Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 413
Filter
3.
Food Chem Toxicol ; 169: 113438, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2049210

ABSTRACT

High infection caused by mutations of SARS-CoV-2 calls for new prevention strategy. Ganoderma lucidum known as a superior immunoenhancer exhibits various antiviral effects, whether it can resist SARS-CoV-2 remains unclear. Herein, virtual screening combined with in vitro hACE2 inhibition assays were used to investigate its anti SARS-CoV-2 effect. Potential 54 active components, 80 core targets and 20 crucial pathways were identified by the component-target-pathway network. The binding characters of these components to hACE2 and its complexes with spike protein including omicron variant was analyzed by molecular docking. Lucidenic acid A was selected as the top molecule with high affinity to all receptors by forming hydrogen bonds. Molecular dynamics simulation showed it had good binding stability with the receptor proteins. Finally, in vitro FRET test demonstrated it inhibited the hACE2 activity with IC50 2 µmol/mL. Therefore, lucidenic acid A can prevent the virus invasion by blocking hACE2 binding with SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 , Cholic Acids , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , Humans , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Cholic Acids/pharmacology , COVID-19/prevention & control , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Reishi/chemistry
4.
Glycobiology ; 32(10): 849-854, 2022 09 19.
Article in English | MEDLINE | ID: covidwho-1922257

ABSTRACT

The Coronavirus disease pandemic has steered the global therapeutic research efforts toward the discovery of potential anti-severe acute respiratory syndrome coronavirus (SARS-CoV-2) molecules. The role of the viral spike glycoprotein (S-protein) has been clearly established in SARS-CoV-2 infection through its capacity to bind to the host cell surface heparan sulfate proteoglycan (HSPG) and angiotensin-converting enzyme-2. The antiviral strategies targeting these 2 virus receptors are currently under intense investigation. However, the rapid evolution of the SARS-CoV-2 genome has resulted in numerous mutations in the S-protein posing a significant challenge for the design of S-protein-targeted inhibitors. As an example, the 2 key mutations in the S-protein receptor-binding domain (RBD), L452R, and T478K in the SARS-CoV-2 Delta variant (B.1.617.2) confer tighter binding to the host epithelial cells. Marine sulfated glycans (MSGs) demonstrate excellent inhibitory activity against SARS-CoV-2 via competitive disruption of the S-protein RBD-HSPG interactions and thus have the potential to be developed into effective prophylactic and therapeutic molecules. In this study, 7 different MSGs were evaluated for their anti-SARS-CoV-2 activity in a virus entry assay utilizing a SARS-CoV-2 pseudovirus coated with S-protein of the wild-type (Wuhan-Hu-1) or the Delta (B.1.617.2) strain. Although all tested MSGs showed strong inhibitory activity against both strains, no correlations between MSG structural features and virus inhibition could be drawn. Nevertheless, the current study provides evidence for the maintenance of inhibitory activity of MSGs against evolving SARS-CoV-2 strains.


Subject(s)
Antiviral Agents , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Sulfates , Virus Internalization , Antiviral Agents/pharmacology , Heparan Sulfate Proteoglycans/metabolism , Humans , Polysaccharides/pharmacology , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Sulfates/pharmacology , Virus Internalization/drug effects
5.
Clin Microbiol Rev ; 35(3): e0001422, 2022 09 21.
Article in English | MEDLINE | ID: covidwho-1896040

