Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nucleus ; 14(1): 2216560, 2023 12.
Article in English | MEDLINE | ID: covidwho-20244882

ABSTRACT

Molecular mimicry is a commonly used mechanism by viruses to manipulate host cellular machinery and coordinate their life cycles. While histone mimicry is well studied, viruses also employ other mimicry strategies to affect chromatin dynamics. However, the relationship between viral molecular mimicry and host chromatin regulation is not well understood. This review summarizes recent advances in histone mimicry and explores how viral molecular mimicry influences chromatin dynamics. We also discuss how viral proteins interact with both intact and partially unfolded nucleosomes and compare the distinct mechanisms governing chromatin tethering. Finally, we address the role of viral molecular mimicry in regulating chromatin dynamics. This review provides new insights into viral molecular mimicry and its impact on host chromatin dynamics, paving the way for the development of novel antiviral strategies.


Subject(s)
Chromatin , Viruses , Chromatin/metabolism , Histones/metabolism , Molecular Mimicry , Viruses/metabolism
2.
Cells ; 12(7)2023 03 23.
Article in English | MEDLINE | ID: covidwho-2298251

ABSTRACT

Long noncoding RNAs (lncRNAs) are transcripts measuring >200 bp in length and devoid of protein-coding potential. LncRNAs exceed the number of protein-coding mRNAs and regulate cellular, developmental, and immune pathways through diverse molecular mechanisms. In recent years, lncRNAs have emerged as epigenetic regulators with prominent roles in health and disease. Many lncRNAs, either host or virus-encoded, have been implicated in critical cellular defense processes, such as cytokine and antiviral gene expression, the regulation of cell signaling pathways, and the activation of transcription factors. In addition, cellular and viral lncRNAs regulate virus gene expression. Viral infections and associated immune responses alter the expression of host lncRNAs regulating immune responses, host metabolism, and viral replication. The influence of lncRNAs on the pathogenesis and outcomes of viral infections is being widely explored because virus-induced lncRNAs can serve as diagnostic and therapeutic targets. Future studies should focus on thoroughly characterizing lncRNA expressions in virus-infected primary cells, investigating their role in disease prognosis, and developing biologically relevant animal or organoid models to determine their suitability for specific therapeutic targeting. Many cellular and viral lncRNAs localize in the nucleus and epigenetically modulate viral transcription, latency, and host responses to infection. In this review, we provide an overview of the role of nuclear lncRNAs in the pathogenesis and outcomes of viral infections, such as the Influenza A virus, Sendai Virus, Respiratory Syncytial Virus, Hepatitis C virus, Human Immunodeficiency Virus, and Herpes Simplex Virus. We also address significant advances and barriers in characterizing lncRNA function and explore the potential of lncRNAs as therapeutic targets.


Subject(s)
RNA, Long Noncoding , Virus Diseases , Viruses , Animals , Humans , RNA, Long Noncoding/metabolism , Antiviral Agents , Cytokines , Viruses/genetics , Viruses/metabolism , Immunity
3.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-2244595

ABSTRACT

The fate of a viral infection in the host begins with various types of cellular responses, such as abortive, productive, latent, and destructive infections. Apoptosis, necroptosis, and pyroptosis are the three major types of regulated cell death mechanisms that play critical roles in viral infection response. Cell shrinkage, nuclear condensation, bleb formation, and retained membrane integrity are all signs of osmotic imbalance-driven cytoplasmic swelling and early membrane damage in necroptosis and pyroptosis. Caspase-driven apoptotic cell demise is considered in many circumstances as an anti-inflammatory, and some pathogens hijack the cell death signaling routes to initiate a targeted attack against the host. In this review, the selected mechanisms by which viruses interfere with cell death were discussed in-depth and were illustrated by compiling the general principles and cellular signaling mechanisms of virus-host-specific molecule interactions.


Subject(s)
Regulated Cell Death , Virus Diseases , Viruses , Apoptosis , Humans , Necroptosis , Pyroptosis/physiology , Viruses/metabolism
4.
Nucleic Acids Res ; 50(D1): D497-D508, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-2232151

ABSTRACT

Almost twenty years after its initial release, the Eukaryotic Linear Motif (ELM) resource remains an invaluable source of information for the study of motif-mediated protein-protein interactions. ELM provides a comprehensive, regularly updated and well-organised repository of manually curated, experimentally validated short linear motifs (SLiMs). An increasing number of SLiM-mediated interactions are discovered each year and keeping the resource up-to-date continues to be a great challenge. In the current update, 30 novel motif classes have been added and five existing classes have undergone major revisions. The update includes 411 new motif instances mostly focused on cell-cycle regulation, control of the actin cytoskeleton, membrane remodelling and vesicle trafficking pathways, liquid-liquid phase separation and integrin signalling. Many of the newly annotated motif-mediated interactions are targets of pathogenic motif mimicry by viral, bacterial or eukaryotic pathogens, providing invaluable insights into the molecular mechanisms underlying infectious diseases. The current ELM release includes 317 motif classes incorporating 3934 individual motif instances manually curated from 3867 scientific publications. ELM is available at: http://elm.eu.org.


Subject(s)
Communicable Diseases/genetics , Databases, Protein , Host-Pathogen Interactions/genetics , Protein Interaction Domains and Motifs , Software , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Animals , Binding Sites , Cell Cycle/genetics , Cell Membrane/chemistry , Cell Membrane/metabolism , Communicable Diseases/metabolism , Communicable Diseases/virology , Cyclins/chemistry , Cyclins/genetics , Cyclins/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , Eukaryotic Cells/virology , Gene Expression Regulation , Humans , Integrins/chemistry , Integrins/genetics , Integrins/metabolism , Mice , Molecular Sequence Annotation , Protein Binding , Rats , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction , Transport Vesicles/chemistry , Transport Vesicles/metabolism , Viruses/genetics , Viruses/metabolism
5.
J Vis Exp ; (187)2022 09 07.
Article in English | MEDLINE | ID: covidwho-2217149

ABSTRACT

Virus infections have a major impact on society; most methods of detection have difficulties in determining whether a detected virus is infectious, causing delays in treatment and further spread of the virus. Developing new sensors that can inform on the infectability of clinical or environmental samples will meet this unmet challenge. However, very few methods can obtain sensing molecules that can recognize an intact infectious virus and differentiate it from the same virus that has been rendered non-infectious by disinfection methods. Here, we describe a protocol to select aptamers that can distinguish infectious viruses vs non-infectious viruses using systematic evolution of ligands by exponential enrichment (SELEX). We take advantage of two features of SELEX. First, SELEX can be tailor-made to remove competing targets, such as non-infectious viruses or other similar viruses, using counter selection. Additionally, the whole virus can be used as the target for SELEX, instead of, for example, a viral surface protein. Whole virus SELEX allows for the selection of aptamers that bind specifically to the native state of the virus, without the need to disrupt of the virus. This method thus allows recognition agents to be obtained based on functional differences in the surface of pathogens, which do not need to be known in advance.


Subject(s)
Aptamers, Nucleotide , Virus Diseases , Viruses , Aptamers, Nucleotide/metabolism , Humans , Ligands , Membrane Proteins , SELEX Aptamer Technique/methods , Viruses/metabolism
6.
Front Immunol ; 13: 1010911, 2022.
Article in English | MEDLINE | ID: covidwho-2198869

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an epidemic respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can cause infections in millions of individuals, who can develop lung injury, organ failure, and subsequent death. As the first line of host defense, the innate immune system is involved in initiating the immune response to SARS-CoV-2 infection and the hyperinflammatory phenotype of COVID-19. However, the interplay between SARS-CoV-2 and host innate immunity is not yet well understood. It had become known that the cGAS-STING pathway is involved in the detection of cytosolic DNA, which elicits an innate immune response involving a robust type I interferon response against viral and bacterial infections. Nevertheless, several lines of evidence indicate that SARS-CoV-2, a single-stranded positive-sense RNA virus, triggered the cGAS-STING signaling pathway. Therefore, understanding the molecular and cellular details of cGAS-STING signaling upon SARS-CoV-2 infection is of considerable biomedical importance. In this review, we discuss the role of cGAS-STING signaling in SARS-CoV-2 infection and summarize the potential therapeutics of STING agonists as virus vaccine adjuvants.


Subject(s)
COVID-19 , Viruses , Humans , SARS-CoV-2/metabolism , Signal Transduction , Nucleotidyltransferases/metabolism , Immunity, Innate , Viruses/metabolism
7.
Molecules ; 28(1)2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2166751

ABSTRACT

Propolis remains an interesting source of natural chemical compounds that show, among others, antibacterial, antifungal, antiviral, antioxidative and anti-inflammatory activities. Due to the growing incidence of respiratory tract infections caused by various pathogenic viruses, complementary methods of prevention and therapy supporting pharmacotherapy are constantly being sought out. The properties of propolis may be important in the prevention and treatment of respiratory tract diseases caused by viruses such as severe acute respiratory syndrome coronavirus 2, influenza viruses, the parainfluenza virus and rhinoviruses. One of the main challenges in recent years has been severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing COVID-19. Recently, an increasing number of studies are focusing on the activity of various propolis preparations against SARS-CoV-2 as an adjuvant treatment for this infection. Propolis has shown a few key mechanisms of anti-SARS-CoV-2 action such as: the inhibition of the interaction of the S1 spike protein and ACE-2 protein; decreasing the replication of viruses by diminishing the synthesis of RNA transcripts in cells; decreasing the particles of coronaviruses. The anti-viral effect is observed not only with extracts but also with the single biologically active compounds found in propolis (e.g., apigenin, caffeic acid, chrysin, kaempferol, quercetin). Moreover, propolis is effective in the treatment of hyperglycemia, which increases the risk of SARS-CoV-2 infections. The aim of the literature review was to summarize recent studies from the PubMed database evaluating the antiviral activity of propolis extracts in terms of prevention and the therapy of respiratory tract diseases (in vitro, in vivo, clinical trials). Based upon this review, it was found that in recent years studies have focused mainly on the assessment of the effectiveness of propolis and its chemical components against COVID-19. Propolis exerts wide-spectrum antimicrobial activities; thus, propolis extracts can be an effective option in the prevention and treatment of co-infections associated with diseases of the respiratory tract.


Subject(s)
COVID-19 , Propolis , Respiratory Tract Infections , Virus Diseases , Viruses , Humans , COVID-19/prevention & control , SARS-CoV-2/metabolism , Propolis/pharmacology , Virus Diseases/drug therapy , Antiviral Agents/chemistry , Viruses/metabolism , Respiratory Tract Infections/drug therapy
8.
Cell Rep ; 40(7): 111212, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-2060513

ABSTRACT

Evolutionary changes in host-virus interactions can alter the course of infection, but the biophysical and regulatory constraints that shape interface evolution remain largely unexplored. Here, we focus on viral mimicry of host-like motifs that allow binding to host domains and modulation of cellular pathways. We observe that motifs from unrelated viruses preferentially target conserved, widely expressed, and highly connected host proteins, enriched with regulatory and essential functions. The interface residues within these host domains are more conserved and bind a larger number of cellular proteins than similar motif-binding domains that are not known to interact with viruses. In contrast, rapidly evolving viral-binding human proteins form few interactions with other cellular proteins and display high tissue specificity, and their interfaces have few inter-residue contacts. Our results distinguish between conserved and rapidly evolving host-virus interfaces and show how various factors limit host capacity to evolve, allowing for efficient viral subversion of host machineries.


Subject(s)
Proteins , Viruses , Amino Acid Motifs , Humans , Proteins/metabolism , Viruses/metabolism
9.
Viruses ; 14(8)2022 08 10.
Article in English | MEDLINE | ID: covidwho-2024287

ABSTRACT

Receptor interacting protein kinase 3 (RIPK3) is a vital serine/threonine kinase in regulating the programmed destruction of infected cells to defend against RNA viruses. Although the role of RIPK3 in viruses in mice is well characterized, it remains unclear where in nephropathogenic infectious bronchitis virus (NIBV) in chickens. Here, we use a self-prepared polyclonal antibody to clarify the abundance of RIPK3 in tissues and define the contributions of RIPK3 in tissue damage caused by NIBV infection in chickens. Western blot analyses showed that RIPK3 polyclonal antibody can specifically recognize RIPK3 in the vital tissues of Hy-Line brown chicks and RIPK3 protein is abundantly expressed in the liver and kidney. Moreover, NIBV significantly upregulated the expression levels of RIPK3 in the trachea and kidney of chicks in a time-dependent manner. In addition, the activation of necroptosis in response to NIBV infection was demonstrated by the coimmunoprecipitation (CoIP) experiments through RIPK3 in the necrosome, which phosphorylates its downstream mixed-spectrum kinase structural domain-like protein (MLKL). Our findings offered preliminary insights into the key role of RIPK3 protein in studying the underlying mechanism of organ failure caused by NIBV infection.


Subject(s)
Infectious bronchitis virus , Viruses , Animals , Chickens , Immunoassay , Infectious bronchitis virus/metabolism , Mice , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Viruses/metabolism
10.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2006046

ABSTRACT

Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.


Subject(s)
COVID-19 , Viruses , Glycoconjugates/metabolism , Heparitin Sulfate/metabolism , Humans , N-Acetylneuraminic Acid/metabolism , Receptors, Virus/metabolism , SARS-CoV-2 , Sialic Acids/metabolism , Sulfates , Virus Attachment , Viruses/metabolism
11.
Trends Biochem Sci ; 47(2): 173-186, 2022 02.
Article in English | MEDLINE | ID: covidwho-1400539

ABSTRACT

Viruses are macromolecular machineries that hijack cellular metabolism for replication. Enveloped viruses comprise a large variety of RNA and DNA viruses, many of which are notorious human or animal pathogens. Despite their importance, the presence of lipid bilayers in their assembly has made most enveloped viruses too pleomorphic to be reconstructed as a whole by traditional structural biology methods. Furthermore, structural biology of the viral lifecycle was hindered by the sample thickness. Here, I review the recent advances in the applications of cryo-electron tomography (cryo-ET) on enveloped viral structures and intracellular viral activities.


Subject(s)
Electron Microscope Tomography , Viruses , Animals , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Lipid Bilayers , Viruses/chemistry , Viruses/metabolism
12.
J Med Virol ; 93(11): 6116-6123, 2021 11.
Article in English | MEDLINE | ID: covidwho-1349155

ABSTRACT

Virus invasion activates the host's innate immune response, inducing the production of numerous cytokines and interferons to eliminate pathogens. Except for viral DNA/RNA, viral proteins are also targets of pattern recognition receptors. Membrane-bound receptors such as Toll-like receptor (TLR)1, TLR2, TLR4, TLR6, and TLR10 relate to the recognition of viral proteins. Distinct TLRs perform both protective and detrimental roles for a specific virus. Here, we review viral proteins serving as pathogen-associated molecular patterns and their corresponding TLRs. These viruses are all enveloped, including respiratory syncytial virus, hepatitis C virus, measles virus, herpesvirus human immunodeficiency virus, and coronavirus, and can encode proteins to activate innate immunity in a TLR-dependent way. The TLR-viral protein relationship plays an important role in innate immunity activation. A detailed understanding of their pathways contributes to a novel direction for vaccine development.


Subject(s)
Immunity, Innate , Pathogen-Associated Molecular Pattern Molecules/metabolism , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Viral Proteins/metabolism , Virus Diseases/immunology , Viruses/immunology , Animals , HIV/immunology , HIV/metabolism , HIV/pathogenicity , Hepacivirus/immunology , Hepacivirus/metabolism , Hepacivirus/pathogenicity , Herpesviridae/immunology , Herpesviridae/metabolism , Herpesviridae/pathogenicity , Humans , Measles virus/immunology , Measles virus/metabolism , Measles virus/pathogenicity , Pathogen-Associated Molecular Pattern Molecules/chemistry , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/metabolism , Respiratory Syncytial Viruses/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Virus Diseases/virology , Viruses/metabolism , Viruses/pathogenicity
13.
Front Immunol ; 13: 890549, 2022.
Article in English | MEDLINE | ID: covidwho-1911045

ABSTRACT

Viroporins are virally encoded transmembrane proteins that are essential for viral pathogenicity and can participate in various stages of the viral life cycle, thereby promoting viral proliferation. Viroporins have multifaceted effects on host cell biological functions, including altering cell membrane permeability, triggering inflammasome formation, inducing apoptosis and autophagy, and evading immune responses, thereby ensuring that the virus completes its life cycle. Viroporins are also virulence factors, and their complete or partial deletion often reduces virion release and reduces viral pathogenicity, highlighting the important role of these proteins in the viral life cycle. Thus, viroporins represent a common drug-protein target for inhibiting drugs and the development of antiviral therapies. This article reviews current studies on the functions of viroporins in the viral life cycle and their regulation of host cell responses, with the aim of improving the understanding of this growing family of viral proteins.


Subject(s)
Viroporin Proteins , Viruses , Cell Membrane Permeability , Membrane Proteins/metabolism , Viral Proteins/metabolism , Viruses/metabolism
14.
Sci Rep ; 12(1): 9188, 2022 06 02.
Article in English | MEDLINE | ID: covidwho-1873556

ABSTRACT

Several highly effective Covid-19 vaccines are in emergency use, although more-infectious coronavirus strains, could delay the end of the pandemic even further. Because of this, it is highly desirable to develop fast antiviral drug treatments to accelerate the lasting immunity against the virus. From a theoretical perspective, computational approaches are useful tools for antiviral drug development based on the data analysis of gene expression, chemical structure, molecular pathway, and protein interaction mapping. This work studies the structural stability of virus-host interactome networks based on the graphical representation of virus-host protein interactions as vertices or nodes connected by commonly shared proteins. These graphical network visualization methods are analogous to those use in the design of artificial neural networks in neuromorphic computing. In standard protein-node-based network representation, virus-host interaction merges with virus-protein and host-protein networks, introducing redundant links associated with the internal virus and host networks. On the contrary, our approach provides a direct geometrical representation of viral infection structure and allows the effective and fast detection of the structural robustness of the virus-host network through proteins removal. This method was validated by applying it to H1N1 and HIV viruses, in which we were able to pinpoint the changes in the Interactome Network produced by known vaccines. The application of this method to the SARS-CoV-2 virus-host protein interactome implies that nonstructural proteins nsp4, nsp12, nsp16, the nuclear pore membrane glycoprotein NUP210, and ubiquitin specific peptidase USP54 play a crucial role in the viral infection, and their removal may provide an efficient therapy. This method may be extended to any new mutations or other viruses for which the Interactome Network is experimentally determined. Since time is of the essence, because of the impact of more-infectious strains on controlling the spread of the virus, this method may be a useful tool for novel antiviral therapies.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Virus Diseases , Viruses , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Vaccines , Humans , Influenza A Virus, H1N1 Subtype/metabolism , SARS-CoV-2 , Viral Proteins/metabolism , Viruses/metabolism
15.
mBio ; 13(3): e0073122, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1865140

ABSTRACT

Chikungunya virus (CHIKV) is an arthritogenic reemerging virus replicating in plasma membrane-derived compartments termed "spherules." Here, we identify the human transmembrane protein CD81 as host factor required for CHIKV replication. Ablation of CD81 results in decreased CHIKV permissiveness, while overexpression enhances infection. CD81 is dispensable for virus uptake but critically required for viral genome replication. Likewise, murine CD81 is crucial for CHIKV permissiveness and is expressed in target cells such as dermal fibroblasts, muscle and liver cells. Whereas related alphaviruses, including Ross River virus (RRV), Semliki Forest virus (SFV), Sindbis virus (SINV) and Venezuelan equine encephalitis virus (VEEV), also depend on CD81 for infection, RNA viruses from other families, such as coronaviruses, replicate independently of CD81. Strikingly, the replication-enhancing function of CD81 is linked to cholesterol binding. These results define a mechanism exploited by alphaviruses to hijack the membrane microdomain-modeling protein CD81 for virus replication through interaction with cholesterol. IMPORTANCE In this study, we discover the tetraspanin CD81 as a host factor for the globally emerging chikungunya virus and related alphaviruses. We show that CD81 promotes replication of viral genomes in human and mouse cells, while virus entry into cells is independent of CD81. This provides novel insights into how alphaviruses hijack host proteins to complete their life cycle. Alphaviruses replicate at distinct sites of the plasma membrane, which are enriched in cholesterol. We found that the cholesterol-binding ability of CD81 is important for its function as an alphavirus host factor. This discovery thus broadens our understanding of the alphavirus replication process and the use of host factors to reprogram cells into virus replication factories.


Subject(s)
Chikungunya Fever , Chikungunya virus , Viruses , Animals , Chikungunya virus/genetics , Cholesterol/metabolism , Humans , Mice , Tetraspanins/metabolism , Virus Replication/genetics , Viruses/metabolism
17.
Viruses ; 14(4)2022 03 31.
Article in English | MEDLINE | ID: covidwho-1776354

ABSTRACT

SGT-53 is a novel investigational agent that comprises an immunoliposome carrying a plasmid vector driving expression of the human TP53 gene that encodes wild-type human p53. SGT-53 is currently in phase II human trials for advanced pancreatic cancer. Although p53 is best known as a tumor suppressor, its participation in both innate and adaptive immune responses is well documented. It is now clear that p53 is an important component of the host response to various viral infections. To facilitate their viral life cycles, viruses have developed a diverse repertoire of strategies for counteracting the antiviral activities of host immune system by manipulating p53-dependent pathways in host cells. Coronaviruses reduce endogenous p53 levels in the cells they infect by enhancing the degradation of p53 in proteasomes. Thus, interference with p53 function is an important component in viral pathogenesis. Transfection of cells by SGT-53 has been shown to transiently produce exogenous p53 that is active as a pleiotropic transcription factor. We herein summarize the rationale for repurposing SGT-53 as a therapy for infection by SARS-CoV-2, the pathogen responsible for the COVID-19 pandemic. Because p53 regulation was found to play a crucial role in different infection stages of a wide variety of viruses, it is rational to believe that restoring p53 function based on SGT-53 treatment may lead to beneficial therapeutic outcomes for infectious disease at large including heretofore unknown viral pathogens that may emerge in the future.


Subject(s)
COVID-19 , Viruses , COVID-19/therapy , Genes, p53 , Genetic Therapy , Humans , Immunity, Innate , Pandemics , SARS-CoV-2/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Viruses/metabolism
18.
Adv Mater ; 34(18): e2109580, 2022 May.
Article in English | MEDLINE | ID: covidwho-1712016

ABSTRACT

Lipid-membrane-targeting strategies hold great promise to develop broad-spectrum antivirals. However, it remains a big challenge to identify novel membrane-based targets of viruses and virus-infected cells for development of precision targeted approaches. Here, it is discovered that viroporins, viral-encoded ion channels, which have been reported to mediate release of hydrogen ions, trigger membrane acidification of virus-infected cells. Through development of a fine-scale library of gradient pH-sensitive (GPS) polymeric nanoprobes, the cellular membrane pH transitions are measured from pH 6.8-7.1 (uninfection) to pH 6.5-6.8 (virus-infection). In response to the subtle pH alterations, the GPS polymer with sharp response at pH 6.8 (GPS6.8 ) selectively binds to virus-infected cell membranes or the viral envelope, and even completely disrupts the viral envelope. Accordingly, GPS6.8 treatment exerts suppressive effects on a wide variety of viruses including SARS-CoV-2 through triggering viral-envelope lysis rather than affecting immune pathway or viability of host cells. Murine viral-infection models exhibit that supplementation of GPS6.8 decreases viral titers and ameliorates inflammatory damage. Thus, the gradient pH-sensitive nanotechnology offers a promising strategy for accurate detection of biological pH environments and robust interference with viruses.


Subject(s)
COVID-19 , Viruses , Animals , Antiviral Agents/pharmacology , Hydrogen-Ion Concentration , Mice , Polymers/pharmacology , SARS-CoV-2 , Viroporin Proteins , Viruses/metabolism
19.
Curr Mol Pharmacol ; 15(1): 143-158, 2022.
Article in English | MEDLINE | ID: covidwho-1679980

ABSTRACT

There are no available antivirals for many viruses or strains, while current antivirals are limited by toxicity and drug resistance. Therefore, alternative strategies, such as RNA interference (RNAi) are required. RNAi suppresses gene expression of any mRNA, making it an attractive candidate for antiviral therapeutics. Studies have evaluated siRNAs in a range of viruses, with some showing promising results. However, issues with stability and delivery of siRNAs remain. These issues may be minimized by modifying the siRNA structure, using an efficient delivery vector and targeting multiple regions of a virus's genome in a single dose. Finding these solutions could accelerate the progress of RNAi-based antivirals. This review highlights selected examples of antiviral siRNAs, limitations of RNAi and strategies to overcome these limitations.


Subject(s)
Viruses , Antiviral Agents , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Viruses/genetics , Viruses/metabolism
20.
Int J Mol Sci ; 23(1)2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1615843

ABSTRACT

Virus infection of eukaryotes triggers cellular innate immune response, a major arm of which is the type I interferon (IFN) family of cytokines. Binding of IFN to cell surface receptors triggers a signaling cascade in which the signal transducer and activator of transcription 2 (STAT2) plays a key role, ultimately leading to an antiviral state of the cell. In retaliation, many viruses counteract the immune response, often by the destruction and/or inactivation of STAT2, promoted by specific viral proteins that do not possess protease activities of their own. This review offers a summary of viral mechanisms of STAT2 subversion with emphasis on degradation. Some viruses also destroy STAT1, another major member of the STAT family, but most viruses are selective in targeting either STAT2 or STAT1. Interestingly, degradation of STAT2 by a few viruses requires the presence of both STAT proteins. Available evidence suggests a mechanism in which multiple sites and domains of STAT2 are required for engagement and degradation by a multi-subunit degradative complex, comprising viral and cellular proteins, including the ubiquitin-proteasomal system. However, the exact molecular nature of this complex and the alternative degradation mechanisms remain largely unknown, as critically presented here with prospective directions of future study.


Subject(s)
Proteolysis , STAT2 Transcription Factor/metabolism , Viruses/metabolism , Amino Acid Sequence , Animals , Humans , Models, Biological , Proteasome Endopeptidase Complex/metabolism , STAT2 Transcription Factor/chemistry , STAT2 Transcription Factor/ultrastructure , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL