Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1614505

ABSTRACT

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single linear RNA segment that serves as a template for transcription and replication, leading to the synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to visualize vRNA directly in infected cells are critical to analyze the viral replication cycle, screen for therapeutic molecules, or study infections in human tissue. Here, we report the design, validation, and initial application of FISH probes to visualize positive or negative RNA of SARS-CoV-2 (CoronaFISH). We demonstrate sensitive visualization of vRNA in African green monkey and several human cell lines, in patient samples and human tissue. We further demonstrate the adaptation of CoronaFISH probes to electron microscopy. We provide all required oligonucleotide sequences, source code to design the probes, and a detailed protocol. We hope that CoronaFISH will complement existing techniques for research on SARS-CoV-2 biology and COVID-19 pathophysiology, drug screening, and diagnostics.


Subject(s)
COVID-19/diagnosis , In Situ Hybridization, Fluorescence/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Replication/genetics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/virology , Caco-2 Cells , Cell Line, Tumor , Chlorocebus aethiops , Humans , In Situ Hybridization/methods , Microscopy, Electron/methods , RNA, Viral/ultrastructure , Reproducibility of Results , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sensitivity and Specificity , Vero Cells , Virus Release/drug effects , Virus Release/genetics , Virus Release/physiology , Virus Replication/drug effects , Virus Replication/physiology
2.
Cell Mol Life Sci ; 78(7): 3565-3576, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1384325

ABSTRACT

Many studies on SARS-CoV-2 have been performed over short-time scale, but few have focused on the ultrastructural characteristics of infected cells. We used TEM to perform kinetic analysis of the ultrastructure of SARS-CoV-2-infected cells. Early infection events were characterized by the presence of clusters of single-membrane vesicles and stacks of membrane containing nuclear pores called annulate lamellae (AL). A large network of host cell-derived organelles transformed into virus factories was subsequently observed in the cells. As previously described for other RNA viruses, these replication factories consisted of double-membrane vesicles (DMVs) located close to the nucleus. Viruses released at the cell surface by exocytosis harbored the typical crown of spike proteins, but viral particles without spikes were also observed in intracellular compartments, possibly reflecting incorrect assembly or a cell degradation process.


Subject(s)
SARS-CoV-2/growth & development , Viral Replication Compartments/ultrastructure , Virus Release/physiology , Virus Replication/physiology , Animals , COVID-19/pathology , Cell Line , Chlorocebus aethiops , Microscopy, Electron, Transmission , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Replication Compartments/physiology
4.
Nat Commun ; 12(1): 4629, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1333939

ABSTRACT

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified viral components and inactivated viruses. However, structural and ultrastructural evidence on how the SARS-CoV-2 infection progresses in the native cellular context is scarce, and there is a lack of comprehensive knowledge on the SARS-CoV-2 replicative cycle. To correlate cytopathic events induced by SARS-CoV-2 with virus replication processes in frozen-hydrated cells, we established a unique multi-modal, multi-scale cryo-correlative platform to image SARS-CoV-2 infection in Vero cells. This platform combines serial cryoFIB/SEM volume imaging and soft X-ray cryo-tomography with cell lamellae-based cryo-electron tomography (cryoET) and subtomogram averaging. Here we report critical SARS-CoV-2 structural events - e.g. viral RNA transport portals, virus assembly intermediates, virus egress pathway, and native virus spike structures, in the context of whole-cell volumes revealing drastic cytppathic changes. This integrated approach allows a holistic view of SARS-CoV-2 infection, from the whole cell to individual molecules.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Virus Assembly/immunology , Virus Release/immunology , Virus Replication/immunology , Animals , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Cryoelectron Microscopy , Electron Microscope Tomography , Humans , Pandemics/prevention & control , SARS-CoV-2/physiology , SARS-CoV-2/ultrastructure , Vero Cells , Virus Assembly/physiology , Virus Release/physiology , Virus Replication/physiology
5.
J Biol Chem ; 296: 100111, 2021.
Article in English | MEDLINE | ID: covidwho-1066049

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a ß-coronavirus, is the causative agent of the COVID-19 pandemic. Like for other coronaviruses, its particles are composed of four structural proteins: spike (S), envelope (E), membrane (M), and nucleoprotein (N) proteins. The involvement of each of these proteins and their interactions are critical for assembly and production of ß-coronavirus particles. Here, we sought to characterize the interplay of SARS-CoV-2 structural proteins during the viral assembly process. By combining biochemical and imaging assays in infected versus transfected cells, we show that E and M regulate intracellular trafficking of S as well as its intracellular processing. Indeed, the imaging data reveal that S is relocalized at endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) or Golgi compartments upon coexpression of E or M, as observed in SARS-CoV-2-infected cells, which prevents syncytia formation. We show that a C-terminal retrieval motif in the cytoplasmic tail of S is required for its M-mediated retention in the ERGIC, whereas E induces S retention by modulating the cell secretory pathway. We also highlight that E and M induce a specific maturation of N-glycosylation of S, independently of the regulation of its localization, with a profile that is observed both in infected cells and in purified viral particles. Finally, we show that E, M, and N are required for optimal production of virus-like-particles. Altogether, these results highlight how E and M proteins may influence the properties of S proteins and promote the assembly of SARS-CoV-2 viral particles.


Subject(s)
Coronavirus Envelope Proteins/genetics , Nucleocapsid Proteins/genetics , SARS-CoV-2/growth & development , Spike Glycoprotein, Coronavirus/genetics , Viral Matrix Proteins/genetics , Virion/growth & development , Virus Assembly/physiology , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Envelope Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum/virology , Gene Expression , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Golgi Apparatus/virology , HEK293 Cells , Hepatocytes/metabolism , Hepatocytes/ultrastructure , Hepatocytes/virology , Host-Pathogen Interactions/genetics , Humans , Nucleocapsid Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Matrix Proteins/metabolism , Virion/genetics , Virion/metabolism , Virus Internalization , Virus Release/physiology
6.
Cell Mol Life Sci ; 78(7): 3565-3576, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1033048

ABSTRACT

Many studies on SARS-CoV-2 have been performed over short-time scale, but few have focused on the ultrastructural characteristics of infected cells. We used TEM to perform kinetic analysis of the ultrastructure of SARS-CoV-2-infected cells. Early infection events were characterized by the presence of clusters of single-membrane vesicles and stacks of membrane containing nuclear pores called annulate lamellae (AL). A large network of host cell-derived organelles transformed into virus factories was subsequently observed in the cells. As previously described for other RNA viruses, these replication factories consisted of double-membrane vesicles (DMVs) located close to the nucleus. Viruses released at the cell surface by exocytosis harbored the typical crown of spike proteins, but viral particles without spikes were also observed in intracellular compartments, possibly reflecting incorrect assembly or a cell degradation process.


Subject(s)
SARS-CoV-2/growth & development , Viral Replication Compartments/ultrastructure , Virus Release/physiology , Virus Replication/physiology , Animals , COVID-19/pathology , Cell Line , Chlorocebus aethiops , Microscopy, Electron, Transmission , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Replication Compartments/physiology
7.
J Biol Chem ; 296: 100103, 2021.
Article in English | MEDLINE | ID: covidwho-936211

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in December 2019 in Wuhan, China, and expeditiously spread across the globe causing a global pandemic. Research on SARS-CoV-2, as well as the closely related SARS-CoV-1 and MERS coronaviruses, is restricted to BSL-3 facilities. Such BSL-3 classification makes SARS-CoV-2 research inaccessible to the majority of functioning research laboratories in the United States; this becomes problematic when the collective scientific effort needs to be focused on such in the face of a pandemic. However, a minimal system capable of recapitulating different steps of the viral life cycle without using the virus' genetic material could increase accessibility. In this work, we assessed the four structural proteins from SARS-CoV-2 for their ability to form virus-like particles (VLPs) from human cells to form a competent system for BSL-2 studies of SARS-CoV-2. Herein, we provide methods and resources of producing, purifying, fluorescently and APEX2-labeling of SARS-CoV-2 VLPs for the evaluation of mechanisms of viral budding and entry as well as assessment of drug inhibitors under BSL-2 conditions. These systems should be useful to those looking to circumvent BSL-3 work with SARS-CoV-2 yet study the mechanisms by which SARS-CoV-2 enters and exits human cells.


Subject(s)
Coronavirus Envelope Proteins/genetics , Nucleocapsid Proteins/genetics , SARS-CoV-2/growth & development , Spike Glycoprotein, Coronavirus/genetics , Viral Matrix Proteins/genetics , Virion/growth & development , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Containment of Biohazards/classification , Coronavirus Envelope Proteins/metabolism , Gene Expression , Genes, Reporter , Government Regulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Electron , Nucleocapsid Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/metabolism , Viral Matrix Proteins/metabolism , Virion/genetics , Virion/metabolism , Virion/ultrastructure , Virus Assembly/physiology , Virus Internalization , Virus Release/physiology
SELECTION OF CITATIONS
SEARCH DETAIL