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps evolving and mutating into newer variants over time, which gain higher transmissibility, disease severity, and spread in communities at a faster rate, resulting in multiple waves of surge in Coronavirus Disease 2019 (COVID-19) cases. A highly mutated and transmissible SARS-CoV-2 Omicron variant has recently emerged, driving the extremely high peak of infections in almost all continents at an unprecedented speed and scale. The Omicron variant evades the protection rendered by vaccine-induced antibodies and natural infection, as well as overpowers the antibody-based immunotherapies, raising the concerns of current effectiveness of available vaccines and monoclonal antibody-based therapies. This review outlines the most recent advancements in studying the virology and biology of the Omicron variant, highlighting its increased resistance to current antibody-based therapeutics and its immune escape against vaccines. However, the Omicron variant is highly sensitive to viral fusion inhibitors targeting the HR1 motif in the spike protein, enzyme inhibitors, involving the endosomal fusion pathway, and ACE2-based entry inhibitors. Omicron variant-associated infectivity and entry mechanisms of Omicron variant are essentially distinct from previous characterized variants. Innate sensing and immune evasion of SARS-CoV-2 and T cell immunity to the virus provide new perspectives of vaccine and drug development. These findings are important for understanding SARS-CoV-2 viral biology and advances in developing vaccines, antibody-based therapies, and more effective strategies to mitigate the transmission of the Omicron variant or the next SARS-CoV-2 variant of concern.


Subject(s)
Antibodies, Monoclonal , Antiviral Agents , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/prevention & control , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/therapeutic use , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Virus Internalization/drug effects
6.
Nucleosides Nucleotides Nucleic Acids ; 41(8): 778-814, 2022.
Article in English | MEDLINE | ID: covidwho-1830783

ABSTRACT

Viruses have multiple mutation rates that are higher than any other member of the kingdom of life. This gives them the ability to evolve, even within the course of a single infection, and to evade multiple host defenses, thereby impacting pathogenesis. Additionally, there are also interplays between mutation and recombination and the high multiplicity of infection (MOI) that enhance viral adaptability and increase levels of recombination leading to complex and conflicting effects on genome selection, and the net results is difficult to predict. Recently, the outbreak of COVID-19 virus represents a pandemic threat that has been declared a public health emergency of international concern. Up to present, however, due to the high mutation rate of COVID-19 virus, there are no effective procedures to contain the spread of this virus across the globe. For such a purpose, there is then an urgent need to explore new approaches. As an opinion, the present approach emphasizes on (a) the use of a nonspecific way of blocking the entry of COVID-19 virus as well as its variants into the cells via a therapeutic biocompatible compound (ideally, "in a pill") targeting its spike (S) glycoprotein; and (b) the construction of expression vectors via the glycosyl-phosphatidylinositol, GPI, anchor for studying intermolecular interactions between the spike S of COVID-19 virus as well as its variants and the angiotensin-converting enzyme 2 (ACE2) of its host receptor for checking the efficacy of any therapeutic biocompatible compound of the nonspecific way of blocking. Such antiviral drug would be safer than the ACE1 and ACE2 inhibitors/angiotensin receptor blockers, and recombinant human ACE2 as well as nucleoside analogs or protease inhibitors used for fighting the spread of the virus inside the cells, and it would also be used as a universal one for any eventual future pandemic related to viruses, especially the RNA viruses with high mutation rates.


Subject(s)
COVID-19 , Mutation Rate , SARS-CoV-2 , Virus Internalization , Angiotensin-Converting Enzyme 2/genetics , COVID-19/virology , Humans , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
7.
Eur J Med Chem ; 238: 114426, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-1821218

ABSTRACT

The COVID-19 pandemic generates a global threat to public health and continuously emerging SARS-CoV-2 variants bring a great challenge to the development of both vaccines and antiviral agents. In this study, we identified UA-18 and its optimized analog UA-30 via the hit-to-lead strategy as novel SARS-CoV-2 fusion inhibitors. The lead compound UA-30 showed potent antiviral activity against infectious SARS-CoV-2 (wuhan-HU-1 variant) in Vero-E6 cells and was also effective against infection of diverse pseudotyped SARS-CoV-2 variants with mutations in the S protein including the Omicron and Delta variants. More importantly, UA-30 might target the cavity between S1 and S2 subunits to stabilize the prefusion state of the SARS-CoV-2 S protein, thus leading to interfering with virus-cell membrane fusion. This study offers a set of novel SARS-CoV-2 fusion inhibitors against SARS-CoV-2 and its variants based on the 3-O-ß-chacotriosyl UA skeleton.


Subject(s)
Antiviral Agents , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Triterpenes , Virus Internalization , Antiviral Agents/pharmacology , COVID-19/drug therapy , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Triterpenes/pharmacology , Virus Internalization/drug effects
8.
J Chem Inf Model ; 62(8): 1988-1997, 2022 04 25.
Article in English | MEDLINE | ID: covidwho-1783923

ABSTRACT

The cell entry of SARS-CoV-2 has emerged as an attractive drug development target. We previously reported that the entry of SARS-CoV-2 depends on the cell surface heparan sulfate proteoglycan (HSPG) and the cortex actin, which can be targeted by therapeutic agents identified by conventional drug repurposing screens. However, this drug identification strategy requires laborious library screening, which is time consuming, and often limited number of compounds can be screened. As an alternative approach, we developed and trained a graph convolutional network (GCN)-based classification model using information extracted from experimentally identified HSPG and actin inhibitors. This method allowed us to virtually screen 170,000 compounds, resulting in ∼2000 potential hits. A hit confirmation assay with the uptake of a fluorescently labeled HSPG cargo further shortlisted 256 active compounds. Among them, 16 compounds had modest to strong inhibitory activities against the entry of SARS-CoV-2 pseudotyped particles into Vero E6 cells. These results establish a GCN-based virtual screen workflow for rapid identification of new small molecule inhibitors against validated drug targets.


Subject(s)
Antiviral Agents , SARS-CoV-2 , Virus Internalization , Actins , Antiviral Agents/chemistry , COVID-19/drug therapy , Heparan Sulfate Proteoglycans , Humans , SARS-CoV-2/drug effects , Virus Internalization/drug effects
9.
Nature ; 605(7909): 340-348, 2022 05.
Article in English | MEDLINE | ID: covidwho-1764188

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced owing to emerging variants of concern1,2. Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against variants of concern3,4. Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs) such as TMPRSS2; these proteases cleave the viral spike protein to expose the fusion peptide for cell entry, and thus have an essential role in the virus lifecycle5,6. Here we identify and characterize a small-molecule compound, N-0385, which exhibits low nanomolar potency and a selectivity index of higher than 106 in inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids7. In Calu-3 cells it inhibits the entry of the SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Notably, in the K18-human ACE2 transgenic mouse model of severe COVID-19, we found that N-0385 affords a high level of prophylactic and therapeutic benefit after multiple administrations or even after a single administration. Together, our findings show that TTSP-mediated proteolytic maturation of the spike protein is critical for SARS-CoV-2 infection in vivo, and suggest that N-0385 provides an effective early treatment option against COVID-19 and emerging SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Serine Proteinase Inhibitors , Animals , COVID-19/prevention & control , COVID-19/virology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , SARS-CoV-2/drug effects , Serine Endopeptidases , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
10.
J Virol ; 96(2): e0106021, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1759286

ABSTRACT

Rhinoviruses (RVs) cause recurrent infections of the nasal and pulmonary tracts, life-threatening conditions in chronic respiratory illness patients, predisposition of children to asthmatic exacerbation, and large economic cost. RVs are difficult to treat. They rapidly evolve resistance and are genetically diverse. Here, we provide insight into RV drug resistance mechanisms against chemical compounds neutralizing low pH in endolysosomes. Serial passaging of RV-A16 in the presence of the vacuolar proton ATPase inhibitor bafilomycin A1 (BafA1) or the endolysosomotropic agent ammonium chloride (NH4Cl) promoted the emergence of resistant virus populations. We found two reproducible point mutations in viral proteins 1 and 3 (VP1 and VP3), A2526G (serine 66 to asparagine [S66N]), and G2274U (cysteine 220 to phenylalanine [C220F]), respectively. Both mutations conferred cross-resistance to BafA1, NH4Cl, and the protonophore niclosamide, as identified by massive parallel sequencing and reverse genetics, but not the double mutation, which we could not rescue. Both VP1-S66 and VP3-C220 locate at the interprotomeric face, and their mutations increase the sensitivity of virions to low pH, elevated temperature, and soluble intercellular adhesion molecule 1 receptor. These results indicate that the ability of RV to uncoat at low endosomal pH confers virion resistance to extracellular stress. The data endorse endosomal acidification inhibitors as a viable strategy against RVs, especially if inhibitors are directly applied to the airways. IMPORTANCE Rhinoviruses (RVs) are the predominant agents causing the common cold. Anti-RV drugs and vaccines are not available, largely due to rapid evolutionary adaptation of RVs giving rise to resistant mutants and an immense diversity of antigens in more than 160 different RV types. In this study, we obtained insight into the cell biology of RVs by harnessing the ability of RVs to evolve resistance against host-targeting small chemical compounds neutralizing endosomal pH, an important cue for uncoating of normal RVs. We show that RVs grown in cells treated with inhibitors of endolysosomal acidification evolved capsid mutations yielding reduced virion stability against elevated temperature, low pH, and incubation with recombinant soluble receptor fragments. This fitness cost makes it unlikely that RV mutants adapted to neutral pH become prevalent in nature. The data support the concept of host-directed drug development against respiratory viruses in general, notably at low risk of gain-of-function mutations.


Subject(s)
Capsid/chemistry , Mutation/drug effects , Rhinovirus/physiology , Virus Uncoating/physiology , Antiviral Agents/pharmacology , Capsid/drug effects , Capsid Proteins/genetics , Capsid Proteins/metabolism , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Endosomes/chemistry , Endosomes/drug effects , Endosomes/metabolism , HeLa Cells , Humans , Hydrogen-Ion Concentration , Intercellular Adhesion Molecule-1/metabolism , Protein Conformation , Rhinovirus/chemistry , Rhinovirus/drug effects , Rhinovirus/genetics , Virion/chemistry , Virion/genetics , Virion/metabolism , Virus Internalization/drug effects , Virus Uncoating/drug effects , Virus Uncoating/genetics
11.
Cell Mol Biol Lett ; 27(1): 10, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1753103

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) pandemic has spread worldwide, and finding a safe therapeutic strategy and effective vaccine is critical to overcoming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, elucidation of pathogenesis mechanisms, especially entry routes of SARS-CoV-2 may help propose antiviral drugs and novel vaccines. Several receptors have been demonstrated for the interaction of spike (S) protein of SARS-CoV-2 with host cells, including angiotensin-converting enzyme (ACE2), ephrin ligands and Eph receptors, neuropilin 1 (NRP-1), P2X7, and CD147. The expression of these entry receptors in the central nervous system (CNS) may make the CNS prone to SARS-CoV-2 invasion, leading to neurodegenerative diseases. The present review provides potential pathological mechanisms of SARS-CoV-2 infection in the CNS, including entry receptors and cytokines involved in neuroinflammatory conditions. Moreover, it explains several neurodegenerative disorders associated with COVID-19. Finally, we suggest inflammasome and JaK inhibitors as potential therapeutic strategies for neurodegenerative diseases.


Subject(s)
COVID-19/drug therapy , Central Nervous System/drug effects , Inflammasomes/drug effects , Neurodegenerative Diseases/drug therapy , Receptors, Virus/genetics , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/therapeutic use , Basigin/genetics , Basigin/metabolism , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Central Nervous System/metabolism , Central Nervous System/virology , Ephrins/genetics , Ephrins/metabolism , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Immunologic Factors/therapeutic use , Inflammasomes/genetics , Inflammasomes/metabolism , Janus Kinase Inhibitors/therapeutic use , Janus Kinases/antagonists & inhibitors , Janus Kinases/genetics , Janus Kinases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/virology , Neuropilin-1/genetics , Neuropilin-1/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Signal Transduction
12.
Molecules ; 27(5)2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1732132

ABSTRACT

The COVID-19 pandemic has led to the search for new molecules with antiviral activity against SARS-CoV-2. The entry of the virus into the cell is one of the main targets for inhibiting SARS-CoV-2 infection. Natural products are an important source of new therapeutic alternatives against diseases. Pseudotyped viruses allow the study of SARS-CoV-2 viral entry inhibitors, and due to their simplicity, they allow the screening of a large number of antiviral candidates in Biosafety Level 2 facilities. We used pseudotyped HIV-1 with the D614G SARS-CoV-2 spike glycoprotein to test its ability to infect ACE2-expressing HEK 293T cells in the presence of diverse natural products, including 21 plant extracts, 7 essential oils, and 13 compounds from plants and fungi. The 50% cytotoxic concentration (CC50) was evaluated using the resazurin method. From these analyses, we determined the inhibitory activity of the extract of Stachytarpheta cayennensis, which had a half-maximal inhibitory concentration (IC50) of 91.65 µg/mL, a CC50 of 693.5 µg/mL, and a selectivity index (SI) of 7.57, indicating its potential use as an inhibitor of SARS-CoV-2 entry. Moreover, our work indicates the usefulness of the pseudotyped-virus system in the screening of SARS-CoV-2 entry inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/chemistry , Virus Internalization/drug effects , Actinobacteria/chemistry , Actinobacteria/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Biological Products/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , COVID-19/drug therapy , COVID-19/virology , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism
13.
Front Immunol ; 13: 841459, 2022.
Article in English | MEDLINE | ID: covidwho-1731786

ABSTRACT

In late 2019, COVID-19 emerged in Wuhan, China. Currently, it is an ongoing global health threat stressing the need for therapeutic compounds. Linking the virus life cycle and its interaction with cell receptors and internal cellular machinery is key to developing therapies based on the control of infectivity and inflammation. In this framework, we evaluate the combination of cannabidiol (CBD), as an anti-inflammatory molecule, and terpenes, by their anti-microbiological properties, in reducing SARS-CoV-2 infectivity. Our group settled six formulations combining CBD and terpenes purified from Cannabis sativa L, Origanum vulgare, and Thymus mastichina. The formulations were analyzed by HPLC and GC-MS and evaluated for virucide and antiviral potential by in vitro studies in alveolar basal epithelial, colon, kidney, and keratinocyte human cell lines. Conclusions and Impact: We demonstrate the virucide effectiveness of CBD and terpene-based formulations. F2TC reduces the infectivity by 17%, 24%, and 99% for CaCo-2, HaCat, and A549, respectively, and F1TC by 43%, 37%, and 29% for Hek293T, HaCaT, and Caco-2, respectively. To the best of our knowledge, this is the first approach that tackles the combination of CBD with a specific group of terpenes against SARS-CoV-2 in different cell lines. The differential effectiveness of formulations according to the cell line can be relevant to understanding the pattern of virus infectivity and the host inflammation response, and lead to new therapeutic strategies.


Subject(s)
Antiviral Agents/pharmacology , Cannabidiol/pharmacology , SARS-CoV-2/drug effects , Terpenes/pharmacology , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/chemistry , Cannabidiol/chemistry , Cell Line , Cell Survival/drug effects , Drug Synergism , Humans , Plants, Medicinal/chemistry , Terpenes/chemistry , Virus Internalization/drug effects , Virus Replication/drug effects
14.
Front Immunol ; 13: 811430, 2022.
Article in English | MEDLINE | ID: covidwho-1731772

ABSTRACT

Despite significant research efforts, treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain limited. This is due in part to a lack of therapeutics that increase host defense to the virus. Replication of SARS-CoV-2 in lung tissue is associated with marked infiltration of macrophages and activation of innate immune inflammatory responses that amplify tissue injury. Antagonists of the androgen (AR) and glucocorticoid (GR) receptors have shown efficacy in models of COVID-19 and in clinical studies because the cell surface proteins required for viral entry, angiotensin converting enzyme 2 (ACE2) and the transmembrane protease, serine 2 (TMPRSS2), are transcriptionally regulated by these receptors. We postulated that the GR and AR modulator, PT150, would reduce infectivity of SARS-CoV-2 and prevent inflammatory lung injury in the Syrian golden hamster model of COVID-19 by down-regulating expression of critical genes regulated through these receptors. Animals were infected intranasally with 2.5 × 104 TCID50/ml equivalents of SARS-CoV-2 (strain 2019-nCoV/USA-WA1/2020) and PT150 was administered by oral gavage at 30 and 100 mg/Kg/day for a total of 7 days. Animals were examined at 3, 5 and 7 days post-infection (DPI) for lung histopathology, viral load and production of proteins regulating the progression of SARS-CoV-2 infection. Results indicated that oral administration of PT150 caused a dose-dependent decrease in replication of SARS-CoV-2 in lung, as well as in expression of ACE2 and TMPRSS2. Lung hypercellularity and infiltration of macrophages and CD4+ T-cells were dramatically decreased in PT150-treated animals, as was tissue damage and expression of IL-6. Molecular docking studies suggest that PT150 binds to the co-activator interface of the ligand-binding domain of both AR and GR, thereby acting as an allosteric modulator and transcriptional repressor of these receptors. Phylogenetic analysis of AR and GR revealed a high degree of sequence identity maintained across multiple species, including humans, suggesting that the mechanism of action and therapeutic efficacy observed in Syrian hamsters would likely be predictive of positive outcomes in patients. PT150 is therefore a strong candidate for further clinical development for the treatment of COVID-19 across variants of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Glucocorticoids/metabolism , Immunity, Innate/drug effects , Inflammation/drug therapy , Receptors, Androgen/metabolism , Virus Internalization/drug effects , Animals , COVID-19/metabolism , Disease Models, Animal , Female , Inflammation/metabolism , Inflammation/virology , Lung/virology , Male , Mesocricetus , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Load/drug effects
15.
Int J Mol Sci ; 23(5)2022 Feb 27.
Article in English | MEDLINE | ID: covidwho-1715407

ABSTRACT

The overall impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on our society is unprecedented. The identification of small natural ligands that could prevent the entry and/or replication of the coronavirus remains a pertinent approach to fight the coronavirus disease (COVID-19) pandemic. Previously, we showed that the phenolic compounds corilagin and 1,3,6-tri-O-galloyl-ß-D-glucose (TGG) inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 target receptor on the cell membrane of the host organism. Building on these promising results, we now assess the effects of these phenolic ligands on two other crucial targets involved in SARS-CoV-2 cell entry and replication, respectively: transmembrane protease serine 2 (TMPRSS2) and 3-chymotrypsin like protease (3CLpro) inhibitors. Since corilagin, TGG, and tannic acid (TA) share many physicochemical and structural properties, we investigate the binding of TA to these targets. In this work, a combination of experimental methods (biochemical inhibition assays, surface plasmon resonance, and quartz crystal microbalance with dissipation monitoring) confirms the potential role of TA in the prevention of SARS-CoV-2 infectivity through the inhibition of extracellular RBD/ACE2 interactions and TMPRSS2 and 3CLpro activity. Moreover, molecular docking prediction followed by dynamic simulation and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) free energy calculation also shows that TA binds to RBD, TMPRSS2, and 3CLpro with higher affinities than TGG and corilagin. Overall, these results suggest that naturally occurring TA is a promising candidate to prevent and inhibit the infectivity of SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Molecular Docking Simulation , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Tannins/pharmacology , Algorithms , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , COVID-19/virology , Coronavirus 3C Proteases , Glucosides/chemistry , Glucosides/metabolism , Glucosides/pharmacology , Humans , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/metabolism , Hydrolyzable Tannins/pharmacology , Kinetics , Pandemics/prevention & control , Protein Binding/drug effects , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance , Tannins/chemistry , Tannins/metabolism , Virus Internalization/drug effects
16.
Sci Adv ; 8(8): eabi6110, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1714330

ABSTRACT

The spread of SARS-CoV-2 and ongoing COVID-19 pandemic underscores the need for new treatments. Here we report that cannabidiol (CBD) inhibits infection of SARS-CoV-2 in cells and mice. CBD and its metabolite 7-OH-CBD, but not THC or other congeneric cannabinoids tested, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after viral entry, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD inhibits SARS-CoV-2 replication in part by up-regulating the host IRE1α RNase endoplasmic reticulum (ER) stress response and interferon signaling pathways. In matched groups of human patients from the National COVID Cohort Collaborative, CBD (100 mg/ml oral solution per medical records) had a significant negative association with positive SARS-CoV-2 tests. This study highlights CBD as a potential preventative agent for early-stage SARS-CoV-2 infection and merits future clinical trials. We caution against use of non-medical formulations including edibles, inhalants or topicals as a preventative or treatment therapy at the present time.


Subject(s)
Antiviral Agents/pharmacology , Cannabidiol/pharmacology , Host-Pathogen Interactions/drug effects , Immunity, Innate/drug effects , SARS-CoV-2/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , COVID-19/drug therapy , COVID-19/virology , Cannabidiol/chemistry , Cannabidiol/metabolism , Chlorocebus aethiops , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/genetics , Endoribonucleases/metabolism , Epithelial Cells/virology , Female , Gene Expression Regulation, Viral/drug effects , Host-Pathogen Interactions/physiology , Humans , Interferons/metabolism , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects
17.
Stem Cell Reports ; 17(2): 307-320, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1712991

ABSTRACT

Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients' brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling.


Subject(s)
Blood-Brain Barrier/virology , Central Nervous System/virology , SARS-CoV-2/physiology , Virus Internalization , Antibodies/pharmacology , Benzamidines/pharmacology , COVID-19/pathology , COVID-19/virology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/virology , Guanidines/pharmacology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Models, Biological , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Virus Internalization/drug effects
18.
PLoS Pathog ; 18(2): e1010343, 2022 02.
Article in English | MEDLINE | ID: covidwho-1690680

ABSTRACT

The continuous emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2) variants and the increasing number of breakthrough infection cases among vaccinated people support the urgent need for research and development of antiviral drugs. Viral entry is an intriguing target for antiviral drug development. We found that diltiazem, a blocker of the L-type calcium channel Cav1.2 pore-forming subunit (Cav1.2 α1c) and an FDA-approved drug, inhibits the binding and internalization of SARS-CoV-2, and decreases SARS-CoV-2 infection in cells and mouse lung. Cav1.2 α1c interacts with SARS-CoV-2 spike protein and ACE2, and affects the attachment and internalization of SARS-CoV-2. Our finding suggests that diltiazem has potential as a drug against SARS-CoV-2 infection and that Cav1.2 α1c is a promising target for antiviral drug development for COVID-19.


Subject(s)
COVID-19 , Diltiazem/pharmacology , Lung/drug effects , SARS-CoV-2/drug effects , A549 Cells , Animals , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Diltiazem/therapeutic use , Disease Models, Animal , Female , HEK293 Cells , HeLa Cells , Humans , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/physiology , Vero Cells , Virus Attachment/drug effects , Virus Internalization/drug effects
19.
Viruses ; 14(2)2022 02 14.
Article in English | MEDLINE | ID: covidwho-1687055

ABSTRACT

Inhibition of transmembrane serine protease 2 (TMPRSS2) is expected to block the spike protein-mediated fusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nafamostat, a potent TMPRSS2 inhibitor as well as a candidate for anti-SARS-CoV-2 drug, possesses the same acyl substructure as camostat, but is known to have a greater antiviral effect. A unique aspect of the molecular binding of nafamostat has been recently reported to be the formation of a covalent bond between its acyl substructure and Ser441 in TMPRSS2. In this study, we investigated crucial elements that cause the difference in anti-SARS-CoV-2 activity of nafamostat and camostat. In silico analysis showed that Asp435 significantly contributes to the binding of nafamostat and camostat to TMPRSS2, while Glu299 interacts strongly only with nafamostat. The estimated binding affinity for each compound with TMPRSS2 was actually consistent with the higher activity of nafamostat; however, the evaluation of the newly synthesized nafamostat derivatives revealed that the predicted binding affinity did not correlate with their anti-SARS-CoV-2 activity measured by the cytopathic effect (CPE) inhibition assay. It was further shown that the substitution of the ester bond with amide bond in nafamostat resulted in significantly weakened anti-SARS-CoV-2 activity. These results strongly indicate that the ease of covalent bond formation with Ser441 in TMPRSS2 possibly plays a major role in the anti-SARS-CoV-2 effect of nafamostat and its derivatives.


Subject(s)
Antiviral Agents/pharmacology , Benzamidines/pharmacology , Computer Simulation , Guanidines/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Benzamidines/chemistry , COVID-19/drug therapy , Cell Line , Guanidines/chemistry , Humans , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Serine Endopeptidases/metabolism , Virus Internalization/drug effects
20.
Viruses ; 14(2)2022 02 11.
Article in English | MEDLINE | ID: covidwho-1687050

ABSTRACT

Despite the development of specific therapies against severe acute respiratory coronavirus 2 (SARS-CoV-2), the continuous investigation of the mechanism of action of clinically approved drugs could provide new information on the druggable steps of virus-host interaction. For example, chloroquine (CQ)/hydroxychloroquine (HCQ) lacks in vitro activity against SARS-CoV-2 in TMPRSS2-expressing cells, such as human pneumocyte cell line Calu-3, and likewise, failed to show clinical benefit in the Solidarity and Recovery clinical trials. Another antimalarial drug, mefloquine, which is not a 4-aminoquinoline like CQ/HCQ, has emerged as a potential anti-SARS-CoV-2 antiviral in vitro and has also been previously repurposed for respiratory diseases. Here, we investigated the anti-SARS-CoV-2 mechanism of action of mefloquine in cells relevant for the physiopathology of COVID-19, such as Calu-3 cells (that recapitulate type II pneumocytes) and monocytes. Molecular pathways modulated by mefloquine were assessed by differential expression analysis, and confirmed by biological assays. A PBPK model was developed to assess mefloquine's optimal doses for achieving therapeutic concentrations. Mefloquine inhibited SARS-CoV-2 replication in Calu-3, with an EC50 of 1.2 µM and EC90 of 5.3 µM. It reduced SARS-CoV-2 RNA levels in monocytes and prevented virus-induced enhancement of IL-6 and TNF-α. Mefloquine reduced SARS-CoV-2 entry and synergized with Remdesivir. Mefloquine's pharmacological parameters are consistent with its plasma exposure in humans and its tissue-to-plasma predicted coefficient points suggesting that mefloquine may accumulate in the lungs. Altogether, our data indicate that mefloquine's chemical structure could represent an orally available host-acting agent to inhibit virus entry.


Subject(s)
Alveolar Epithelial Cells/drug effects , Antiviral Agents/pharmacology , Chloroquine/pharmacology , Mefloquine/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/virology , COVID-19/drug therapy , Cell Line , Drug Repositioning/methods , Humans , Serine Endopeptidases/genetics , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL