Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Signal Transduct Target Ther ; 5(1): 125, 2020 07 13.
Article in English | MEDLINE | ID: covidwho-654479

ABSTRACT

Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson's diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Heat-Shock Proteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Host-Pathogen Interactions/drug effects , Pneumonia, Viral/drug therapy , Antiviral Agents/chemical synthesis , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Chromatin Assembly and Disassembly/drug effects , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Gene Expression Regulation , Heat-Shock Proteins/agonists , Heat-Shock Proteins/antagonists & inhibitors , Heat-Shock Proteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/agonists , Heterogeneous-Nuclear Ribonucleoproteins/antagonists & inhibitors , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Host-Pathogen Interactions/genetics , Humans , Molecular Targeted Therapy/methods , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Severity of Illness Index , Signal Transduction , Transcription, Genetic/drug effects , Virus Replication/drug effects
2.
Nat Commun ; 11(1): 2750, 2020 06 02.
Article in English | MEDLINE | ID: covidwho-680538

ABSTRACT

Influenza viruses annually kill 290,000-650,000 people worldwide. Antivirals can reduce death tolls. Baloxavir, the recently approved influenza antiviral, inhibits initiation of viral mRNA synthesis, whereas oseltamivir, an older drug, inhibits release of virus progeny. Baloxavir blocks virus replication more rapidly and completely than oseltamivir, reducing the duration of infectiousness. Hence, early baloxavir treatment may indirectly prevent transmission. Here, we estimate impacts of ramping up and accelerating baloxavir treatment on population-level incidence using a new model that links viral load dynamics from clinical trial data to between-host transmission. We estimate that ~22 million infections and >6,000 deaths would have been averted in the 2017-2018 epidemic season by administering baloxavir to 30% of infected cases within 48 h after symptom onset. Treatment within 24 h would almost double the impact. Consequently, scaling up early baloxavir treatment would substantially reduce influenza morbidity and mortality every year. The development of antivirals against the SARS-CoV2 virus that function like baloxavir might similarly curtail transmission and save lives.


Subject(s)
Antiviral Agents/therapeutic use , Epidemics , Influenza, Human/drug therapy , Orthomyxoviridae/drug effects , Oxazines/therapeutic use , Pyridines/therapeutic use , Thiepins/therapeutic use , Triazines/therapeutic use , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Cell Proliferation , Coronavirus Infections/drug therapy , Humans , Influenza, Human/virology , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Oxazines/pharmacology , Pandemics , Pneumonia, Viral/drug therapy , Public Health , Pyridines/pharmacology , RNA, Messenger/metabolism , Seasons , Thiepins/pharmacology , Triazines/pharmacology , Viral Load , Virus Replication/drug effects
3.
Arch Virol ; 165(9): 1935-1945, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-617264

ABSTRACT

Plants are a rich source of new antiviral, pharmacologically active agents. The naturally occurring plant alkaloid berberine (BBR) is one of the phytochemicals with a broad range of biological activity, including anticancer, anti-inflammatory and antiviral activity. BBR targets different steps in the viral life cycle and is thus a good candidate for use in novel antiviral drugs and therapies. It has been shown that BBR reduces virus replication and targets specific interactions between the virus and its host. BBR intercalates into DNA and inhibits DNA synthesis and reverse transcriptase activity. It inhibits replication of herpes simplex virus (HSV), human cytomegalovirus (HCMV), human papillomavirus (HPV), and human immunodeficiency virus (HIV). This isoquinoline alkaloid has the ability to regulate the MEK-ERK, AMPK/mTOR, and NF-κB signaling pathways, which are necessary for viral replication. Furthermore, it has been reported that BBR supports the host immune response, thus leading to viral clearance. In this short review, we focus on the most recent studies on the antiviral properties of berberine and its derivatives, which might be promising agents to be considered in future studies in the fight against the current pandemic SARS-CoV-2, the virus that causes COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Berberine/pharmacology , Viruses/drug effects , Animals , Antiviral Agents/chemistry , Berberine/chemistry , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Virus Diseases/virology , Virus Replication/drug effects , Viruses/genetics , Viruses/growth & development
4.
J Virol ; 94(15)2020 07 16.
Article in English | MEDLINE | ID: covidwho-762192

