ABSTRACT
As severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections have been shown to affect the central nervous system, the investigation of associated alterations of brain structure and neuropsychological sequelae is crucial to help address future health care needs. Therefore, we performed a comprehensive neuroimaging and neuropsychological assessment of 223 nonvaccinated individuals recovered from a mild to moderate SARS-CoV-2 infection (100 female/123 male, age [years], mean ± SD, 55.54 ± 7.07; median 9.7 mo after infection) in comparison with 223 matched controls (93 female/130 male, 55.74 ± 6.60) within the framework of the Hamburg City Health Study. Primary study outcomes were advanced diffusion MRI measures of white matter microstructure, cortical thickness, white matter hyperintensity load, and neuropsychological test scores. Among all 11 MRI markers tested, significant differences were found in global measures of mean diffusivity (MD) and extracellular free water which were elevated in the white matter of post-SARS-CoV-2 individuals compared to matched controls (free water: 0.148 ± 0.018 vs. 0.142 ± 0.017, P < 0.001; MD [10-3 mm2/s]: 0.747 ± 0.021 vs. 0.740 ± 0.020, P < 0.001). Group classification accuracy based on diffusion imaging markers was up to 80%. Neuropsychological test scores did not significantly differ between groups. Collectively, our findings suggest that subtle changes in white matter extracellular water content last beyond the acute infection with SARS-CoV-2. However, in our sample, a mild to moderate SARS-CoV-2 infection was not associated with neuropsychological deficits, significant changes in cortical structure, or vascular lesions several months after recovery. External validation of our findings and longitudinal follow-up investigations are needed.
Subject(s)
COVID-19 , White Matter , Female , Male , Humans , SARS-CoV-2 , Brain , Neuroimaging , Neuropsychological Tests , WaterABSTRACT
BACKGROUND: Thermal inactivation is a conventional and effective method of eliminating the infectivity of pathogens from specimens in clinical and biological laboratories, and reducing the risk of occupational exposure and environmental contamination. During the COVID-19 pandemic, specimens from patients and potentially infected individuals were heat treated and processed under BSL-2 conditions in a safe, cost-effective, and timely manner. The temperature and duration of heat treatment are optimized and standardized in the protocol according to the susceptibility of the pathogen and the impact on the integrity of the specimens, but the heating device is often undefined. Devices and medium transferring the thermal energy vary in heating rate, specific heat capacity, and conductivity, resulting in variations in efficiency and inactivation outcome that may compromise biosafety and downstream biological assays. METHODS: We evaluated the water bath and hot air oven in terms of pathogen inactivation efficiency, which are the most commonly used inactivation devices in hospitals and biological laboratories. By evaluating the temperature equilibrium and viral titer elimination under various conditions, we studied the devices and their inactivation outcomes under identical treatment protocol, and to analyzed the factors, such as energy conductivity, specific heat capacity, and heating rate, underlying the inactivation efficiencies. RESULTS: We compared thermal inactivation of coronavirus using different devices, and have found that the water bath was more efficient at reducing infectivity, with higher heat transfer and thermal equilibration than a forced hot air oven. In addition to the efficiency, the water bath showed relative consistency in temperature equilibration of samples of different volumes, reduced the need for prolonged heating, and eliminated the risk of pathogen spread by forced airflow. CONCLUSIONS: Our data support the proposal to define the heating device in the thermal inactivation protocol and in the specimen management policy.
Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Pandemics/prevention & control , Hot Temperature , Temperature , WaterABSTRACT
INTRODUCTION AND OBJECTIVE: Micropollutants (MPs) are defined as persistent and biologically-active substances which occur in the environment in trace amounts, mainly as a result of industrial processes and human domestic activity. The published experimental data prove that, among other things, MPs present in the environment may also affect and disturb hormonal balance in humans, resulting in impairment of the reproductive function. In addition to the many MPs disrupting endocrine function described in literature and which exert an effect on human reproductive function, the study presents a review of current literature concerning the exposure to Bisphenol A, phthalates, organochlorine pesticides, and pyrethroids. REVIEW METHODS: Two independent authors searched in PubMed and Google scholar (any date until September 2022) for studies concerning chosen endocrine-disrupting MPs in water and their effects on human fertility and fecundity. BRIEF DESCRIPTION OF THE STATE OF KNOWLEDGE: The review of the literature showed that EDMs present in the environment may create risk in the prenatal and postnatal development following premature birth, and exert a negative effect on fertility and reproductive functions in humans, especially during the perinatal period. SUMMARY: The presented review of literature indicates a negative effect of exposure to BPA, phthalates, OC and OP pesticides, as well as to pyrethroids, regarding human reproductive health. It also demonstrated considerable differences according to gender. Generally, there is a definitely stronger evidence for the presence of a cause-effect relationship between the discussed EDMs and a decreased fertility and fecundity in males. The negative effect of exposure to Bisphenol A, phthalates, selected organochlorine pesticides and pyrethroids appears to be quite well documented.
Subject(s)
Environmental Pollutants , Pesticides , Pyrethrins , Male , Pregnancy , Female , Humans , Water , Fertility , Pesticides/toxicity , Pyrethrins/toxicityABSTRACT
Chloroquine phosphate (CQP) is effective in treating coronavirus disease 2019 (COVID-19); thus, its usage is rapidly increasing, which may pose a potential hazard to the environment and living organisms. However, there are limited findings on the removal of CQP in water. Herein, iron and magnesium co-modified rape straw biochar (Fe/Mg-RSB) was prepared to remove CQP from the aqueous solution. The results showed that Fe and Mg co-modification enhanced the adsorption efficiency of rape straw biochar (RSB) for CQP with the maximum adsorption capacity of 42.93 mg/g (at 308 K), which was about two times higher than that of RSB. The adsorption kinetics and isotherms analysis, as well as the physicochemical characterization analysis, demonstrated that the adsorption of CQP onto Fe/Mg-RSB was caused by the synergistic effect of pore filling, π-π interaction, hydrogen bonding, surface complexation, and electrostatic interaction. In addition, although solution pH and ionic strength affected the adsorption performance of CQP, Fe/Mg-RSB still had a high adsorption capability for CQP. Column adsorption experiments revealed that the Yoon-Nelson model better described the dynamic adsorption behavior of Fe/Mg-RSB. Furthermore, Fe/Mg-RSB had the potential for repeated use. Therefore, Fe and Mg co-modified biochar could be used for the remediation of CQP from contaminated water.
Subject(s)
COVID-19 , Environmental Pollutants , Water Pollutants, Chemical , Humans , Iron/chemistry , Magnesium , Environmental Pollutants/analysis , Water , COVID-19 Drug Treatment , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , KineticsABSTRACT
Outbreaks due to parasites can occur in various parts of the world and in different periods. These outbreaks can be caused by water and food, as well as by human-to-human or vector-borne transmission. Cryptosporidium spp. and Giardia intestinalis were among the pathogens that affected most people in water-borne outbreaks occurred in the world between 2010-2014. The chlorine resistance of both Cryptosporidium spp. and Giardia spp. leads to the widespread detection of these parasites in waterborne outbreaks. These two protozoans cause self-limiting watery diarrhea in immunocompetent individuals, but they can also cause chronic disease in certain situations. Apart from this, parasites such as Cyclospora spp., Cryptosporidium spp., Giardia intestinalis, Trichinella spp. and Toxoplasma gondii can also cause foodborne outbreaks. In Türkiye, outbreaks related to these parasites have emerged with the neglect of the notification. Some parasites transmitted from person to person can also pose a threat to public health in certain periods. Head lice, the most common examples of such parasites, can cause outbreaks in certain periods. Another example for human-induced parasitic outbreaks is scabies. There has been an increase in scabies rates in the world and in Türkiye, especially due to the Coronavirus disease-2019 (COVID-19) pandemic. In the first period of the pandemic, it was thought that due to the curfew restrictions, family members spending time at home might have led to an increase in the rate of scabies. On the other hand, as a result of the disruption of services due to COVID-19, the cases of malaria, a vector-borne disease, and the resulting deaths increased in 2020 compared to 2019 in the world. Although only imported malaria cases are detected in Türkiye today, there is a potential for an outbreak to occur at any time due to the presence of malaria vectors. An outbreak of imported malaria occurred in Mardin in 2012 due to a lorry driver entering the country from an endemic region. Immigrants that reside in Türkiye pose a risk for some infectious diseases due to the circumstances during migration or the conditions in their living areas. Leishmaniasis, which maintains its importance in the Mediterranean region, is another vector-borne disease and can be detected in Türkiye, especially in regions where immigrants reside. Bed bug infestations, which have increased recently, also closely affect the provision of health services. It is important to implement regular inspections in regions with outbreak potential, and to ensure the continuity of hygiene conditions and health services to prevent a possible outbreak. In case of an outbreak, different centers should cooperate, health authorities and academics should act together, patients and their contacts should be identified quickly and necessary precautions should be taken, the society should be informed and the outbreak should be taken under control in a short time. In this review article, outbreaks caused by parasites were examined under four headings as water, food, human and vector/arthropod-borne and examples from the world and Türkiye were given for these outbreaks.
Subject(s)
COVID-19 , Cryptosporidiosis , Cryptosporidium , Parasites , Scabies , Animals , Humans , Cryptosporidiosis/epidemiology , Disease Outbreaks , Water/parasitologyABSTRACT
Legionella is a pathogen that colonizes soils, freshwater, and building water systems. People who are most affected are those with immunodeficiencies, so it is necessary to monitor its presence in hospitals. The purpose of this study was to evaluate the presence of Legionella in water samples collected from hospitals in the Campania region, Southern Italy. A total of 3365 water samples were collected from January 2018 to December 2022 twice a year in hospital wards from taps and showers, tank bottoms, and air-treatment units. Microbiological analysis was conducted in accordance with the UNI EN ISO 11731:2017, and the correlations between the presence of Legionella and water temperature and residual chlorine were investigated. In total, 708 samples (21.0%) tested positive. The most represented species was L. pneumophila 2-14 (70.9%). The serogroups isolated were 1 (27.7%), 6 (24.5%), 8 (23.3%), 3 (18.9%), 5 (3.1%), and 10 (1.1%). Non-pneumophila Legionella spp. represented 1.4% of the total. Regarding temperature, the majority of Legionella positive samples were found in the temperature range of 26.0-40.9 °C. An influence of residual chlorine on the presence of the bacterium was observed, confirming that chlorine disinfection is effective for controlling contamination. The positivity for serogroups other than serogroup 1 suggested the need to continue environmental monitoring of Legionella and to focus on the clinical diagnosis of other serogroups.
Subject(s)
Legionella pneumophila , Legionella , Humans , Chlorine/analysis , Water Supply , Hospitals , Environmental Monitoring , Water/analysis , Water MicrobiologyABSTRACT
The medical use of molecular hydrogen, including hydrogen-rich water and hydrogen gas, has been extensively explored since 2007. This article aimed to demonstrate the trend in medical research on molecular hydrogen. A total of 1126 publications on hydrogen therapy were retrieved from the PubMed database until July 30, 2021. From 2007 to 2020, the number of publications in this field had been on an upward trend. Medical Gas Research, Scientific Report and Shock have contributed the largest number of publications on this topic. Researchers by the name of Xue-Jun Sun, Ke-Liang Xie and Yong-Hao Yu published the most studies in the field. Analysis of the co-occurrence of key words indicated that the key words "molecular hydrogen," "hydrogen-rich water," "oxidative stress," "hydrogen gas," and "inflammation" occurred most frequently in these articles. "Gut microbiota," "pyroptosis," and "COVID-19" occurred the most recently among the keywords. In summary, the therapeutic application of molecular hydrogen had attracted much attention in these years. The advance in this field could be caught up by subscribing to relevant journals or following experienced scholars. Oxidative stress and inflammation were the most important research directions currently, and gut microbiota, pyroptosis, and coronavirus disease 2019 might become hotspots in the future.
Subject(s)
COVID-19 , Humans , Bibliometrics , Hydrogen/therapeutic use , Oxidative Stress , WaterABSTRACT
The increase in using antibiotics, especially Azithromycin have increased steadily since the beginning of COVID19 pandemic. This increase has led to its presence in water systems which consequently led to its presence upon using this water for irrigation. The aim of the present work is to study the impact of irrigation using Azithromycin containing water on soil microbial community and its catabolic activity in the presence of phenolic wastes as compost. Wild berry, red grapes, pomegranate, and spent tea waste were added to soil and the degradation was monitored after 5 and 7 days at ambient and high temperatures. The results obtained show that at 30 °C, soil microbial community collectively was able to degrade Azithromycin, while at 40 °C, addition of spent tea as compost was needed to reach higher degradation. To ensure that the degradation was biotic and depended on degradation by indigenous microflora, a 25 kGy irradiation dose was used to kill the microorganisms in the soil and this was used as negative control. The residual antibiotic was assayed using UV spectroscopy and High Performance Liquid Chromatography (HPLC). Indication of Azithromycin presence was studied using Fourier Transform Infrared Spectroscopy (FTIR) peaks and the same pattern was obtained using the 3 used detection methods, the ability to assign the peaks even in the presence of soil and not to have any overlaps, gives the chance to study this result in depth to prepare IR based sensor for quick sensing of antibiotic in environmental samples.
Subject(s)
COVID-19 , Microbiota , Soil Pollutants , Humans , Azithromycin/pharmacology , Azithromycin/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Temperature , Soil/chemistry , COVID-19 Drug Treatment , Biodegradation, Environmental , Phenols/analysis , Water , Tea , Soil Microbiology , Soil Pollutants/metabolismABSTRACT
The COVID-19 pandemic has brought increments in market sales and prescription of medicines commonly used to treat mental health disorders, such as depression, anxiety, stress, and related problems. The increasing use of these drugs, named psychiatric drugs, has led to their persistence in aquatic systems (bioaccumulation), since they are recalcitrant to conventional physical and chemical treatments typically used in wastewater treatment plants. An emerging environmental concern caused by the bioaccumulation of psychiatric drugs has been attributed to the potential ecological and toxicological risk that these medicines might have over human health, animals, and plants. Thus, by the application of biocatalysis-assisted techniques, it is possible to efficiently remove psychiatric drugs from water. Biocatalysis, is a widely employed and highly efficient process implemented in the biotransformation of a wide range of contaminants, since it has important differences in terms of catalytic behavior, compared to common treatment techniques, including photodegradation, Fenton, and thermal treatments, among others. Moreover, it is noticed the importance to monitor transformation products of degradation and biodegradation, since according to the applied removal technique, different toxic transformation products have been reported to appear after the application of physical and chemical procedures. In addition, this work deals with the discussion of differences existing between high- and low-income countries, according to their environmental regulations regarding waste management policies, especially waste of the drug industry.
Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Humans , Biocatalysis , Bioaccumulation , Pandemics , Water , Water Pollutants, Chemical/analysis , Biodegradation, EnvironmentalABSTRACT
BACKGROUND: While 5% of 247 million global malaria cases are reported in Uganda, it is also a top refugee hosting country in Africa, with over 1.36 million refugees. Despite malaria being an emerging challenge for humanitarian response in refugee settlements, little is known about its risk factors. This study aimed to investigate the risk factors for malaria infections among children under 5 years of age in refugee settlements in Uganda. METHODS: We utilized data from Uganda's Malaria Indicator Survey which was conducted between December 2018 and February 2019 at the peak of malaria season. In this national survey, household level information was obtained using standardized questionnaires and a total of 7787 children under 5 years of age were tested for malaria using mainly the rapid diagnostic test. We focused on 675 malaria tested children under five in refugee settlements located in Yumbe, Arua, Adjumani, Moyo, Lamwo, Kiryadongo, Kyegegwa, Kamwenge and Isingiro districts. The extracted variables included prevalence of malaria, demographic, social-economic and environmental information. Multivariable logistic regression was used to identify and define the malaria associated risk factors. RESULTS: Overall, malaria prevalence in all refugee settlements across the nine hosting districts was 36.6%. Malaria infections were higher in refugee settlements located in Isingiro (98.7%), Kyegegwa (58.6%) and Arua (57.4%) districts. Several risk factors were significantly associated with acquisition of malaria including fetching water from open water sources [adjusted odds ratio (aOR) = 1.22, 95% CI: 0.08-0.59, P = 0.002], boreholes (aOR = 2.11, 95% CI: 0.91-4.89, P = 0.018) and water tanks (aOR = 4.47, 95% CI: 1.67-11.9, P = 0.002). Other factors included pit-latrines (aOR = 1.48, 95% CI: 1.03-2.13, P = 0.033), open defecation (aOR = 3.29, 95% CI: 1.54-7.05, P = 0.002), lack of insecticide treated bed nets (aOR = 1.15, 95% CI: 0.43-3.13, P = 0.003) and knowledge on the causes of malaria (aOR = 1.09, 95% CI: 0.79-1.51, P = 0.005). CONCLUSIONS: The persistence of the malaria infections were mainly due to open water sources, poor hygiene, and lack of preventive measures that enhanced mosquito survival and infection. Malaria elimination in refugee settlements requires an integrated control approach that combines environmental management with other complementary measures like insecticide treated bed nets, indoor residual spraying and awareness.
Subject(s)
Communicable Disease Control , Malaria , Refugees , Animals , Child, Preschool , Humans , Insecticide-Treated Bednets/supply & distribution , Malaria/diagnosis , Malaria/epidemiology , Malaria/prevention & control , Refugees/statistics & numerical data , Risk Factors , Uganda/epidemiology , Water , Infant, Newborn , Infant , Health Surveys , Prevalence , Water Supply/statistics & numerical data , Environmental Exposure/statistics & numerical data , Health Knowledge, Attitudes, Practice , Toilet Facilities/statistics & numerical data , Defecation , Hygiene/standards , Communicable Disease Control/methods , Communicable Disease Control/standards , Communicable Disease Control/statistics & numerical dataABSTRACT
Environmental water is considered one of the main vehicles for the transmission of antimicrobial resistance (AMR), posing an increasing threat to humans and animals health. Continuous efforts are being made to eliminate AMR; however, the detection of AMR pathogens from water samples often requires at least one culture step, which is time-consuming and can limit sensitivity. In this study, we employed comparative genomics to identify the prevalence of AMR genes within among: Escherichia coli, Klebsiella, Salmonella enterica and Acinetobacter, using publicly available genomes. The mcr-1, blaKPC (KPC-1 to KPC-4 alleles), blaOXA-48, blaOXA-23 and blaVIM (VIM-1 and VIM-2 alleles) genes are of great medical and veterinary significance, thus were selected as targets for the development of isothermal loop-mediated amplification (LAMP) detection assays. We also developed a rapid and sensitive sample preparation method for an integrated culture-independent LAMP-based detection from water samples. The developed assays successfully detected the five AMR gene markers from pond water within 1 h and were 100% sensitive and specific with a detection limit of 0.0625 µg/mL and 10 cfu/mL for genomic DNA and spiked bacterial cells, respectively. The integrated detection can be easily implemented in resource-limited areas to enhance One Health AMR surveillances and improve diagnostics.
Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Animals , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Nucleic Acid Amplification Techniques/methods , Escherichia coli , Water , Sensitivity and SpecificityABSTRACT
The ubiquitous nature of microplastics (MPs) in nature and the risks they pose on the environment and human health have led to an increased research interest in the topic. Despite being an area of high plastic production and consumption, studies on MPs in the Middle East and North Africa (MENA) region have been limited. However, the region witnessed a research surge in 2021 attributed to the COVID-19 pandemic. In this review, a total of 97 studies were analyzed based on their environmental compartments (marine, freshwater, air, and terrestrial) and matrices (sediments, water columns, biota, soil, etc.). Then, the MP concentrations and polymer types were utilized to conduct a risk assessment to provide a critical analysis of the data. The highest MP concentrations recorded in the marine water column and sediments were in the Mediterranean Sea in Tunisia with 400 items/m3 and 7960 items/kg of sediments, respectively. The number of MPs in biota ranged between 0 and 7525 per individual across all the aquatic compartments. For the air compartment, a school classroom had 56,000 items/g of dust in Iran due to the confined space. Very high risks in the sediment samples (Eri > 1500) were recorded in the Caspian Sea and Arab/Persian Gulf due to their closed or semi-closed nature that promotes sedimentation. The risk factors obtained are sensitive to the reference concentration which calls for the development of more reliable risk assessment approaches. Finally, more studies are needed in understudied MENA environmental compartments such as groundwater, deserts, and estuaries.
Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics/analysis , Plastics/analysis , Ecosystem , Pandemics , Geologic Sediments , Water Pollutants, Chemical/analysis , Environmental Monitoring , Middle East , Water/analysis , TunisiaABSTRACT
Increasing drug residues in aquatic environments have been caused by the abuse of antivirals since the global spread of the COVID-19 epidemic, whereas research on the photolytic mechanism, pathways and toxicity of these drugs is limited. The concentration of COVID-19 antivirals ribavirin in rivers has been reported to increase after the epidemic. Its photolytic behavior and environmental risk in actual waters such as wastewater treatment plant (WWTP) effluent, river water and lake water were first investigated in this study. Direct photolysis of ribavirin in these media was limited, but indirect photolysis was promoted in WWTP effluent and lake water by dissolved organic matter and NO3-. Identification of photolytic intermediates suggested that ribavirin was photolyzed mainly via C-N bond cleavage, splitting of the furan ring and oxidation of the hydroxyl group. Notably, the acute toxicity was increased after ribavirin photolysis owing to the higher toxicity of most of the products. Additionally, the overall toxicity was greater when ARB photolysis in WWTP effluent and lake water. These findings emphasize the necessity to concern about the toxicity of ribavirin transformation in natural waters, as well as to limit its usage and discharge.
Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Ribavirin , Antiviral Agents , Photolysis , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Water/chemistry , Water Pollutants, Chemical/chemistryABSTRACT
The coronavirus disease-2019 (COVID-19) pandemic has raised the stakes for planetary health diagnostics. Because pandemics pose enormous burdens on biosurveillance and diagnostics, reduction of the logistical burdens of pandemics and ecological crises is essential. Moreover, the disruptive effects of catastrophic bioevents impact the supply chains in both highly populated urban centers and rural communities. One "upstream" focus of methodological innovation in biosurveillance is the footprint of Nucleic Acid Amplification Test (NAAT)-based assays. We report in this study a water-only DNA extraction, as an initial step in developing future protocols that may require few expendables, and with low environmental footprints, in terms of wet and solid laboratory waste. In the present work, boiling-hot distilled water was used as the main cell lysis agent for direct polymerase chain reactions (PCRs) on crude extracts. After evaluation (1) in blood and mouth swabs for human biomarker genotyping, and (2) in mouth swabs and plant tissue for generic bacterial or fungal detection, and using different combinations of extraction volume, mechanical assistance, and extract dilution, we found the method to be applicable in low-complexity samples, but not in high-complexity ones such as blood and plant tissue. In conclusion, this study examined the doability of a lean approach for template extraction in the case of NAAT-based diagnostics. Testing our approach with different biosamples, PCR settings, and instruments, including portable ones for COVID-19 or dispersed applications, warrant further research. Minimal resources analysis is a concept and practice, vital and timely for biosurveillance, integrative biology, and planetary health in the 21st century.
Subject(s)
Biosurveillance , COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Water , Polymerase Chain Reaction/methods , DNA , COVID-19 TestingABSTRACT
In the present work, we developed an effective antimicrobial surface film based on sustainable microfibrillated cellulose. The resulting porous cellulose thin film is barely noticeable to human eyes due to its submicrometer thickness, of which the surface coverage, porosity, and microstructure can be modulated by the formulations and the coating process. Using goniometers and a quartz crystal microbalance, we observed a threefold reduction in water contact angles and accelerated water evaporation kinetics on the cellulose film (more than 50% faster than that on a flat glass surface). The porous cellulose film exhibits a rapid inactivation effect against SARS-CoV-2 in 5 min, following deposition of virus-loaded droplets, and an exceptional ability to reduce contact transfer of liquid, e.g., respiratory droplets, to surfaces such as an artificial skin by 90% less than that from a planar glass substrate. It also shows excellent antimicrobial performance in inhibiting the growth of both Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus epidermidis) due to the intrinsic porosity and hydrophilicity. Additionally, the cellulose film shows nearly 100% resistance to scraping in dry conditions due to its strong affinity to the supporting substrate but with good removability once wetted with water, suggesting its practical suitability for daily use. Importantly, the coating can be formed on solid substrates readily by spraying, which requires solely a simple formulation of a plant-based cellulose material with no chemical additives, rendering it a scalable, affordable, and green solution as antimicrobial surface coating. Implementing such cellulose films could thus play a significant role in controlling future pan- and epidemics, particularly during the initial phase when suitable medical intervention needs to be developed and deployed.
