Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Mar Pollut Bull ; 181: 113926, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1926766

ABSTRACT

To reduce microplastic contamination in the environment, we need to better understand its sources and transit, especially from land to sea. This study examines microplastic contamination in Jakarta's nine river outlets. Microplastics were found in all sampling intervals and areas, ranging from 4.29 to 23.49 particles m-3. The trend of microplastic contamination tends to increase as the anthropogenic activity towards Jakarta Bay from the eastern side of the bay. Our study found a link between rainfall and the abundance of microplastic particles in all river outlets studied. This investigation found polyethylene, polystyrene, and polypropylene in large proportion due to their widespread use in normal daily life and industrial applications. Our research observed an increase in microplastic fibers made of polypropylene over time. We suspect a relationship between COVID-19 PPE waste and microplastic shift in our study area. More research is needed to establish how and where microplastics enter rivers.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Bays , COVID-19/epidemiology , Disease Outbreaks , Environmental Monitoring , Humans , Indonesia , Microplastics , Plastics , Polypropylenes , Rivers , Seasons , Water Pollutants, Chemical/analysis
2.
Int J Environ Res Public Health ; 19(13)2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1911355

ABSTRACT

This study investigated the occurrence and transport of four isothiazolinone-type biocides from commercial products to wastewater treatment plants (influents, sludges, and effluents) and to natural emissaries (upstream and downstream the wastewater treatment plants) in Romania. All four biocides were determined in personal care and household products, with the highest concentration of 76.4 µg/L OIT (2-octyl-4-isothiazolin-3-one). For environmental samples, three of the four isothiazolinones were determined, CMI (5-chloro-2-methyl-4-isothiazolin-3-one) being the prominent compound for water samples. The maximum concentration of 84.0 µg/L in influent, 122 µg/L upstream, and 144 µg/L downstream the wastewater treatment plants were obtained for CMI. Unlike water samples, in the sewage sludge samples, OIT proved to be the dominant compound, with concentration up to 5.80 µg/g d.w. The extremely high levels of isothiazolinone determined in different WWTPs from Romania may be due to the COVID-19 pandemic situation, during which a much larger amount of cleaning, hygiene, and personal care products was used. The isothiazolinone-type biocides were readily removed from the influents of the five WWTPs, with the mean removal rate up to 67.5%. The mean mass loading value for the targeted biocides based on influent was 20.4 µg/day/1000 people, while the average environmental emissions were 6.93 µg/day/1000 people for effluents. The results obtained for riverine water combine with statistical analysis showed that the anthropogenic activities are the major contamination sources of the surface waters. Preliminary ecological risk evaluation showed that BIT (1,2-benzisothiazol-3(2H)-one), OIT, and CMI could pose a very high risks to different aquatic species living in the receiving aquatic environments.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Disinfectants/analysis , Environmental Monitoring/methods , Humans , Pandemics , Risk Assessment , Sewage/analysis , Waste Disposal, Fluid , Waste Water/analysis , Water/analysis , Water Pollutants, Chemical/analysis
3.
J Environ Public Health ; 2022: 9056476, 2022.
Article in English | MEDLINE | ID: covidwho-1909921

ABSTRACT

Illicit drug abuse and addiction are universal issues requiring international cooperation and interdisciplinary and multisectoral solutions. These addictive substances are utilized for recreational purposes worldwide, including in sub-Saharan Africa. On the other hand, conventional wastewater treatment facilities such as waste stabilization ponds lack the design to remove the most recent classes of pollutants such as illicit drug abuse. As a result, effluents from these treatment schemes contaminate the entire ecosystem. Public health officials are concerned about detecting these pollutants at alarming levels in some countries, with potential undesirable effects on aquatic species and increased health hazards through exposure to contaminated waters or recycling treated or untreated effluents in agriculture. Contaminants including illicit substances enter the environment by human excreta following illegal intake, spills, or through direct dumping, such as from clandestine laboratories, when their manufacturer does not follow accepted production processes. These substances, like other pharmaceuticals, have biological activity and range from pseudopersistent to highly persistent compounds; hence, they persist in the environment while causing harm to the ecosystem. The presence of powerful pharmacological agents such as cocaine, morphine, and amphetamine in water as complex combinations can impair aquatic organisms and human health. These compounds can harm human beings and ecosystem health apart from their low environmental levels. Therefore, this article examines the presence and levels of illicit substances in ecological compartments such as wastewater, surface and ground waters in sub-Saharan Africa, and their latent impact on the ecosystem. The information on the occurrences of illicit drugs and their metabolic products in the sub-Saharan Africa environment and their contribution to pharmaceutical load is missing. In this case, it is important to research further the presence, levels, distribution, and environmental risks of exposure to human beings and the entire ecosystem.