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory disease in humans. MERS-CoV strains from early epidemic clade A and contemporary epidemic clade B have not been phenotypically characterized to compare their abilities to infect cells and mice. We isolated the clade B MERS-CoV ChinaGD01 strain from a patient infected during the South Korean MERS outbreak in 2015 and compared the phylogenetics and pathogenicity of MERS-CoV EMC/2012 (clade A) and ChinaGD01 (clade B) in vitro and in vivo Genome alignment analysis showed that most clade-specific mutations occurred in the orf1ab gene, including mutations that were predicted to be potential glycosylation sites. Minor differences in viral growth but no significant differences in plaque size or sensitivity to beta interferon (IFN-ß) were detected between these two viruses in vitro ChinaGD01 virus infection induced more weight loss and inflammatory cytokine production in human DPP4-transduced mice. Viral titers were higher in the lungs of ChinaGD01-infected mice than with EMC/2012 infection. Decreased virus-specific CD4+ and CD8+ T cell numbers were detected in the lungs of ChinaGD01-infected mice. In conclusion, MERS-CoV evolution induced changes to reshape its pathogenicity and virulence in vitro and in vivo and to evade adaptive immune response to hinder viral clearance.IMPORTANCE MERS-CoV is an important emerging pathogen and causes severe respiratory infection in humans. MERS-CoV strains from early epidemic clade A and contemporary epidemic clade B have not been phenotypically characterized to compare their abilities to infect cells and mice. In this study, we showed that a clade B virus ChinaGD01 strain caused more severe disease in mice, with delayed viral clearance, increased inflammatory cytokines, and decreased antiviral T cell responses, than the early clade A virus EMC/2012. Given the differences in pathogenicity of different clades of MERS-CoV, periodic assessment of currently circulating MERS-CoV is needed to monitor potential severity of zoonotic disease.


Subject(s)
Coronavirus Infections/virology , Genotype , Host-Pathogen Interactions , Middle East Respiratory Syndrome Coronavirus/physiology , Adult , Animals , Disease Models, Animal , Genome, Viral , Host-Pathogen Interactions/immunology , Humans , Interferon Type I/pharmacology , Male , Mice , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Phylogeny , RNA, Viral , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Virulence , Virus Replication/drug effects , Virus Replication/genetics , Whole Genome Sequencing
5.
Nat Commun ; 11(1): 4252, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-741685

ABSTRACT

The 2019 novel respiratory virus (SARS-CoV-2) causes COVID-19 with rapid global socioeconomic disruptions and disease burden to healthcare. The COVID-19 and previous emerging virus outbreaks highlight the urgent need for broad-spectrum antivirals. Here, we show that a defensin-like peptide P9R exhibited potent antiviral activity against pH-dependent viruses that require endosomal acidification for virus infection, including the enveloped pandemic A(H1N1)pdm09 virus, avian influenza A(H7N9) virus, coronaviruses (SARS-CoV-2, MERS-CoV and SARS-CoV), and the non-enveloped rhinovirus. P9R can significantly protect mice from lethal challenge by A(H1N1)pdm09 virus and shows low possibility to cause drug-resistant virus. Mechanistic studies indicate that the antiviral activity of P9R depends on the direct binding to viruses and the inhibition of virus-host endosomal acidification, which provides a proof of concept that virus-binding alkaline peptides can broadly inhibit pH-dependent viruses. These results suggest that the dual-functional virus- and host-targeting P9R can be a promising candidate for combating pH-dependent respiratory viruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Influenza A virus/drug effects , Peptides/pharmacology , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Cell Line , Endosomes/chemistry , Endosomes/drug effects , Female , Humans , Hydrogen-Ion Concentration , Influenza A virus/metabolism , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/metabolism , Peptides/chemistry , Peptides/metabolism , Peptides/therapeutic use , Protein Binding , Protein Conformation , Rhinovirus/drug effects , Rhinovirus/metabolism , Viral Load/drug effects , Virus Replication/drug effects
6.
Eur J Med Chem ; 187: 111956, 2020 Feb 01.
Article in English | MEDLINE | ID: covidwho-733871