Subject(s)
Anti-Infective Agents , COVID-19 , Humans , Cellulose/chemistry , Porosity , Surface Properties , SARS-CoV-2 , Anti-Infective Agents/pharmacology , Water/chemistryABSTRACT
The demand to effectively treat medical wastewater has escalated with the much greater use of antiviral drugs since the COVID-19 pandemic. Forward osmosis (FO) has great potential in wastewater treatment only when appropriate draw solutes are available. Here, we synthesize a series of smart organic-inorganic polyoxomolybdates (POMs), namely, (NH4)6[Mo7O24], (PrNH3)6[Mo7O24], (iPrNH3)6[Mo7O24], and (BuNH3)6[Mo7O24], for FO to treat antiviral-drug wastewater. Influential factors of separation performance have been systematically studied by tailoring the structure, organic characteristics, and cation chain length of POMs. POMs at 0.4 M produce water fluxes ranging from 14.0 to 16.4 LMH with negligible solute losses, at least 116% higher than those of NaCl, NH4HCO3, and other draw solutes. (NH4)6[Mo7O24] creates a water flux of 11.2 LMH, increased by more than 200% compared to that of NaCl and NH4HCO3 in long-term antiviral-drug wastewater reclamation. Remarkably, the drugs treated with NH4HCO3 and NaCl are either contaminated or denatured, while those with (NH4)6[Mo7O24] remain intact. Moreover, these POMs are recovered by sunlight-assisted acidification owing to their light and pH dual sensitivity and reusability for FO. POMs prove their suitability as draw solutes and demonstrate their superiority over the commonly studied draw solutes in wastewater treatment.
Subject(s)
COVID-19 , Water Purification , Humans , Wastewater , Sodium Chloride , Pandemics , Membranes, Artificial , Osmosis , Solutions/chemistry , Water/chemistryABSTRACT
Herein, we describe a one-step method for synthesizing cationic acrylate-based core-shell latex (CACS latex), which is used to prepare architectural coatings with excellent antimicrobial properties. Firstly, a polymerizable water-soluble quaternary ammonium salt (QAS-BN) was synthesized using 2-(Dimethylamine) ethyl methacrylate (DMAEMA) and benzyl bromide by the Hoffman alkylation reaction. Then QAS-BN, butyl acrylate (BA), methyl methacrylate (MMA), and vinyltriethoxysilane (VTES) as reactants and 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AIBA) as a water-soluble initiator were used to synthesize the CACS latex. The effect of the QAS-BN dosage on the properties of the emulsion and latex film was systematically investigated. The TGA results showed that using QAS-BN reduced the latex film's initial degradation temperature but improved its thermal stability. In the transmission electron microscopy (TEM) photographs, the self-stratification of latex particles with a high dosage of QAS-BN was observed, forming a core-shell structure of latex particles. The DSC, TGA, XPS, SEM, and performance tests confirmed the core-shell structure of the latex particles. The relationship between the formation of the core-shell structure and the content of QAS-BN was proved. The formation of the core-shell structure was due to the preferential reaction of water-soluble monomers in the aqueous phase, which led to the aggregation of hydrophilic groups, resulting in the formation of soft-core and hard-shell latex particles. However, the water resistance of the films formed by CACS latex was greatly reduced. We introduced a p-chloromethyl styrene and n-hexane diamine (p-CMS/EDA) crosslinking system, effectively improving the water resistance in this study. Finally, the antimicrobial coating was prepared with a CACS emulsion of 7 wt.% QAS-BN and 2 wt.% p-CMS/EDA. The antibacterial activity rates of this antimicrobial coating against E. coli and S. aureus were 99.99%. The antiviral activity rates against H3N2, HCoV-229E, and EV71 were 99.4%, 99.2%, and 97.9%, respectively. This study provides a novel idea for the morphological design of latex particles. A new architectural coating with broad-spectrum antimicrobial properties was obtained, which has important public health and safety applications.
Subject(s)
Anti-Infective Agents , Escherichia coli , Emulsions/chemistry , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Methacrylates/pharmacology , Water/chemistryABSTRACT
Sea urchins are marine invertebrates belonging to phylum Echinodermata, recognized as relevant biological tool for assessing environmental pollution. In the present study, we assessed the bioaccumulation potential of different heavy metals by two sea urchin species, Stomopneustes variolaris Lamarck, 1816 and Echinothrix diadema Linnaeus, 1758, collected from a harbour region, along the south west coast of India, during four different sampling periods for 2 years, from the same sea urchin bed. Heavy metals like Pb, Cr, As, Cd, Co, Se, Cu, Zn, Mn and Ni were analysed from water, sediment and different body parts of sea urchins, such as shell, spine, tooth, gut and gonad. The sampling periods also included the pre and post COVID 19 lockdown period during which the harbour activities were closed. The bio-water accumulation factor (BWAF), bio-sediment accumulation factor (BSAF) and the metal content/test weight index (MTWI) were calculated, in order to compare the bioaccumulation of metals by both the species. The results showed that S. variolaris had higher bioaccumulation potential than E. diadema, for metals like Pb, As, Cr, Co and Cd especially in the soft body parts like gut and gonad. The hard parts of S. variolaris like shell, spine, and tooth also accumulated more Pb, Cu, Ni and Mn than E. diadema. Following the lockdown period, there was a decline in the concentration of all heavy metals in water, whereas in sediment, Pb, Cr, and Cu levels were reduced. The gut and gonad tissues of both the urchins showed a decrease in the concentration of most of the heavy metals following the lockdown phase and no significant reduction was observed in the hard parts. This study reveals the use of S. variolaris as an excellent bioindicator of heavy metal contamination in the marine environment which can be employed for coastal monitoring programs.
Subject(s)
COVID-19 , Metals, Heavy , Water Pollutants, Chemical , Animals , Cadmium/analysis , Lead/analysis , Geologic Sediments , Environmental Monitoring/methods , Communicable Disease Control , Metals, Heavy/analysis , Sea Urchins , Water/analysis , Water Pollutants, Chemical/analysisABSTRACT
Water and wastewater-based epidemiology have emerged as alternative methods to monitor and predict the course of outbreaks in communities. The recovery of microbial fractions, including viruses, bacteria, and microeukaryotes from wastewater and environmental water samples is one of the challenging steps in these approaches. In this study, we focused on the recovery efficiency of sequential ultrafiltration and skimmed milk flocculation (SMF) methods using Armored RNA as a test virus, which is also used as a control by some other studies. Prefiltration with 0.45 µm and 0.2 µm membrane disc filters were applied to eliminate solid particles before ultrafiltration to prevent the clogging of ultrafiltration devices. Test samples, processed with the sequential ultrafiltration method, were centrifuged at two different speeds. An increased speed resulted in lower recovery and positivity rates of Armored RNA. On the other hand, SMF resulted in relatively consistent recovery and positivity rates of Armored RNA. Additional tests conducted with environmental water samples demonstrated the utility of SMF to concentrate other microbial fractions. The partitioning of viruses into solid particles might have an impact on the overall recovery rates, considering the prefiltration step applied before the ultrafiltration of wastewater samples. SMF with prefiltration performed better when applied to environmental water samples due to lower solid concentrations in the samples and thus lower partitioning rates to solids. In the present study, the idea of using a sequential ultrafiltration method arose from the necessity to decrease the final volume of the viral concentrates during the COVID-19 pandemic, when the supply of the commonly used ultrafiltration devices was limited, and there was a need for the development of alternative viral concentration methods.