Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Document Type
Year range
PLoS One ; 16(10): e0259318, 2021.
Article in English | MEDLINE | ID: covidwho-1496537


PURPOSE: The purpose of this study was to characterize the nasopharyngeal microbiota of infants with possible and confirmed pertussis compared to healthy controls. METHODS: This prospective study included all infants <1 year with microbiologically confirmed diagnosis of pertussis attended at a University Hospital over a 12-month period. For each confirmed case, up to 2 consecutive patients within the same age range and meeting the clinical case definition of pertussis but testing PCR-negative were included as possible cases. A third group of asymptomatic infants (healthy controls) were also included. Nasopharyngeal microbiota was characterized by sequencing the V3-V4 region of the 16S rRNA gene. Common respiratory DNA/RNA viral co-infection was tested by multiplex PCR. RESULTS: Twelve confirmed cases, 21 possible cases and 9 healthy controls were included. Confirmed whooping cough was primarily driven by detection of Bordetella with no other major changes on nasopharyngeal microbiota. Possible cases had limited abundance or absence of Bordetella and a distinctive microbiota with lower bacterial richness and diversity and higher rates of viral co-infection than both confirmed cases and healthy controls. Bordetella reads determined by 16S rRNA gene sequencing were found in all 12 confirmed cases (100%), 3 out of the 21 possible cases (14.3%) but in any healthy control. CONCLUSION: This study supports the usefulness of 16S rRNA gene sequencing for improved sensitivity on pertussis diagnosis compared to real-time PCR and to understand other microbial changes occurring in the nasopharynx in children <1 year old with suspected whooping cough compared to healthy controls.

Microbiota , Whooping Cough/microbiology , Bordetella/genetics , Bordetella/isolation & purification , Bordetella/pathogenicity , Case-Control Studies , Female , Humans , Infant , Male , Nasal Cavity/microbiology , Pharynx/microbiology , RNA, Ribosomal, 16S/genetics , Whooping Cough/diagnosis