Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Viruses ; 13(12)2021 11 29.
Article in English | MEDLINE | ID: covidwho-1542801

ABSTRACT

Nestled within the Rocky Mountain National Forest, 114 scientists and students gathered at Colorado State University's Mountain Campus for this year's 21st annual Rocky Mountain National Virology Association meeting. This 3-day retreat consisted of 31 talks and 30 poster presentations discussing advances in research pertaining to viral and prion diseases. The keynote address provided a timely discussion on zoonotic coronaviruses, lessons learned, and the path forward towards predicting, preparing, and preventing future viral disease outbreaks. Other invited speakers discussed advances in SARS-CoV-2 surveillance, molecular interactions involved in flavivirus genome assembly, evaluation of ethnomedicines for their efficacy against infectious diseases, multi-omic analyses to define risk factors associated with long COVID, the role that interferon lambda plays in control of viral pathogenesis, cell-fusion-dependent pathogenesis of varicella zoster virus, and advances in the development of a vaccine platform against prion diseases. On behalf of the Rocky Mountain Virology Association, this report summarizes select presentations.


Subject(s)
Virology , Animals , Host-Pathogen Interactions , Humans , Pandemics/prevention & control , Prion Diseases/diagnosis , Prion Diseases/prevention & control , Prions/immunology , Prions/isolation & purification , Prions/pathogenicity , Vaccines , Virology/organization & administration , Virus Diseases/diagnosis , Virus Diseases/epidemiology , Virus Diseases/prevention & control , Virus Diseases/virology , Viruses/classification , Viruses/immunology , Viruses/isolation & purification , Viruses/pathogenicity
2.
PLoS Biol ; 19(4): e3001135, 2021 04.
Article in English | MEDLINE | ID: covidwho-1508487

ABSTRACT

Identifying the animal reservoirs from which zoonotic viruses will likely emerge is central to understanding the determinants of disease emergence. Accordingly, there has been an increase in studies attempting zoonotic "risk assessment." Herein, we demonstrate that the virological data on which these analyses are conducted are incomplete, biased, and rapidly changing with ongoing virus discovery. Together, these shortcomings suggest that attempts to assess zoonotic risk using available virological data are likely to be inaccurate and largely only identify those host taxa that have been studied most extensively. We suggest that virus surveillance at the human-animal interface may be more productive.


Subject(s)
Environmental Monitoring , Virus Diseases , Zoonoses/etiology , Zoonoses/prevention & control , Animals , Biodiversity , Disease Reservoirs/classification , Disease Reservoirs/statistics & numerical data , Environmental Monitoring/methods , Environmental Monitoring/standards , Host Specificity/genetics , Humans , Metagenomics/methods , Metagenomics/organization & administration , Metagenomics/standards , Phylogeny , Risk Assessment , Risk Factors , Selection Bias , Virus Diseases/epidemiology , Virus Diseases/etiology , Virus Diseases/prevention & control , Virus Diseases/transmission , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Viruses/pathogenicity , Zoonoses/epidemiology , Zoonoses/virology
3.
Viruses ; 12(8)2020 08 18.
Article in English | MEDLINE | ID: covidwho-1453290

ABSTRACT

Enteric viral co-infections, infections involving more than one virus, have been reported for a diverse group of etiological agents, including rotavirus, norovirus, astrovirus, adenovirus, and enteroviruses. These pathogens are causative agents for acute gastroenteritis and diarrheal disease in immunocompetent and immunocompromised individuals of all ages globally. Despite virus-virus co-infection events in the intestine being increasingly detected, little is known about their impact on disease outcomes or human health. Here, we review what is currently known about the clinical prevalence of virus-virus co-infections and how co-infections may influence vaccine responses. While experimental investigations into enteric virus co-infections have been limited, we highlight in vivo and in vitro models with exciting potential to investigate viral co-infections. Many features of virus-virus co-infection mechanisms in the intestine remain unclear, and further research will be critical.


Subject(s)
Coinfection/virology , Gastroenteritis/virology , Virus Diseases/physiopathology , Viruses/classification , Viruses/pathogenicity , Animals , Asymptomatic Infections , Disease Models, Animal , Feces/virology , Humans , Intestines/virology , Mice , Primates
4.
Infect Dis Clin North Am ; 35(4): 1055-1075, 2021 12.
Article in English | MEDLINE | ID: covidwho-1487740

ABSTRACT

Health care-acquired viral respiratory infections are common and cause increased patient morbidity and mortality. Although the threat of viral respiratory infection has been underscored by the coronavirus disease 2019 (COVID-19) pandemic, respiratory viruses have a significant impact in health care settings even under normal circumstances. Studies report decreased nosocomial transmission when aggressive infection control measures are implemented, with more success noted when using a multicomponent approach. Influenza vaccination of health care personnel furthers decrease rates of transmission; thus, mandatory vaccination is becoming more common. This article discusses the epidemiology, transmission, and control of health care-associated respiratory viral infections.


Subject(s)
Cross Infection/prevention & control , Cross Infection/virology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Cross Infection/epidemiology , Cross Infection/transmission , Guideline Adherence , Health Personnel/standards , Humans , Infection Control/standards , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/transmission , SARS-CoV-2/pathogenicity , Vaccination , Viruses/classification , Viruses/pathogenicity
6.
Viruses ; 13(7)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1448933

ABSTRACT

Virus-induced infections of the central nervous system (CNS) are among the most serious problems in public health and can be associated with high rates of morbidity and mortality, mainly in low- and middle-income countries, where these manifestations have been neglected. Typically, herpes simplex virus 1 and 2, varicella-zoster, and enterovirus are responsible for a high number of cases in immunocompetent hosts, whereas other herpesviruses (for example, cytomegalovirus) are the most common in immunocompromised individuals. Arboviruses have also been associated with outbreaks with a high burden of neurological disorders, such as the Zika virus epidemic in Brazil. There is a current lack of understanding in Brazil about the most common viruses involved in CNS infections. In this review, we briefly summarize the most recent studies and findings associated with the CNS, in addition to epidemiological data that provide extensive information on the circulation and diversity of the most common neuro-invasive viruses in Brazil. We also highlight important aspects of the prion-associated diseases. This review provides readers with better knowledge of virus-associated CNS infections. A deeper understanding of these infections will support the improvement of the current surveillance strategies to allow the timely monitoring of the emergence/re-emergence of neurotropic viruses.


Subject(s)
Central Nervous System Diseases/virology , Central Nervous System Infections/epidemiology , Prion Diseases/epidemiology , Alphavirus/pathogenicity , Brazil/epidemiology , Central Nervous System/virology , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/physiopathology , Central Nervous System Infections/virology , Central Nervous System Viral Diseases/physiopathology , Central Nervous System Viral Diseases/virology , Enterovirus/pathogenicity , Flavivirus/pathogenicity , Herpesviridae/pathogenicity , Humans , Nervous System Diseases/epidemiology , Nervous System Diseases/virology , Prion Diseases/physiopathology , Prions/metabolism , Prions/pathogenicity , Simplexvirus/pathogenicity , Virus Diseases/virology , Viruses/pathogenicity , Zika Virus/pathogenicity
7.
mSphere ; 6(2)2021 03 31.
Article in English | MEDLINE | ID: covidwho-1443357

ABSTRACT

Chelsey C. Spriggs works in the field of DNA viral entry with a specific interest in virus-host interactions. In this mSphere of Influence article, she reflects on how two papers, "The HCMV assembly compartment is a dynamic Golgi-derived MTOC that controls nuclear rotation and virus spread" (D. J. Procter, A. Banerjee, M. Nukui, K. Kruse, et al., Dev Cell 45:83-100.e7, 2018, https://doi.org/10.1016/j.devcel.2018.03.010) and "Cytoplasmic control of intranuclear polarity by human cytomegalovirus" (D. J. Procter, C. Furey, A. G. Garza-Gongora, S. T. Kosak, D. Walsh, Nature 587:109-114, 2020, https://doi.org/10.1038/s41586-020-2714-x), impacted her research by reinforcing the scientific value in using viruses to understand cell biology.


Subject(s)
Cell Biology , Host Microbial Interactions , Viruses/pathogenicity , COVID-19 , Cytopathogenic Effect, Viral , Humans
8.
Front Immunol ; 12: 624293, 2021.
Article in English | MEDLINE | ID: covidwho-1394756

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which interacts with a wide range of organic molecules of endogenous and exogenous origin, including environmental pollutants, tryptophan metabolites, and microbial metabolites. The activation of AHR by these agonists drives its translocation into the nucleus where it controls the expression of a large number of target genes that include the AHR repressor (AHRR), detoxifying monooxygenases (CYP1A1 and CYP1B1), and cytokines. Recent advances reveal that AHR signaling modulates aspects of the intrinsic, innate and adaptive immune response to diverse microorganisms. This review will focus on the increasing evidence supporting a role for AHR as a modulator of the host response to viral infection.


Subject(s)
Adaptive Immunity , Immunity, Innate , Receptors, Aryl Hydrocarbon/metabolism , Virus Diseases/virology , Viruses/immunology , Active Transport, Cell Nucleus , Animals , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Ligands , Signal Transduction , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/metabolism , Viruses/genetics , Viruses/pathogenicity
9.
Biomed Res Int ; 2021: 5313832, 2021.
Article in English | MEDLINE | ID: covidwho-1394270

ABSTRACT

Background: Coinfections have a potential role in increased morbidity and mortality rates during pandemics. Our investigation is aimed at evaluating the viral coinfection prevalence in COVID-19 patients. Methods: We systematically searched scientific databases, including Medline, Scopus, WOS, and Embase, from December 1, 2019, to December 30, 2020. Preprint servers such as medRxiv were also scanned to find other related preprint papers. All types of studies evaluating the viral coinfection prevalence in COVID-19 patients were considered. We applied the random effects model to pool all of the related studies. Results: Thirty-three studies including 10484 patients were identified. The viral coinfection estimated pooled prevalence was 12.58%; 95% CI: 7.31 to 18.96). Blood viruses (pooled prevalence: 12.48%; 95% CI: 8.57 to 16.93) had the most frequent viral coinfection, and respiratory viruses (pooled prevalence: 4.32%; 95% CI: 2.78 to 6.15) had less frequent viral coinfection. The herpesvirus pooled prevalence was 11.71% (95% CI: 3.02 to 24.80). Also, the maximum and minimum of viral coinfection pooled prevalence were in AMRO and EMRO with 15.63% (95% CI: 3.78 to 33.31) and 7.05% (95% CI: 3.84 to 11.07), respectively. Conclusion: The lowest rate of coinfection belonged to respiratory viruses. Blood-borne viruses had the highest coinfection rate. Our results provide important data about the prevalence of blood-borne viruses among COVID-19 patients which can be critical when it comes to their treatment procedure.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Coinfection/virology , Humans , Pandemics/prevention & control , Prevalence , SARS-CoV-2/pathogenicity , Virus Diseases/epidemiology , Virus Diseases/virology , Viruses/pathogenicity
10.
Immunity ; 54(4): 753-768.e5, 2021 04 13.
Article in English | MEDLINE | ID: covidwho-1385739

ABSTRACT

Viral infections induce a conserved host response distinct from bacterial infections. We hypothesized that the conserved response is associated with disease severity and is distinct between patients with different outcomes. To test this, we integrated 4,780 blood transcriptome profiles from patients aged 0 to 90 years infected with one of 16 viruses, including SARS-CoV-2, Ebola, chikungunya, and influenza, across 34 cohorts from 18 countries, and single-cell RNA sequencing profiles of 702,970 immune cells from 289 samples across three cohorts. Severe viral infection was associated with increased hematopoiesis, myelopoiesis, and myeloid-derived suppressor cells. We identified protective and detrimental gene modules that defined distinct trajectories associated with mild versus severe outcomes. The interferon response was decoupled from the protective host response in patients with severe outcomes. These findings were consistent, irrespective of age and virus, and provide insights to accelerate the development of diagnostics and host-directed therapies to improve global pandemic preparedness.


Subject(s)
Immunity/genetics , Virus Diseases/immunology , Antigen Presentation/genetics , Cohort Studies , Hematopoiesis/genetics , Humans , Interferons/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Myeloid Cells/immunology , Myeloid Cells/pathology , Prognosis , Severity of Illness Index , Systems Biology , Transcriptome , Virus Diseases/blood , Virus Diseases/classification , Virus Diseases/genetics , Viruses/classification , Viruses/pathogenicity
11.
Infection ; 49(3): 377-385, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1384709

ABSTRACT

PURPOSE: CRISPR gene-editing technology has the potential to transform the diagnosis and treatment of infectious diseases, but most clinicians are unaware of its broad applicability. Derived from an ancient microbial defence system, these so-called "molecular scissors" enable precise gene editing with a low error rate. However, CRISPR systems can also be targeted against pathogenic DNA or RNA sequences. This potential is being combined with innovative delivery systems to develop new therapeutic approaches to infectious diseases. METHODS: We searched Pubmed and Google Scholar for CRISPR-based strategies in the diagnosis and treatment of infectious diseases. Reference lists were reviewed and synthesized for narrative review. RESULTS: CRISPR-based strategies represent a novel approach to many challenging infectious diseases. CRISPR technologies can be harnessed to create rapid, low-cost diagnostic systems, as well as to identify drug-resistance genes. Therapeutic strategies, such as CRISPR systems that cleave integrated viral genomes or that target resistant bacteria, are in development. CRISPR-based therapies for emerging viruses, such as SARS-CoV-2, have also been proposed. Finally, CRISPR systems can be used to reprogram human B cells to produce neutralizing antibodies. The risks of CRISPR-based therapies include off-target and on-target modifications. Strategies to control these risks are being developed and a phase 1 clinical trials of CRISPR-based therapies for cancer and monogenic diseases are already underway. CONCLUSIONS: CRISPR systems have broad applicability in the field of infectious diseases and may offer solutions to many of the most challenging human infections.


Subject(s)
CRISPR-Cas Systems , Communicable Diseases/diagnosis , Communicable Diseases/therapy , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Gene Editing , Humans , Molecular Diagnostic Techniques , Molecular Targeted Therapy , Viruses/genetics , Viruses/isolation & purification , Viruses/pathogenicity
13.
Toxins (Basel) ; 13(2)2021 01 22.
Article in English | MEDLINE | ID: covidwho-1344393

ABSTRACT

Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases from plants (EC 3.2.2.22) that inactivate ribosomes thus inhibiting protein synthesis. The antiviral properties of RIPs have been investigated for more than four decades. However, interest in these proteins is rising due to the emergence of infectious diseases caused by new viruses and the difficulty in treating viral infections. On the other hand, there is a growing need to control crop diseases without resorting to the use of phytosanitary products which are very harmful to the environment and in this respect, RIPs have been shown as a promising tool that can be used to obtain transgenic plants resistant to viruses. The way in which RIPs exert their antiviral effect continues to be the subject of intense research and several mechanisms of action have been proposed. The purpose of this review is to examine the research studies that deal with this matter, placing special emphasis on the most recent findings.


Subject(s)
Antiviral Agents/pharmacology , Pest Control, Biological , Plant Diseases/prevention & control , Plants, Genetically Modified/enzymology , Protein Synthesis Inhibitors/pharmacology , Ribosome Inactivating Proteins/pharmacology , Toxins, Biological/pharmacology , Virus Diseases/drug therapy , Viruses/drug effects , Animals , Antiviral Agents/isolation & purification , Humans , Plant Diseases/genetics , Plant Diseases/virology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/virology , Protein Synthesis Inhibitors/isolation & purification , Ribosome Inactivating Proteins/isolation & purification , Toxins, Biological/isolation & purification , Virus Diseases/metabolism , Virus Diseases/virology , Viruses/metabolism , Viruses/pathogenicity
14.
Nat Chem ; 13(5): 496-503, 2021 05.
Article in English | MEDLINE | ID: covidwho-1145994

ABSTRACT

The transmission of viruses from animal reservoirs to humans poses major threats to public health. Preparedness for future zoonotic outbreaks requires a fundamental understanding of how viruses of animal origin have adapted to binding to a cell surface component and/or receptor of the new host. Here we report on the specificities of human and animal viruses that engage with O-acetylated sialic acid, which include betacoronaviruses, toroviruses and influenza C and D viruses. Key to these studies was the development of a chemoenzymatic methodology that can provide almost any sialate-acetylation pattern. A collection of O-acetylated sialoglycans was printed as a microarray for the determination of receptor specificity. These studies showed host-specific patterns of receptor recognition and revealed that three distinct human respiratory viruses uniquely bind 9-O-acetylated α2,8-linked disialoside. Immunofluorescence and cell entry studies support that such a glycotope as part of a ganglioside is a functional receptor for human coronaviruses.


Subject(s)
N-Acetylneuraminic Acid/chemistry , Respiratory Tract Infections/virology , Viruses/pathogenicity , Humans , Transfection
15.
Front Immunol ; 12: 673692, 2021.
Article in English | MEDLINE | ID: covidwho-1325525

ABSTRACT

In a perspective entitled 'From plant survival under severe stress to anti-viral human defense' we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named 'ReprogVirus' was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the 'ReprogVirus platform' was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to 'RegroVirus' complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called 'CoV-MAC-TED'. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target 'CoV-MAC-TED' in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that 'de-stressing' disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.


Subject(s)
Cellular Reprogramming/genetics , Multifactorial Inheritance/genetics , SARS-CoV-2/pathogenicity , Acetylserotonin O-Methyltransferase/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Cell Cycle/genetics , Databases, Genetic , Daucus carota/genetics , Daucus carota/growth & development , Fermentation , Gene Expression Profiling , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Tubulin/genetics , Viruses/pathogenicity
16.
Sci Rep ; 11(1): 14276, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1307342

ABSTRACT

The Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is the causal agent of the coronavirus disease 2019 (COVID-19) pandemic. To date, viruses closely related to SARS-CoV-2 have been reported in four bat species: Rhinolophus acuminatus, Rhinolophus affinis, Rhinolophus malayanus, and Rhinolophus shameli. Here, we analysed 343 sequences of the mitochondrial cytochrome c oxidase subunit 1 gene (CO1) from georeferenced bats of the four Rhinolophus species identified as reservoirs of viruses closely related to SARS-CoV-2. Haplotype networks were constructed in order to investigate patterns of genetic diversity among bat populations of Southeast Asia and China. No strong geographic structure was found for the four Rhinolophus species, suggesting high dispersal capacity. The ecological niche of bat viruses closely related to SARS-CoV-2 was predicted using the four localities in which bat viruses were recently discovered and the localities where bats showed the same CO1 haplotypes than virus-positive bats. The ecological niche of bat viruses related to SARS-CoV was deduced from the localities where bat viruses were previously detected. The results show that the ecological niche of bat viruses related to SARS-CoV2 includes several regions of mainland Southeast Asia whereas the ecological niche of bat viruses related to SARS-CoV is mainly restricted to China. In agreement with these results, human populations in Laos, Vietnam, Cambodia, and Thailand appear to be much less affected by the COVID-19 pandemic than other countries of Southeast Asia. In the climatic transitional zone between the two ecological niches (southern Yunnan, northern Laos, northern Vietnam), genomic recombination between highly divergent viruses is more likely to occur. Considering the limited data and the risk of recombinant bat-CoVs emergence as the source of new pandemics in humans, the bat populations in these regions should be under surveillance.


Subject(s)
COVID-19/virology , Chiroptera/virology , Phylogeography , Viruses/genetics , Animals , Asia, Southeastern/epidemiology , COVID-19/epidemiology , COVID-19/genetics , COVID-19/transmission , China/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viruses/pathogenicity
17.
J Neurosci Nurs ; 52(6): 263, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1270765
18.
Eur Rev Med Pharmacol Sci ; 25(10): 3886-3897, 2021 May.
Article in English | MEDLINE | ID: covidwho-1264765

ABSTRACT

OBJECTIVE: Platelets, blood coagulation along with fibrinolysis are greatly involved in the pathophysiology of infectious diseases induced by bacteria, parasites and virus. This phenomenon is not surprising since both the innate immunity and the hemostatic systems are two ancestral mechanisms which closely cooperate favoring host's defense against foreign invaders. However, the excessive response of these systems may be dangerous for the host itself. MATERIALS AND METHODS: We searched and retrieved the articles, using the following electronic database: MedLine and Embase. We limited our search to articles published in English, but no restrictions in terms of article type, publication year, and geography were adopted. RESULTS: The hemostatic phenotype of the infectious diseases is variable depending on the points of attack of the different involved pathogens. Infectious diseases which show a prothrombotic phenotype are bacterial sepsis, SARS-CoV-2 and malaria. However, among the bacterial sepsis, Yersinia Pestis is characterized by a profibrinolytic behavior. On the contrary, the hemorrhagic fevers, due to Dengue and Ebola virus, mainly exploit the activation of fibrinolysis secondary to a huge endothelial damage which can release a large amount of t-PA in the early phase of the diseases. CONCLUSIONS: Blood coagulation and fibrinolysis are greatly activated based on the strategy of the different infectious agents which exploit the excess of response of both systems to achieve the greatest possible virulence.


Subject(s)
Blood Coagulation , COVID-19/pathology , Fibrinolysis , COVID-19/complications , COVID-19/virology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/virology , Erythrocytes/cytology , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans , Monocytes/cytology , Monocytes/metabolism , Monocytes/virology , SARS-CoV-2/isolation & purification , Thromboplastin/metabolism , Viruses/pathogenicity
19.
Cells ; 10(6)2021 06 07.
Article in English | MEDLINE | ID: covidwho-1259432

ABSTRACT

The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.


Subject(s)
Cell Nucleus/metabolism , Cell Nucleus/virology , SARS-CoV-2/physiology , Virus Physiological Phenomena , Virus Replication/physiology , Active Transport, Cell Nucleus/physiology , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions/physiology , Humans , Nucleocytoplasmic Transport Proteins/metabolism , Virus Internalization , Viruses/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...