ABSTRACT

We have reported on aristeromycin (1) and 6'-fluorinated-aristeromycin analogues (2), which are active against RNA viruses such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus (ZIKV), and Chikungunya virus (CHIKV). However, these exhibit substantial cytotoxicity. As this cytotoxicity may be attributed to 5'-phosphorylation, we designed and synthesized one-carbon homologated 6'-fluorinated-aristeromycin analogues. This modification prevents 5'-phosphorlyation by cellular kinases, whereas the inhibitory activity towards S-adenosyl-l-homocysteine (SAH) hydrolase will be retained. The enantiomerically pure 6'-fluorinated-5'-homoaristeromycin analogues 3a-e were synthesized via the electrophilic fluorination of the silyl enol ether with Selectfluor, using a base-build up approach as the key steps. All synthesized compounds exhibited potent inhibitory activity towards SAH hydrolase, among which 6'-ß-fluoroadenosine analogue 3a was the most potent (IC50 = 0.36 µM). Among the compounds tested, 6'-ß-fluoro-homoaristeromycin 3a showed potent antiviral activity (EC50 = 0.12 µM) against the CHIKV, without noticeable cytotoxicity up to 250 µM. Only 3a displayed anti-CHIKV activity, whereas both3a and 3b inhibited SAH hydrolase with similar IC50 values (0.36 and 0.37 µM, respectively), which suggested that 3a's antiviral activity did not merely depend on the inhibition of SAH hydrolase. This is further supported by the fact that the antiviral effect was specific for CHIKV and some other alphaviruses and none of the homologated analogues inhibited other RNA viruses, such as SARS-CoV, MERS-CoV, and ZIKV. The potent inhibition and high selectivity index make 6'-ß-fluoro-homoaristeromycin (3a) a promising new template for the development of antivirals against CHIKV, a serious re-emerging pathogen that has infected millions of people over the past 15 years.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Adenosine/chemical synthesis , Adenosine/chemistry , Adenosine/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Virus Replication/drug effects
7.
Nat Commun ; 11(1): 4282, 2020 08 27.
Article in English | MEDLINE | ID: covidwho-733525

ABSTRACT

The main protease, Mpro (or 3CLpro) in SARS-CoV-2 is a viable drug target because of its essential role in the cleavage of the virus polypeptide. Feline infectious peritonitis, a fatal coronavirus infection in cats, was successfully treated previously with a prodrug GC376, a dipeptide-based protease inhibitor. Here, we show the prodrug and its parent GC373, are effective inhibitors of the Mpro from both SARS-CoV and SARS-CoV-2 with IC50 values in the nanomolar range. Crystal structures of SARS-CoV-2 Mpro with these inhibitors have a covalent modification of the nucleophilic Cys145. NMR analysis reveals that inhibition proceeds via reversible formation of a hemithioacetal. GC373 and GC376 are potent inhibitors of SARS-CoV-2 replication in cell culture. They are strong drug candidates for the treatment of human coronavirus infections because they have already been successful in animals. The work here lays the framework for their use in human trials for the treatment of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus, Feline/drug effects , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , A549 Cells , Animals , Antiviral Agents/chemistry , Betacoronavirus/enzymology , Binding Sites , Chlorocebus aethiops , Coronavirus, Feline/enzymology , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Cytopathogenic Effect, Viral/drug effects , Drug Repositioning , Humans , Inhibitory Concentration 50 , Molecular Structure , Prodrugs , Protease Inhibitors/chemistry , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , SARS Virus/drug effects , SARS Virus/enzymology , Vero Cells , Viral Nonstructural Proteins/chemistry , Virus Replication/drug effects
8.
Cell Physiol Biochem ; 54(4): 767-790, 2020 Aug 25.
Article in English | MEDLINE | ID: covidwho-729851

ABSTRACT

The pandemic of the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 at the end of 2019 marked the third outbreak of a highly pathogenic coronavirus affecting the human population in the past twenty years. Cross-species zoonotic transmission of SARS-CoV-2 has caused severe pathogenicity and led to more than 655,000 fatalities worldwide until July 28, 2020. Outbursts of this virus underlined the importance of controlling infectious pathogens across international frontiers. Unfortunately, there is currently no clinically approved antiviral drug or vaccine against SARS-CoV-2, although several broad-spectrum antiviral drugs targeting multiple RNA viruses have shown a positive response and improved recovery in patients. In this review, we compile our current knowledge of the emergence, transmission, and pathogenesis of SARS-CoV-2 and explore several features of SARS-CoV-2. We emphasize the current therapeutic approaches used to treat infected patients. We also highlight the results of in vitro and in vivo data from several studies, which have broadened our knowledge of potential drug candidates for the successful treatment of patients infected with and discuss possible virus and host-based treatment options against SARS-CoV-2.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/genetics , Betacoronavirus/physiology , Coronaviridae/pathogenicity , Coronaviridae Infections/epidemiology , Coronaviridae Infections/virology , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/prevention & control , Cytokines/antagonists & inhibitors , Drug Delivery Systems , Endocytosis/drug effects , Forecasting , Genome, Viral , Global Health , Humans , Immunity, Herd , Immunization, Passive , Pandemics/prevention & control , Peptide Hydrolases/pharmacology , Peptide Hydrolases/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , RNA, Viral/genetics , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Viral Vaccines , Virus Internalization/drug effects , Virus Replication/drug effects , Zoonoses
9.
Molecules ; 25(17)2020 Aug 23.
Article in English | MEDLINE | ID: covidwho-727434

ABSTRACT

The SARS-CoV-2 outbreak caused an unprecedented global public health threat, having a high transmission rate with currently no drugs or vaccines approved. An alternative powerful additional approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. In this study, we used the virtual screening protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. First, the Informational spectrum method applied for small molecules was used for searching the Drugbank database and further followed by molecular docking. After in silico screening of drug space, we identified 57 drugs as potential SARS-CoV-2 main protease inhibitors that we propose for further experimental testing.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/drug effects , Cysteine Endopeptidases/chemistry , Mezlocillin/chemistry , Protease Inhibitors/chemistry , Raltegravir Potassium/chemistry , Viral Nonstructural Proteins/chemistry , Allosteric Site , Antiviral Agents/pharmacology , Betacoronavirus/enzymology , Betacoronavirus/pathogenicity , Catalytic Domain , Coronavirus Infections/drug therapy , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Drug Repositioning , Gene Expression , High-Throughput Screening Assays , Humans , Mezlocillin/pharmacology , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Raltegravir Potassium/pharmacology , Thermodynamics , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
10.
Cell Death Dis ; 11(8): 656, 2020 08 19.
Article in English | MEDLINE | ID: covidwho-725491

ABSTRACT

The current epidemic of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for the development of inhibitors of viral replication. Here, we performed a bioinformatic analysis of published and purported SARS-CoV-2 antivirals including imatinib mesylate that we found to suppress SARS-CoV-2 replication on Vero E6 cells and that, according to the published literature on other coronaviruses is likely to act on-target, as a tyrosine kinase inhibitor. We identified a cluster of SARS-CoV-2 antivirals with characteristics of lysosomotropic agents, meaning that they are lipophilic weak bases capable of penetrating into cells. These agents include cepharentine, chloroquine, chlorpromazine, clemastine, cloperastine, emetine, hydroxychloroquine, haloperidol, ML240, PB28, ponatinib, siramesine, and zotatifin (eFT226) all of which are likely to inhibit SARS-CoV-2 replication by non-specific (off-target) effects, meaning that they probably do not act on their 'official' pharmacological targets, but rather interfere with viral replication through non-specific effects on acidophilic organelles including autophagosomes, endosomes, and lysosomes. Imatinib mesylate did not fall into this cluster. In conclusion, we propose a tentative classification of SARS-CoV-2 antivirals into specific (on-target) versus non-specific (off-target) agents based on their physicochemical characteristics.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/metabolism , Drug Evaluation, Preclinical/methods , Pneumonia, Viral/metabolism , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Cell Death/drug effects , Chlorocebus aethiops , Coronavirus Infections/virology , Hydroxychloroquine/pharmacology , Imatinib Mesylate/pharmacology , Lysosomes/drug effects , Pandemics , Pneumonia, Viral/virology , Protein Kinase Inhibitors/pharmacology , RNA, Viral/drug effects , Vero Cells , Viral Load/drug effects
11.
Int J Mol Sci ; 21(16)2020 Aug 14.
Article in English | MEDLINE | ID: covidwho-717746

ABSTRACT

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a severe global health crisis. In this paper, we used docking and simulation methods to identify potential targets and the mechanism of action of chloroquine (CQ) and hydroxychloroquine (HCQ) against SARS-CoV-2. Our results showed that both CQ and HCQ influenced the functionality of the envelope (E) protein, necessary in the maturation processes of the virus, due to interactions that modify the flexibility of the protein structure. Furthermore, CQ and HCQ also influenced the proofreading and capping of viral RNA in SARS-CoV-2, performed by nsp10/nsp14 and nsp10/nsp16. In particular, HCQ demonstrated a better energy binding with the examined targets compared to CQ, probably due to the hydrogen bonding of the hydroxyl group of HCQ with polar amino acid residues.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Chloroquine/pharmacology , Exoribonucleases/metabolism , Hydroxychloroquine/pharmacology , Methyltransferases/metabolism , Viral Nonstructural Proteins/metabolism , Coronavirus Infections/drug therapy , Humans , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/drug therapy , RNA, Viral/drug effects , RNA, Viral/genetics , Viral Envelope Proteins/drug effects , Viral Envelope Proteins/metabolism , Virus Replication/drug effects
12.
Drug Des Devel Ther ; 14: 3215-3222, 2020.
Article in English | MEDLINE | ID: covidwho-714750

ABSTRACT

The novel coronavirus 2019 (2019-nCoV), formally named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a novel human infectious coronavirus. The disease caused by SARS-CoV-2 is named COVID-19. Development and manufacturing of specific therapeutics and vaccines to treat COVID-19 are time-consuming processes. At this time, using available conventional therapeutics along with other treatment options may be useful to fight COVID-19. In different clinical trials, efficacy of remdesivir (GS-5734) against Ebola virus has been demonstrated. Moreover, remdesivir may be an effective therapy in vitro and in animal models infected by SARS and MERS coronaviruses. Hence, the drug may be theoretically effective against SARS-CoV-2. Remdesivir is a phosphoramidate prodrug of an adenosine C-nucleoside. By entrance into respiratory epithelial cells in human, the prodrug is metabolized to a nucleoside triphosphate as the active form. The nucleoside analog inhibits the viral RNA-dependent RNA polymerase (RdRp) by competing with the usual counterpart adenosine triphosphate (ATP). The nucleoside analog is incorporated into the generating RNA strand and causes a delayed stop in the viral replication process. Knowledge about the potential efficacy of remdesivir against coronaviruses has been restricted to in vitro studies and animal models. However, information related to COVID-19 is rapidly growing. Several clinical trials are ongoing for the management of COVID-19 using remdesivir. In this study, characteristics of remdesivir and its usage for treatment of COVID-19 are reviewed based on an electronic search using PubMed and Google Scholar.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/pharmacokinetics , Alanine/pharmacology , Alanine/therapeutic use , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Clinical Trials as Topic , Humans , Pandemics , Virus Replication/drug effects
13.
J Cell Biol ; 219(10)2020 10 05.
Article in English | MEDLINE | ID: covidwho-713813

ABSTRACT

With the rapid global spread of SARS-CoV-2, we have become acutely aware of the inadequacies of our ability to respond to viral epidemics. Although disrupting the viral life cycle is critical for limiting viral spread and disease, it has proven challenging to develop targeted and selective therapeutics. Synthetic lethality offers a promising but largely unexploited strategy against infectious viral disease; as viruses infect cells, they abnormally alter the cell state, unwittingly exposing new vulnerabilities in the infected cell. Therefore, we propose that effective therapies can be developed to selectively target the virally reconfigured host cell networks that accompany altered cellular states to cripple the host cell that has been converted into a virus factory, thus disrupting the viral life cycle.


Subject(s)
Antiviral Agents/pharmacology , Host Microbial Interactions/drug effects , Virus Diseases/drug therapy , Virus Replication/drug effects , Drug Discovery , Humans , Immunologic Factors/pharmacology , Metabolic Networks and Pathways/drug effects , Protein Interaction Maps , Proteolysis , RNA Viruses/drug effects , RNA Viruses/physiology , Virus Diseases/genetics
14.
Biochemistry ; 59(33): 3038-3043, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-713002

ABSTRACT

The COVID-19 pandemic threatens to overwhelm healthcare systems around the world. The only current FDA-approved treatment, which directly targets the virus, is the ProTide prodrug remdesivir. In its activated form, remdesivir prevents viral replication by inhibiting the essential RNA-dependent RNA polymerase. Like other ProTide prodrugs, remdesivir contains a chiral phosphorus center. The initial selection of the (SP)-diastereomer for remdesivir was reportedly due to the difficulty in producing the pure (RP)-diastereomer of the required precursor. However, the two currently known enzymes responsible for the initial activation step of remdesivir are each stereoselective and show differential tissue distribution. Given the ability of the COVID-19 virus to infect a wide array of tissue types, inclusion of the (RP)-diastereomer may be of clinical significance. To help overcome the challenge of obtaining the pure (RP)-diastereomer of remdesivir, we have developed a novel chemoenzymatic strategy that utilizes a stereoselective variant of the phosphotriesterase from Pseudomonas diminuta to enable the facile isolation of the pure (RP)-diastereomer of the chiral precursor for the chemical synthesis of the (RP)-diastereomer of remdesivir.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/chemical synthesis , Adenosine Monophosphate/chemical synthesis , Alanine/chemical synthesis , Betacoronavirus , Caulobacteraceae/enzymology , Coronavirus Infections , Humans , Molecular Structure , Pandemics , Phosphoric Triester Hydrolases/chemistry , Pneumonia, Viral , RNA Replicase/antagonists & inhibitors , Virus Replication/drug effects
15.
Am J Physiol Cell Physiol ; 319(2): C244-C249, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-711625

ABSTRACT

The outbreak of COVID-19 pneumonia caused by a new coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) is posing a global health emergency and has led to more than 380,000 deaths worldwide. The cell entry of SARS-CoV-2 depends on two host proteins angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). There is currently no vaccine available and also no effective drug for the treatment of COVID-19. Hydrogen sulfide (H2S) as a novel gasotransmitter has been shown to protect against lung damage via its anti-inflammation, antioxidative stress, antiviral, prosurvival, and antiaging effects. In light of the research advances on H2S signaling in biology and medicine, this review proposed H2S as a potential defense against COVID-19. It is suggested that H2S may block SARS-CoV-2 entry into host cells by interfering with ACE2 and TMPRSS2, inhibit SARS-CoV-2 replication by attenuating virus assembly/release, and protect SARS-CoV-2-induced lung damage by suppressing immune response and inflammation development. Preclinical studies and clinical trials with slow-releasing H2S donor(s) or the activators of endogenous H2S-generating enzymes should be considered as a preventative treatment or therapy for COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Hydrogen Sulfide/therapeutic use , Pneumonia, Viral/drug therapy , Virus Internalization/drug effects , Virus Replication/drug effects , Animals , Betacoronavirus/pathogenicity , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Host-Pathogen Interactions , Humans , Hydrogen Sulfide/metabolism , Lung/drug effects , Lung/metabolism , Lung/virology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Serine Endopeptidases/metabolism , Signal Transduction
16.
Int J Antimicrob Agents ; 56(3): 106118, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-704750

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is rapidly advancing across the globe despite drastic public and personal health measures. Antivirals and nutritional supplements have been proposed as potentially useful against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus that causes COVID-19, but few have been clinically established. Lactoferrin (Lf) is a naturally occurring, non-toxic glycoprotein that is orally available as a nutritional supplement and has established in vitro antiviral efficacy against a wide range of viruses, including SARS-CoV, a closely related coronavirus to SARS-CoV-2. Furthermore, Lf possesses unique immunomodulatory and anti-inflammatory effects that may be especially relevant to the pathophysiology of severe COVID-19 cases. Here we review the underlying biological mechanisms of Lf as an antiviral and immune regulator, and propose its unique potential as a preventative and adjunct treatment for COVID-19. We hope that further research and development of Lf nutritional supplementation would establish its role for COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Immunologic Factors/therapeutic use , Lactoferrin/therapeutic use , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Betacoronavirus/drug effects , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Heparan Sulfate Proteoglycans/antagonists & inhibitors , Heparan Sulfate Proteoglycans/metabolism , Humans , Interferons/agonists , Interferons/biosynthesis , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Severity of Illness Index , Virus Internalization/drug effects , Virus Replication/drug effects
17.
Int J Antimicrob Agents ; 56(3): 106078, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-701532

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is having serious consequences on health and the economy worldwide. All evidence-based treatment strategies need to be considered to combat this new virus. Drugs need to be considered on scientific grounds of efficacy, safety and cost. Chloroquine (CQ) and hydroxychloroquine (HCQ) are old drugs used in the treatment of malaria. Moreover, their antiviral properties have been previously studied, including against coronaviruses, where evidence of efficacy has been found. In the current race against time triggered by the COVID-19 pandemic, the search for new antivirals is very important. However, consideration should be given to old drugs with known anti-coronavirus activity, such as CQ and HCQ. These could be integrated into current treatment strategies while novel treatments are awaited, also in light of the fact that they display an anticoagulant effect that facilitates the activity of low-molecular-weight heparin, aimed at preventing acute respiratory distress syndrome (ARDS)-associated thrombotic events. The safety of CQ and HCQ has been studied for over 50 years, however recently published data raise concerns for cardiac toxicity of CQ/HCQ in patients with COVID-19. This review also re-examines the real information provided by some of the published alarming reports, although concluding that cardiac toxicity should in any case be stringently monitored in patients receiving CQ/HCQ.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/prevention & control , Disseminated Intravascular Coagulation/prevention & control , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/therapeutic use , Anticoagulants/therapeutic use , Autophagy/drug effects , Autophagy/genetics , Betacoronavirus/growth & development , Betacoronavirus/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokine Release Syndrome/virology , Cytokines/antagonists & inhibitors , Cytokines/genetics , Cytokines/immunology , Disseminated Intravascular Coagulation/virology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunologic Factors/therapeutic use , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Virus Internalization/drug effects , Virus Replication/drug effects
18.
Sci Rep ; 10(1): 13093, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-697117

ABSTRACT

A novel coronavirus, named SARS-CoV-2, emerged in 2019 in China and rapidly spread worldwide. As no approved therapeutics exists to treat COVID-19, the disease associated to SARS-Cov-2, there is an urgent need to propose molecules that could quickly enter into clinics. Repurposing of approved drugs is a strategy that can bypass the time-consuming stages of drug development. In this study, we screened the PRESTWICK CHEMICAL LIBRARY composed of 1,520 approved drugs in an infected cell-based assay. The robustness of the screen was assessed by the identification of drugs that already demonstrated in vitro antiviral effect against SARS-CoV-2. Thereby, 90 compounds were identified as positive hits from the screen and were grouped according to their chemical composition and their known therapeutic effect. Then EC50 and CC50 were determined for a subset of 15 compounds from a panel of 23 selected drugs covering the different groups. Eleven compounds such as macrolides antibiotics, proton pump inhibitors, antiarrhythmic agents or CNS drugs emerged showing antiviral potency with 2 < EC50 ≤ 20 µM. By providing new information on molecules inhibiting SARS-CoV-2 replication in vitro, this study provides information for the selection of drugs to be further validated in vivo. Disclaimer: This study corresponds to the early stages of antiviral development and the results do not support by themselves the use of the selected drugs to treat SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/physiology , Small Molecule Libraries/chemistry , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Betacoronavirus/isolation & purification , Caco-2 Cells , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/virology , Drug Approval , Drug Evaluation, Preclinical , Drug Repositioning , Humans , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Vero Cells , Virus Replication/drug effects
19.
Sci Transl Med ; 12(557)2020 08 19.
Article in English | MEDLINE | ID: covidwho-694565

ABSTRACT

Pathogenic coronaviruses are a major threat to global public health, as exemplified by severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the newly emerged SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). We describe herein the structure-guided optimization of a series of inhibitors of the coronavirus 3C-like protease (3CLpro), an enzyme essential for viral replication. The optimized compounds were effective against several human coronaviruses including MERS-CoV, SARS-CoV, and SARS-CoV-2 in an enzyme assay and in cell-based assays using Huh-7 and Vero E6 cell lines. Two selected compounds showed antiviral effects against SARS-CoV-2 in cultured primary human airway epithelial cells. In a mouse model of MERS-CoV infection, administration of a lead compound 1 day after virus infection increased survival from 0 to 100% and reduced lung viral titers and lung histopathology. These results suggest that this series of compounds has the potential to be developed further as antiviral drugs against human coronaviruses.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/drug effects , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Betacoronavirus/physiology , Cell Line , Chlorocebus aethiops , Coronavirus Infections/pathology , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Disease Models, Animal , Humans , In Vitro Techniques , Lung/pathology , Lung/virology , Male , Mice , Mice, Transgenic , Microbial Sensitivity Tests , Middle East Respiratory Syndrome Coronavirus/physiology , Models, Molecular , Pandemics , Protease Inhibitors/chemistry , Small Molecule Libraries , Species Specificity , Static Electricity , Translational Medical Research , Vero Cells , Viral Load/drug effects , Viral Nonstructural Proteins/chemistry
20.
Acta Pharmacol Sin ; 41(9): 1167-1177, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-691161

ABSTRACT

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China. We showed that either the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection or their bioactive components dose-dependently inhibited SARS-CoV-2 3CLpro as well as the replication of SARS-CoV-2 in Vero E6 cells. Baicalin and baicalein, two ingredients of Shuanghuanglian, were characterized as the first noncovalent, nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography was distinctly different from those of known 3CLpro inhibitors. Baicalein was productively ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to effectively prevent substrate access to the catalytic dyad within the active site. Overall, this study provides an example for exploring the in vitro potency of Chinese traditional patent medicines and effectively identifying bioactive ingredients toward a specific target, and gains evidence supporting the in vivo studies of Shuanghuanglian oral liquid as well as two natural products for COVID-19 treatment.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections , Drugs, Chinese Herbal , Flavanones , Flavonoids , Pandemics , Pneumonia, Viral , Virus Replication/drug effects , Administration, Oral , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/physiology , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Enzyme Assays , Flavanones/chemistry , Flavanones/pharmacokinetics , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Humans , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Vero Cells , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL