology , Virus Diseases/epidemiology , Virus Diseases/virology
13.
Transbound Emerg Dis ; 67(1): 344-376, 2020 Jan.
Article in English | MEDLINE | ID: covidwho-822794

ABSTRACT

During the past decade, livestock diseases have (re-)emerged in areas where they had been previously eradicated or never been recorded before. Drivers (i.e. factors of (re-)emergence) have been identified. Livestock diseases spread irrespective of borders, and therefore, reliable methods are required to help decision-makers to identify potential threats and try stopping their (re-)emergence. Ranking methods and multicriteria approaches are cost-effective tools for such purpose and were applied to prioritize a list of selected diseases (N = 29 including 6 zoonoses) based on the opinion of 62 experts in accordance with 50 drivers-related criteria. Diseases appearing in the upper ranking were porcine epidemic diarrhoea, foot-and-mouth disease, low pathogenic avian influenza, African horse sickness and highly pathogenic avian influenza. The tool proposed uses a multicriteria decision analysis approach to prioritize pathogens according to drivers and can be applied to other countries or diseases.


Subject(s)
Decision Making , Livestock/microbiology , Virus Diseases/veterinary , Animals , Belgium/epidemiology , Cost-Benefit Analysis , Decision Support Techniques , Health Priorities , Humans , Surveys and Questionnaires , Virus Diseases/epidemiology , Virus Diseases/virology , Zoonoses
15.
Elife ; 92020 02 03.
Article in English | MEDLINE | ID: covidwho-774702

ABSTRACT

Bats host virulent zoonotic viruses without experiencing disease. A mechanistic understanding of the impact of bats' virus hosting capacities, including uniquely constitutive immune pathways, on cellular-scale viral dynamics is needed to elucidate zoonotic emergence. We carried out virus infectivity assays on bat cell lines expressing induced and constitutive immune phenotypes, then developed a theoretical model of our in vitro system, which we fit to empirical data. Best fit models recapitulated expected immune phenotypes for representative cell lines, supporting robust antiviral defenses in bat cells that correlated with higher estimates for within-host viral propagation rates. In general, heightened immune responses limit pathogen-induced cellular morbidity, which can facilitate the establishment of rapidly-propagating persistent infections within-host. Rapidly-transmitting viruses that have evolved with bat immune systems will likely cause enhanced virulence following emergence into secondary hosts with immune systems that diverge from those unique to bats.


Bats can carry viruses that are deadly to other mammals without themselves showing serious symptoms. In fact, bats are natural reservoirs for viruses that have some of the highest fatality rates of any viruses that people acquire from wild animals ­ including rabies, Ebola and the SARS coronavirus. Bats have a suite of antiviral defenses that keep the amount of virus in check. For example, some bats have an antiviral immune response called the interferon pathway perpetually switched on. In most other mammals, having such a hyper-vigilant immune response would cause harmful inflammation. Bats, however, have adapted anti-inflammatory traits that protect them from such harm, include the loss of certain genes that normally promote inflammation. However, no one has previously explored how these unique antiviral defenses of bats impact the viruses themselves. Now, Brook et al. have studied this exact question using bat cells grown in the laboratory. The experiments made use of cells from one bat species ­ the black flying fox ­ in which the interferon pathway is always on, and another ­ the Egyptian fruit bat ­ in which this pathway is only activated during an infection. The bat cells were infected with three different viruses, and then Brook et al. observed how the interferon pathway helped keep the infections in check, before creating a computer model of this response. The experiments and model helped reveal that the bats' defenses may have a potential downside for other animals, including humans. In both bat species, the strongest antiviral responses were countered by the virus spreading more quickly from cell to cell. This suggests that bat immune defenses may drive the evolution of faster transmitting viruses, and while bats are well protected from the harmful effects of their own prolific viruses, other creatures like humans are not. The findings may help to explain why bats are often the source for viruses that are deadly in humans. Learning more about bats' antiviral defenses and how they drive virus evolution may help scientists develop better ways to predict, prevent or limit the spread of viruses from bats to humans. More studies are needed in bats to help these efforts. In the meantime, the experiments highlight the importance of warning people to avoid direct contact with wild bats.


Subject(s)
Chiroptera/virology , Disease Reservoirs/veterinary , Virus Diseases/veterinary , Viruses/growth & development , Zoonoses/virology , Animals , Cell Line , Chiroptera/immunology , Disease Reservoirs/virology , Host Microbial Interactions , Humans , Immunity, Cellular , Kinetics , Models, Biological , Phenotype , Risk Assessment , Virulence , Virus Diseases/immunology , Virus Diseases/transmission , Virus Diseases/virology , Viruses/immunology , Viruses/pathogenicity , Zoonoses/immunology , Zoonoses/transmission
16.
APMIS ; 128(6): 451-462, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-155071

ABSTRACT

Bacteria and viruses were analysed in the upper respiratory tract of symptomatic pig farmers and their domestic pigs. Eighty six human nasal and 495 (50 pools) porcine snout swabs were collected in Schleswig-Holstein, Germany. Staphylococcus (S.) aureus (62.8%, 54/86), human rhino- and coronaviruses (HRV, 29.1%, 25/86; HCoV, 16.3%, 14/86) were frequently detected in humans, while Haemophilus parasuis (90.0%, 45/50), Mycoplasma hyorhinis (78.6%, 11/14), Enterovirus G (EV-G, 56.0%, 28/50) and S. aureus (36.0%, 18/50), respectively, were highly prevalent in pigs. The detection of S. aureus in human follow-up samples indicates a carrier status. The methicillin-resistant phenotype (MRSA) was identified in 33.3% (18/54) of nasal swabs and in one of 18 (5.6%) pooled snout swabs that were tested positive for S. aureus. Strains were indicative of the livestock-associated clonal complex CC398, with t011 being the most common staphylococcal protein A type. Enterobacterales and non-fermenters were frequently isolated from swabs. Their detection in follow-up samples suggests a carrier status. All were classified as being non-multiresistant. There was no example for cross-species transmission of viruses. In contrast, transmission of S. aureus through occupational contact to pigs seems possible. The study contributes to the 'One Health' approach.


Subject(s)
Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Staphylococcal Infections/veterinary , Sus scrofa/microbiology , Sus scrofa/virology , Swine Diseases/epidemiology , Animals , Carrier State , Humans , Livestock , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Nasal Mucosa/microbiology , Nasal Mucosa/virology , Occupational Diseases/microbiology , Prevalence , Respiratory Tract Infections/epidemiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/transmission , Swine , Swine Diseases/microbiology , Swine Diseases/transmission , Swine Diseases/virology , Virus Diseases/epidemiology , Virus Diseases/transmission , Virus Diseases/veterinary
17.
Vet Med Sci ; 6(3): 359-381, 2020 08.
Article in English | MEDLINE | ID: covidwho-6989

ABSTRACT

Approximately 60% of all human pathogens and 75% of emerging infectious diseases are zoonotic (of animal origin). Camel zoonotic diseases can be encountered in all camel-rearing countries. In this article, all studies carried out on camel zoonotic diseases in Iran are reviewed to show the importance of camels for public health in this country. More than 900 published documents were systematically searched to find relevant studies from 1,890 until late 2018. The collected articles were classified according to the aetiological agents. In this study, 19 important zoonotic diseases were reported among Iranian camels including listeriosis, leptospirosis, plague, Q fever, brucellosis, campylobacteriosis, tuberculosis, pasteurellosis, clostridiosis, salmonellosis, Escherichia coli infections, rabies, camelpox, Middle East respiratory syndrome coronavirus, Crimean-Congo haemorrhagic fever, echinococcosis, cryptosporidiosis, toxoplasmosis and dermatophytosis, most of which belong to bacterial, viral, parasitic and fungal pathogens, respectively. Results show that camels are one of the most important sources of infections and diseases in human; therefore, continuous monitoring and inspection programs are necessary to prevent the outbreak of zoonotic diseases caused by this animal in humans.


Subject(s)
Bacterial Infections/veterinary , Camelus/microbiology , Camelus/virology , Mycoses/veterinary , Parasitic Diseases, Animal/epidemiology , Virus Diseases/veterinary , Animals , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Humans , Iran/epidemiology , Mycoses/epidemiology , Mycoses/microbiology , Parasitic Diseases, Animal/parasitology , Virus Diseases/epidemiology , Virus Diseases/virology , Zoonoses
SELECTION OF CITATIONS
SEARCH DETAIL