Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Int J Hyg Environ Health ; 241: 113949, 2022 04.
Article in English | MEDLINE | ID: covidwho-1757396


Household air pollution from solid fuel combustion was estimated to cause 2.31 million deaths worldwide in 2019; cardiovascular disease is a substantial contributor to the global burden. We evaluated the cross-sectional association between household air pollution (24-h gravimetric kitchen and personal particulate matter (PM2.5) and black carbon (BC)) and C-reactive protein (CRP) measured in dried blood spots among 107 women in rural Honduras using wood-burning traditional or Justa (an engineered combustion chamber) stoves. A suite of 6 additional markers of systemic injury and inflammation were considered in secondary analyses. We adjusted for potential confounders and assessed effect modification of several cardiovascular-disease risk factors. The median (25th, 75th percentiles) 24-h-average personal PM2.5 concentration was 115 µg/m3 (65,154 µg/m3) for traditional stove users and 52 µg/m3 (39, 81 µg/m3) for Justa stove users; kitchen PM2.5 and BC had similar patterns. Higher concentrations of PM2.5 and BC were associated with higher levels of CRP (e.g., a 25% increase in personal PM2.5 was associated with a 10.5% increase in CRP [95% CI: 1.2-20.6]). In secondary analyses, results were generally consistent with a null association. Evidence for effect modification between pollutant measures and four different cardiovascular risk factors (e.g., high blood pressure) was inconsistent. These results support the growing evidence linking household air pollution and cardiovascular disease.

Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , C-Reactive Protein , Cooking/methods , Cross-Sectional Studies , Female , Honduras/epidemiology , Humans , Particulate Matter/analysis , Wood/analysis , Wood/chemistry
Sci Rep ; 10(1): 14856, 2020 09 09.
Article in English | MEDLINE | ID: covidwho-1493156


The problem of indoor odors can greatly affect a room's occupants. To identify odorants and comprehensively evaluate emissions from wooden materials, emissions and odors from Choerospondias axillaris (Roxb.) Burtt et Hill with different moisture content percentages and lacquer treatments were investigated in this study. Thermal desorption-gas chromatography-mass spectroscopy/olfactometry was used to analyze the release characteristics. In total, 11 key odor-active compounds were identified as moisture content gradually decreased, concentrating between 15 and 33 min. Total volatile organic compounds, total very volatile organic compounds, and total odor intensity decreased as moisture content decreased. In addition, 35 odor-active compounds, including aromatics, alkenes, aldehydes, esters, and alcohols, were identified in the odor control list. Polyurethane (PU), ultraviolet (UV), and waterborne coatings had a good inhibitory effect on eight odor characteristics, but some scents arose after lacquer treatment. For equilibrium moisture content, the major characteristics of Choerospondias axillaris were fragrant (9.4) and mint-like (3.0) compared with the fragrant (8.2), fruity (7.8), and pleasant (5.8) characteristics of PU coating; the flowery (5.9), fragrant (5.0), glue-like (4.3), and pineapple-like (4.3) characteristics of UV coating; and the antiseptic solution (3.6), fragrant (2.9), cigarette-like (2.8), and fruity (2.5) characteristics of waterborne coating. Based on multicomponent evaluation, a Choerospondias axillaris board with waterborne coating was suggested for use indoors.

Anacardiaceae/chemistry , Odorants/analysis , Volatile Organic Compounds/analysis , Wood/chemistry , China , Humans , Lacquer , Olfactory Perception