Subject(s)
Environmental Pollutants , Illicit Drugs , Water Pollutants, Chemical , Africa South of the Sahara , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Humans , Waste Water , Water Pollutants, Chemical/analysis
4.
Sci Rep ; 12(1): 10970, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1908293

ABSTRACT

Pharmaceutical wastewater contamination via azithromycin antibiotic and the continuous emergence of some strains of bacteria, cancer, and the Covid-19 virus. Azithromycin wastewater treatment using the biosynthesized Hematite nanoparticles (α-HNPs) and the biocompatible activities of the resulted nanosystem were reported. Biofabrication of α-HNPs using Echinacea purpurea liquid extract as a previously reported approach was implemented. An evaluation of the adsorption technique via the biofabricated α-HNPs for the removal of the Azr drug contaminant from the pharmaceutical wastewater was conducted. Adsorption isotherm, kinetics, and thermodynamic parameters of the Azr on the α-HNPs surface have been investigated as a batch mode of equilibrium experiments. Antibacterial, anticancer, and antiviral activities were conducted as Azr@α-HNPs. The optimum conditions for the adsorption study were conducted as solution pH = 10, 150 mg dose of α-HNPs, and Azr concentration 400 mg/L at 293 K. The most fitted isothermal model was described according to the Langmuir model at adsorption capacity 114.05 mg/g in a pseudo-second-order kinetic mechanistic at R2 0.9999. Thermodynamic study manifested that the adsorption behavior is a spontaneous endothermic chemisorption process. Subsequently, studying the biocompatible applications of the Azr@α-HNPs. Azr@α-HNPs antibacterial activity revealed a synergistic effect in the case of Gram-positive more than Gram-negative bacteria. IC50 of Azr@α-HNPs cytotoxicity against MCF7, HepG2, and HCT116 cell lines was investigated and it was found to be 78.1, 81.7, and 93.4 µg/mL respectively. As the first investigation of the antiviral use of Azr@α-HNPs against SARS-CoV-2, it was achieved a safety therapeutic index equal to 25.4 revealing a promising antiviral activity. An admirable impact of the use of the biosynthesized α-HNPs and its removal nanosystem product Azr@α-HNPs was manifested and it may be used soon as a platform of the drug delivery nanosystem for the biomedical applications.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents/pharmacology , Antiviral Agents , Azithromycin/pharmacology , COVID-19/drug therapy , Humans , Hydrogen-Ion Concentration , Kinetics , Magnetic Iron Oxide Nanoparticles , Pharmaceutical Preparations , SARS-CoV-2 , Thermodynamics , Waste Water , Water Pollutants, Chemical/analysis
5.
J Hazard Mater ; 437: 129262, 2022 09 05.
Article in English | MEDLINE | ID: covidwho-1907284

ABSTRACT

During pre-pandemic time, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the surface water of Periyar River (PR) and Bharathappuzha River (BR) in Ernakulam and Malappuram districts of Kerala, respectively and Adyar River (AR) and Cooum River (CR) in Chennai district of Tamil Nadu. After the outbreak of COVID-19 pandemic, variation in OCPs and PCBs were evaluated for AR and CR. Dominance of ß-HCH and γ-HCH in south Indian rivers indicate historical use of technical HCH and ongoing use of Lindane, respectively. In > 90 % sites, p,p'-DDT/ p,p'-DDE ratio was < 1, indicating past DDT usage. However during the outbreak of the COVID-19 pandemic, elevated p,p'-DDT in AR and CR reflects localized use of DDT possibly for vector control. Similarly, during the first wave of pandemic, over a 100-fold increase in PCB-52 in these rivers of Chennai mostly via surface run-off and atmospheric deposition can be reasoned with open burning of dumped waste including added waste plastic in the solid waste stream. On contrary, a significant (p < 0.05) decline of dioxin-like PCBs level, suggests lesser combustion related activities by the formal and informal industrial sectors after the lockdown phase in Tamil Nadu. Eco-toxicological risk assessment indicated a higher risk for edible fish in PR due to endosulfan.


Subject(s)
COVID-19 , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , COVID-19/epidemiology , Communicable Disease Control , DDT/analysis , Environmental Monitoring , Humans , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/toxicity , India/epidemiology , Pandemics , Persistent Organic Pollutants , Pesticides/analysis , Pesticides/toxicity , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Environ Toxicol Chem ; 41(2): 298-311, 2022 02.
Article in English | MEDLINE | ID: covidwho-1905846

ABSTRACT

The presence of pharmaceutically active compounds (PACs) in the environment and their associated hazards is a major global health concern; however, data on these compounds are scarce in developing nations. In the present study, the existence of 39 non-antimicrobial PACs and six of their metabolites in wastewater from hospitals and adjacent surface waters in Sri Lanka was investigated from 2016 to 2018. The highest amounts of the measured chemicals, including the highest concentrations of atorvastatin (14,620 ng/L) and two metabolites, mefenamic acid (12,120 ng/L) and o-desmethyl tramadol (8700 ng/L), were detected in wastewater from the largest facility. Mefenamic acid, gemfibrozil, losartan, cetirizine, carbamazepine, and phenytoin were detected in all the samples. The removal rates in wastewater treatment were 100% for zolpidem, norsertaline, quetiapine, chlorpromazine, and alprazolam. There was substantial variation in removal rates of PACs among facilities, and the overall data suggest that treatment processes in facilities were ineffective and that some PAC concentrations in the effluents were increased. The estimated risk quotients revealed that 14 PACs detected in water samples could pose low to high ecological risk to various aquatic organisms. Compounds such as ibuprofen, tramadol, and chlorpromazine detected in untreated and treated wastewater at these facilities pose a high risk to several aquatic organisms. Our study provides novel monitoring data for non-antimicrobial PAC abundance and the associated potential ecological risk related to hospitals and urban surface waters in Sri Lanka and further offers valuable information on pre-COVID-19 era PAC distribution in the country. Environ Toxicol Chem 2022;41:298-311. © 2021 SETAC.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Water Pollutants, Chemical , Environmental Monitoring , Hospitals , Humans , SARS-CoV-2 , Sri Lanka , Waste Water , Water Pollutants, Chemical/analysis
7.
Int J Environ Res Public Health ; 19(11)2022 06 03.
Article in English | MEDLINE | ID: covidwho-1892883

ABSTRACT

In this study, the removal of persistent emerging and dangerous pollutants (pharmaceuticals and pathogens) in synthetic wastewater was evaluated by the application of heterogeneous Advanced Oxidation Processes. To do that, a Metal-Organic Framework (MOF), Basolite® F-300 was selected as a catalyst and combined with peroxymonosulfate (PMS) as oxidants in order to generate sulphate radicals. Several key parameters such as the PMS and Basolite® F-300 concentration were evaluated and optimized using a Central Composite Experimental Design for response surface methodology for the inactivation of Escherichia coli. The assessment of the degradation of an analgesic and antipyretic pharmaceutical, antipyrine, revealed that is necessary to increase the concentration of PMS and amount of Basolite® F-300, in order to diminish the treatment time. Finally, the PMS-Basolite® F-300 system can be used for at least four cycles without a reduction in its ability to disinfect and degrade persistent emerging and dangerous pollutants such as pharmaceuticals and pathogens.


Subject(s)
Disinfection , Water Pollutants, Chemical , Antipyrine , Escherichia coli , Oxidation-Reduction , Peroxides , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
9.
J Water Health ; 20(6): 972-984, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1887052

ABSTRACT

Sewage comprises multifarious information on sewershed characteristics. For instance, influent sewage quality parameters (ISQPs) (e.g., total nitrogen (TN)) are being monitored regularly at all treatment plants. However, the relationship between ISQPs and sewershed characteristics is rarely investigated. Therefore, this study statistically investigated relationships between ISQPs and sewershed characteristics, covering demographic, social, and economic properties in Tokyo city as an example of a megacity. To this end, we collected ISQPs and sewershed characteristic data from 2015 to 2020 in 10 sewersheds in Tokyo city. By principal component analysis, spatial variability of ISQPs was aggregated into two principal components (89.8% contribution in total), indicating organics/nutrients and inorganic salts, respectively. Concentrations of organics/nutrients were significantly correlated with the population in sewersheds (daytime population density, family size, age distribution, etc.). Inorganic salts are significantly correlated with land cover ratios. Finally, a multiple regression model was developed for estimating the concentration of TN based on sewershed characteristics (R2=0.97). Scenario analysis using the regression model revealed that possible population movements in response to the coronavirus pandemic would substantially reduce the concentration of TN. These results indicate close relationships between ISQPs and sewershed characteristics and the potential applicability of big data of ISQPs to estimate sewershed characteristics and vice versa.


Subject(s)
Sewage , Water Pollutants, Chemical , Nitrogen/analysis , Salts/analysis , Sewage/analysis , Tokyo , Water Pollutants, Chemical/analysis
10.
Chemosphere ; 302: 134907, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1881776

ABSTRACT

The abuse of legal and illegal drugs is a global public health problem, also affecting the social and economic well-being of the population. Thus, there is a significant interest in monitoring drug consumption. Relevant epidemiological information on lifestyle habits can be obtained from the chemical analysis of urban wastewater. In this work, passive sampling using polar organic chemical integrative samplers (POCIS) was used to quantify licit and illicit drugs biomarkers in wastewater for the application of wastewater-based epidemiology (WBE). In this WBE study, a small urban community of approximately 1179 inhabitants was monitored from 18 March 2020 to 3 March 2021, covering the mobility restriction and flexibilization periods of the COVID-19 pandemic in Brazil. Consumption was estimated for amphetamine, caffeine, cocaine, MDMA, methamphetamine, nicotine, and THC. The highest estimated consumption among illicit drugs was for THC (2369 ± 1037 mg day-1 1000 inh-1) followed by cocaine (353 ± 192 mg day-1 1000 inh-1). There was a negative correlation between consumption of caffeine, cocaine, MDMA, nicotine, and THC with human mobility, expressed by cellular phone mobility reports (P-value = 0.0094, 0.0019, 0.0080, 0.0009, and 0.0133, respectively). Our study is the first long-term drug consumption evaluation during the COVID-19 pandemic, with continuous sampling for almost a whole year. The observed reduction in consumption of both licit and illicit drugs is probably associated with stay-at-home orders and reduced access, which can be due to the closure of commercial facilities during some time of the evaluated period, smaller drug supply, and reduced income of the population due to the shutdown of companies and unemployment. The assay described in this study can be used as a complementary and cost-effective tool to the long-term monitoring of drug use biomarkers in wastewater, a relevant epidemiological strategy currently limited to short collection times.


Subject(s)
COVID-19 , Cocaine , Illicit Drugs , N-Methyl-3,4-methylenedioxyamphetamine , Substance-Related Disorders , Water Pollutants, Chemical , Amphetamine , Brazil/epidemiology , COVID-19/epidemiology , Caffeine/analysis , Cocaine/analysis , Dronabinol , Humans , Illicit Drugs/analysis , N-Methyl-3,4-methylenedioxyamphetamine/analysis , Nicotine/analysis , Pandemics , Substance Abuse Detection , Substance-Related Disorders/epidemiology , Waste Water/analysis , Wastewater-Based Epidemiological Monitoring , Water Pollutants, Chemical/analysis
11.
Huan Jing Ke Xue ; 43(6): 2996-3004, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: covidwho-1876194

ABSTRACT

The seasonal variation and spatial distribution of pharmaceuticals in typical drinking water sources in the middle reaches of the Yangtze River were analyzed using the solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry methods. Combined with the risk entropy method, the corresponding ecological risks for aquatic organisms were evaluated. The results showed that 80% of the target pharmaceuticals were detected in the drinking water sources, with average concentrations of 0.07-13.00 ng·L-1. The concentrations of the target pharmaceuticals were lower than or comparable with those in other drinking water sources reported in China. The spatiotemporal distribution of different pharmaceuticals varied. Generally, the detection level in winter was higher than that in summer, and there was no significant difference between that upstream and that downstream. This might be mainly attributed to seasonal/regional use and emissions of the pharmaceuticals, the impact of flow rate on dilution, and the impact of temperature on biodegradation. Compared with those before the COVID-19 epidemic, the detection concentrations of the target pharmaceuticals were relatively low. The reason for this might be that the prevention and control of the epidemic reduced the use and emission of the pharmaceuticals to a certain extent, and the high rainfall and runoff strengthened the dilution of water flow. The target pharmaceuticals, especially antibiotics, posed medium or low risks to aquatic organisms (especially algae). Considering the ecological risks and genotoxicity of pharmaceuticals and the potential risks of antibiotic-resistant genes, it is suggested to strengthen the investigation, evaluation, treatment, and control of pharmaceuticals in the water environment.


Subject(s)
COVID-19 , Drinking Water , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , Aquatic Organisms , China , Drinking Water/analysis , Environmental Monitoring/methods , Humans , Pharmaceutical Preparations , Risk Assessment , Water Pollutants, Chemical/analysis
12.
Chemosphere ; 303(Pt 3): 135186, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1866965

ABSTRACT

Globally, an estimated 130 billion face masks are used and disposed of every month. Thus, recycling or upcycling discarded face masks has attracted significant attention due to economic benefits and environmental concerns. To reduce the amount of used face masks going to waste, this study features a superhydrophobic face mask prepared by simple chemical modification with environmentally preferable alkane solvents (n-hexane, n-heptane, and n-decane), that is effective as a sorbent for oil spill cleanup. All alkanes examined increased the surface roughness of the face masks and improved face mask hydrophobicity. The heptane treated face mask (at 90 °C for 1 h), can adsorbed Arabian light crude oil up to 21 times of their weight on the water surface. In addition, chloroform, toluene, gasoline, and diesel were adsorbed 18, 13, 8 and 16 times, respectively. More importantly, heptane has a high recycling efficiency as a treatment solvent and is reusable for at least 10 cycles of mask surface treatment. Consequently, this inexpensive and easily fabricated material is a promising development in waste face mask (WFM) upcycling.


Subject(s)
Petroleum Pollution , Water Pollutants, Chemical , Heptanes , Hydrophobic and Hydrophilic Interactions , Masks , Petroleum Pollution/prevention & control , Polypropylenes , Solvents , Water Pollutants, Chemical/analysis
13.
Chemosphere ; 298: 134027, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1838635

ABSTRACT

Variation in levels of toxic heavy metals in river system during the COVID-19 pandemic lockdown might potentially assist in development of a public health risk mitigation system associated with the water consumption. The water quality of Punnakayal estuary in the Thamirabarani River system from the south India, a vital source of water for drinking and domestic purposes, industrial usage, and irrigation was assessed here. A comparitive assessment of physico-chemical variables (pH, EC, TDS, DO, BOD, turbidity and NO3), microbiological parameters (total coliform bacteria, fecal coliform bacteria, fecal streptococci and escherichia coli) and toxic metals (As, Cr, Fe, Cu, Zn, Cd, and Pb) suggested a decrease of 20% in the contaminant ratio during the lockdown period in comparison to the pre-lockdown period. The Health risk assessment models (HQ, HI, and TCR) highlighted carcinogenic and non-carcinogenic hazards for both children and adults through the ingestion and dermal adsorption exposures. The HI values for both As and Cr exceeded the acceptable limit (>1) during the lockdown period, but the potential risk for children and adults remained low in compaisio with the pre-lockdown period. Our results suggested that the Thamirabarani River system remained hostile to human health even during the lockdown period, and it requires regular monitoring through a volunteer water quality committee with private and government participations.


Subject(s)
COVID-19 , Metals, Heavy , Water Pollutants, Chemical , Adult , COVID-19/epidemiology , Child , Communicable Disease Control , Environmental Monitoring , Escherichia coli , Estuaries , Heavy Metal Poisoning , Humans , India , Metals, Heavy/analysis , Pandemics , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis
14.
Chemosphere ; 302: 134775, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1821179

ABSTRACT

Various emerging organic micropollutants, such as pharmaceuticals, have attracted the interest of the water industry during the last two decades due to their insufficient removal during conventional water and wastewater treatment methods and increasing demand for pharmaceuticals projected to climate change-related impacts and COVID-19, nanosorbents such as carbon nanotubes (CNTs), graphene oxides (GOs), and metallic organic frameworks (MOFs) have recently been extensively explored regarding their potential environmental applications. Due to their unique physicochemical features, the use of these nanoadsorbents for organic micropollutans in water and wastewater treatment processes has been a rapidly growing topic of research in recent literature. Adsorptive membranes, which include these nanosorbents, combine the benefits of adsorption with membrane separation, allowing for high flow rates and faster adsorption/desorption rates, and have received a lot of publicity in recent years. The most recent advances in the fabrication of adsorptive membranes (including homogeneous membranes, mixed matrix membranes, and composite membranes), as well as their basic principles and applications in water and wastewater treatment, are discussed in this review. This paper covers ten years, from 2011 to 2021, and examines over 100 published studies, highlighting that micropollutans can pose a serious threat to surface water environments and that adsorptive membranes are promising, particularly in the adsorption of trace substances with fast kinetics. Membrane fouling, on the other hand, should be given more attention in future studies due to the high costs and restricted reusability.


Subject(s)
COVID-19 , Nanotubes, Carbon , Water Pollutants, Chemical , Water Purification , Adsorption , Humans , Pharmaceutical Preparations , Water , Water Pollutants, Chemical/analysis , Water Purification/methods
15.
Sci Total Environ ; 836: 155697, 2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-1819601

ABSTRACT

The COVID-19 pandemic spread rapidly worldwide in the year 2020, which was initially restrained by drastic mobility restrictions. In this work, we investigated the use of illicit drugs (amphetamine, methamphetamine, ecstasy, cocaine and cannabis), and licit substances of abuse (alcohol and tobacco) during the earlier months (March-July 2020) of the pandemic restrictions in four Spanish (Bilbao and its metropolitan area, Vitoria-Gasteiz, Castellón and Santiago de Compostela) and two Portuguese (Porto and Vila do Conde) locations by wastewater-based epidemiology (WBE). The results show that no methamphetamine was detected in any of the locations monitored, while amphetamine use was only detectable in the two locations from the Basque Country (Bilbao and its metropolitan area and Vitoria-Gasteiz), with high estimated average usage rates (700-930 mg day-1 1000 inhabitant-1). The remaining substances were detected in all the investigated catchment areas. In general, no remarkable changes were found in population normalized loads compared to former years, except for cocaine (i.e. its main metabolite, benzoylecgonine). For this drug, a notable decrease in use was discernible in Castellón, while its usage in Porto and Santiago de Compostela seemed to continue in a rising trend, already initiated in former years. Furthermore, two events of ecstasy (3,4-methylenedioxymethamphetamine, MDMA) dumping in the sewage network were confirmed by enantiomeric analysis, one in Santiago de Compostela just prior the lockdown and the second one in the Bilbao and its metropolitan area in July after relieving the more stringent measures. The latter could also be associated with a police intervention. The comparison of WBE with (web) survey data, which do not provide information at a local level, points towards contradictory conclusions for some of the substances, thereby highlighting the need for stable WBE networks capable of near real-time monitoring drug use.


Subject(s)
COVID-19 , Cocaine , Illicit Drugs , Methamphetamine , N-Methyl-3,4-methylenedioxyamphetamine , Substance-Related Disorders , Water Pollutants, Chemical , Amphetamine , COVID-19/epidemiology , Cocaine/analysis , Communicable Disease Control , Humans , N-Methyl-3,4-methylenedioxyamphetamine/analysis , Pandemics , Portugal/epidemiology , Spain/epidemiology , Substance Abuse Detection/methods , Substance-Related Disorders/epidemiology , Tobacco , Waste Water/analysis , Wastewater-Based Epidemiological Monitoring , Water Pollutants, Chemical/analysis
16.
J Hazard Mater ; 435: 128980, 2022 08 05.
Article in English | MEDLINE | ID: covidwho-1796501

ABSTRACT

The ingestion and accumulation of microplastics is a serious threat to the health and survival of humans and other organisms given the increasing use of daily-use plastic products, especially during the COVID-19 pandemic. However, whether direct microplastic contamination from plastic packaging is a threat to human health remains unclear. We analyzed the market demand for plastic packaging in Asia-Pacific, North America, and Europe and identified the commonly used plastic food packaging products. We found that food containers exposed to high-temperature released more than 10 million microplastics per mL in water. Recycled plastic food packaging was demonstrated to continuously leach micro- and nanoplastics. In vitro cell engulfing experiments revealed that both micro- and nanoplastic leachates are readily taken up by murine macrophages without any preconditioning, and that short-term microplastic exposure may induce inflammation while exposure to nanoplastic substantially suppressed the lysosomal activities of macrophages. We demonstrated that the ingestion of micro- and nanoplastics released from food containers can exert differential negative effects on macrophage activities, proving that the explosive growth in the use of plastic packaging can poses significant health risks to consumers.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Food Packaging , Humans , Lysosomes , Macrophages , Mice , Microplastics/toxicity , Pandemics , Plastics/analysis , Plastics/toxicity , Water Pollutants, Chemical/analysis
17.
Sci Total Environ ; 812: 152485, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1783734

ABSTRACT

This study identified ecological and human health risks exposure of COVID-19 pharmaceuticals and their metabolites in environmental waters. Environmental concentrations in aquatic species were predicted using surface water concentrations of pharmaceutical compounds. Predicted No-Effect Concentrations (PNEC) in aquatic organisms (green algae, daphnia, and fish) was estimated using EC50/LC50 values of pharmaceutical compounds taken from USEPA ECOSAR database. PNEC for human health risks was calculated using the acceptable daily intake values of drugs. Ecological PNEC revealed comparatively high values in algae (Chronic toxicity PNEC values, high to low: ribavirin (2.65 × 105 µg/L) to ritonavir (2.3 × 10-1 µg/L)) than daphnia and fish. Risk quotient (RQ) analysis revealed that algae (Avg. = 2.81 × 104) appeared to be the most sensitive species to pharmaceutical drugs followed by daphnia (Avg.: 1.28 × 104) and fish (Avg.: 1.028 × 103). Amongst the COVID-19 metabolites, lopinavir metabolites posed major risk to aquatic species. Ritonavir (RQ = 6.55) is the major drug responsible for human health risk through consumption of food (in the form fish) grown in pharmaceutically contaminated waters. Mixture toxicity analysis of drugs revealed that algae are the most vulnerable species amongst the three trophic levels. Maximum allowable concentration level for mixture of pharmaceuticals was found to be 0.53 mg/L.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Daphnia , Environmental Monitoring , Humans , Risk Assessment , SARS-CoV-2 , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
18.
Chemosphere ; 299: 134373, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1748141

ABSTRACT

The ongoing COVID-19 pandemic is leading to an increase of the global production of plastics since the use of personal protective equipment (PPEs, i.e. gloves, gowns, masks, packaging items), has become mandatory to prevent the spread of the virus. Plastic breaks down into micro/nano particles due to physical or chemical or biological actions into environment. Due to small dimensions, ubiquitous and persistent nature, the plastic particles represent a significant threat to ecosystems and can entry into food chains. Among the plastic polymers used for PPEs, polystyrene is less studied regarding its eco-geno-toxicity. This study aims to investigate acute, chronic and subchronic effects of the microplastic polystyrene beads (PS-MP, size 1.0 µm) on three freshwater species, the alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the crustacean Ceriodaphnia dubia and the benthic ostracod Heterocypris incongruens. Furthermore, the potential genotoxicity and the ROS production due to the PS-MP were also determined in C. dubia. Results revealed that the acute effects occurred at concentrations of PS-MP in the order of dozens of mg/L in B. calyciflorus and C. dubia and hundreds of mg/L in H. incongruens. Regarding long-term toxicity, increasing chronic effects with EC50s in the order of units (C. dubia), hundreds (B. calyciflorus) and thousands (R. subcapitata) of µg/L were observed. Both for acute and chronic/sub chronic toxicity, daphnids were more sensitive to polystyrene than ostracods. Moreover, when C. dubia neonates were exposed to the PS-MP, alterations in genetic material as well as the production of ROS occurred, starting from concentrations in the order of units of µg/L, probably due to inflammatory responses. At last, the risk quotient (RQ) as a measure of risk posed by PS-MPs in freshwater environment, was calculated obtaining a value of 7.2, higher than the threshold value of 1.


Subject(s)
COVID-19 , Rotifera , Water Pollutants, Chemical , Animals , Aquatic Organisms , Ecosystem , Fresh Water , Humans , Infant, Newborn , Microplastics/toxicity , Pandemics , Plastics/toxicity , Polystyrenes/toxicity , Reactive Oxygen Species , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
Sci Total Environ ; 820: 153049, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1730084

ABSTRACT

With the outbreak and widespread of the COVID-19 pandemic, large numbers of disposable face masks (DFMs) were abandoned in the environment. This study first investigated the sorption and desorption behaviors of four antibiotics (tetracycline (TC), ciprofloxacin (CIP), sulfamethoxazole (SMX), and triclosan (TCS)) on DFMs in the freshwater and seawater. It was found that the antibiotics in the freshwater exhibited relatively higher sorption and desorption capacities on the DFMs than those in the seawater. Here the antibiotics sorption processes were greatly related to their zwitterion species while the effect of salinity on the sorption processes was negligible. However, the desorption processes were jointly dominated by solution pH and salinity, with greater desorption capacities at lower pH values and salinity. Interestingly, we found that the distribution coefficient (Kd) of TCS (0.3947 L/g) and SMX (0.0399 L/g) on DFMs was higher than those on some microplastics in freshwater systems. The sorption affinity of the antibiotics onto the DFMs followed the order of TCS > SMX > CIP > TC, which was positively correlated with octanol-water partition coefficient (log Kow) of the antibiotics. Besides, the sorption processes of the antibiotics onto the DFMs were mainly predominated by film diffusion and partitioning mechanism. Overall, hydrophobic interaction regulated the antibiotics sorption processes. These findings would help to evaluate the environmental behavior of DFMs and to provide the analytical framework of their role in the transport of other pollutants.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents/chemistry , Fresh Water/chemistry , Humans , Masks , Pandemics , Plastics/chemistry , Seawater/chemistry , Water Pollutants, Chemical/analysis
20.
Ecotoxicol Environ Saf ; 233: 113353, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1719635

ABSTRACT

The deposition is an important process of microplastics transporting from atmosphere to water and soil. But the spatial and temporal distribution of microplastics in urban atmospheric deposition and its influencing factors are poorly understood. The current study investigated the possible sources, spatial and temporal distribution, and potential ecological risk of microplastics in deposition from the valley basin of Lanzhou city during the COVID-19 pandemic (from February to August, 2020). The deposition flux of microplastics was 353.83 n m-2 d-1. Most plastic samples were small sized (50~500 µm) and transparent. The dominant chemical composition and shapes were PET, fragments and fibers, respectively. A modified method was conducted to identify the sources of microplastics, and the local sources were suggested as the main possible sources. The distribution of microplastics investigated through the inverse distance weight interpolation showed spatial variation and temporal differentiation which was dominated by the human activity. The rainfall also affected the temporal distribution. The preliminary assessment indicated higher potential ecological risk of microplastics in deposition. This study suggested the dominant effect of human activity on the source and distribution of atmospheric microplastic deposition in city.


Subject(s)
COVID-19 , Water Pollutants, Chemical , China , Environmental Monitoring , Humans , Microplastics , Pandemics , Plastics , SARS-CoV-2 , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL