Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Rev Saude Publica ; 56: 45, 2022.
Article in English | MEDLINE | ID: covidwho-1893354

ABSTRACT

OBJECTIVE: To analyze the number of yellow fever vaccine doses administered before and during the covid-19 pandemic in Brazil. METHODS: This is an ecological, time series study based on data from the National Immunization Program. Differences between the median number of yellow fever vaccine doses administered in Brazil and in its regions before (from April/2019 to March/2020) and after (from April/2020 to March/2021) the implementation of social distancing measures in the country were assessed via the Mann-Whitney test. Prais-Winsten regression models were used for time series analyses. RESULTS: We found a reduction in the median number of yellow fever vaccine doses administered in Brazil and in its regions: North (-34.71%), Midwest (-21.72%), South (-63.50%), and Southeast (-34.42%) (p < 0.05). Series showed stationary behavior in Brazil and in its five regions during the covid-19 pandemic (p > 0.05). Brazilian states also showed stationary trends, except for two states which recorded an increasing trend in the number of administered yellow fever vaccine doses, namely: Alagoas State (before: ß = 64, p = 0.081; after: ß = 897, p = 0.039), which became a yellow fever vaccine recommendation zone, and Roraima State (before: ß = 68, p = 0.724; after: ß = 150, p = 0.000), which intensified yellow fever vaccinations due to a yellow fever case confirmation in a Venezuelan State in 2020. CONCLUSION: The reduced number of yellow fever vaccine doses administered during the covid-19 pandemic in Brazil may favor the reemergence of urban yellow fever cases in the country.


Subject(s)
COVID-19 , Yellow Fever Vaccine , Yellow Fever , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , Vaccination , Yellow Fever/epidemiology , Yellow Fever/prevention & control , Yellow fever virus
3.
Front Immunol ; 11: 1836, 2020.
Article in English | MEDLINE | ID: covidwho-1389162

ABSTRACT

Examining CD8+ and CD4+ T cell responses after primary Yellow Fever vaccination in a cohort of 210 volunteers, we have identified and tetramer-validated 92 CD8+ and 50 CD4+ T cell epitopes, many inducing strong and prevalent (i.e., immunodominant) T cell responses. Restricted by 40 and 14 HLA-class I and II allotypes, respectively, these responses have wide population coverage and might be of considerable academic, diagnostic and therapeutic interest. The broad coverage of epitopes and HLA overcame the otherwise confounding effects of HLA diversity and non-HLA background providing the first evidence of T cell immunodomination in humans. Also, double-staining of CD4+ T cells with tetramers representing the same HLA-binding core, albeit with different flanking regions, demonstrated an extensive diversification of the specificities of many CD4+ T cell responses. We suggest that this could reduce the risk of pathogen escape, and that multi-tetramer staining is required to reveal the true magnitude and diversity of CD4+ T cell responses. Our T cell epitope discovery approach uses a combination of (1) overlapping peptides representing the entire Yellow Fever virus proteome to search for peptides containing CD4+ and/or CD8+ T cell epitopes, (2) predictors of peptide-HLA binding to suggest epitopes and their restricting HLA allotypes, (3) generation of peptide-HLA tetramers to identify T cell epitopes, and (4) analysis of ex vivo T cell responses to validate the same. This approach is systematic, exhaustive, and can be done in any individual of any HLA haplotype. It is all-inclusive in the sense that it includes all protein antigens and peptide epitopes, and encompasses both CD4+ and CD8+ T cell epitopes. It is efficient and, importantly, reduces the false discovery rate. The unbiased nature of the T cell epitope discovery approach presented here should support the refinement of future peptide-HLA class I and II predictors and tetramer technologies, which eventually should cover all HLA class I and II isotypes. We believe that future investigations of emerging pathogens (e.g., SARS-CoV-2) should include population-wide T cell epitope discovery using blood samples from patients, convalescents and/or long-term survivors, who might all hold important information on T cell epitopes and responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Vaccination , Yellow Fever Vaccine/immunology , Yellow Fever/prevention & control , Yellow fever virus/immunology , Betacoronavirus/immunology , COVID-19 , Cohort Studies , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Healthy Volunteers , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Humans , Immunogenicity, Vaccine , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Yellow Fever/virology
4.
Expert Rev Vaccines ; 20(9): 1051-1057, 2021 09.
Article in English | MEDLINE | ID: covidwho-1327291

ABSTRACT

INTRODUCTION: The COVID-19 pandemic is a globalized health concern caused by a beta-coronavirus named Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Since December 2019, when this outbreak flared in Wuhan, China, COVID-19 cases have been continuously rising all over the world. Due to the emergence of SARS-CoV-2 mutants, subsequent waves are flowing in a faster manner as compared to the primary wave, which is more contagious and causing higher mortality. Recently, India has emerged as the new epicenter of the second wave by mutants of SARS-CoV-2. After almost eighteen months of this outbreak, some COVID-19 dedicated therapeutics and vaccines are available, and a few are under trial, but the situation is still uncontrolled. AREA COVERED: This perspective article covers the repurposing of childhood vaccines like Bacille Calmette-Guerin (BCG), Measles, Mumps, Rubella (MMR), and Oral Polio Vaccine (OPV), which are live attenuated vaccines and have been shown the protective effect through 'trained immunity and 'crossreactivity.' EXPERT OPINION: This perspective article has suggested that combinatorial use of these childhood vaccines might exert a better protective effect along with the available COVID-19 therapeutic and vaccines which could be considered as a preventive option against SARS-CoV-2 infection as well as its subsequent waves.


Subject(s)
BCG Vaccine/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Drug Repositioning/methods , SARS-CoV-2/immunology , Vaccines, Attenuated/immunology , Cross Reactions/immunology , Diphtheria-Tetanus-Pertussis Vaccine/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/immunology , Measles-Mumps-Rubella Vaccine/immunology , Poliovirus Vaccine, Oral/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Yellow Fever Vaccine/immunology
5.
Elife ; 102021 06 24.
Article in English | MEDLINE | ID: covidwho-1285537

ABSTRACT

Background: Childhood immunisation services have been disrupted by the COVID-19 pandemic. WHO recommends considering outbreak risk using epidemiological criteria when deciding whether to conduct preventive vaccination campaigns during the pandemic. Methods: We used two to three models per infection to estimate the health impact of 50% reduced routine vaccination coverage in 2020 and delay of campaign vaccination from 2020 to 2021 for measles vaccination in Bangladesh, Chad, Ethiopia, Kenya, Nigeria, and South Sudan, for meningococcal A vaccination in Burkina Faso, Chad, Niger, and Nigeria, and for yellow fever vaccination in the Democratic Republic of Congo, Ghana, and Nigeria. Our counterfactual comparative scenario was sustaining immunisation services at coverage projections made prior to COVID-19 (i.e. without any disruption). Results: Reduced routine vaccination coverage in 2020 without catch-up vaccination may lead to an increase in measles and yellow fever disease burden in the modelled countries. Delaying planned campaigns in Ethiopia and Nigeria by a year may significantly increase the risk of measles outbreaks (both countries did complete their supplementary immunisation activities (SIAs) planned for 2020). For yellow fever vaccination, delay in campaigns leads to a potential disease burden rise of >1 death per 100,000 people per year until the campaigns are implemented. For meningococcal A vaccination, short-term disruptions in 2020 are unlikely to have a significant impact due to the persistence of direct and indirect benefits from past introductory campaigns of the 1- to 29-year-old population, bolstered by inclusion of the vaccine into the routine immunisation schedule accompanied by further catch-up campaigns. Conclusions: The impact of COVID-19-related disruption to vaccination programs varies between infections and countries. Planning and implementation of campaigns should consider country and infection-specific epidemiological factors and local immunity gaps worsened by the COVID-19 pandemic when prioritising vaccines and strategies for catch-up vaccination. Funding: Bill and Melinda Gates Foundation and Gavi, the Vaccine Alliance.


Subject(s)
COVID-19/epidemiology , Immunization Programs/statistics & numerical data , Measles/prevention & control , Meningococcal Infections/prevention & control , Yellow Fever/prevention & control , Adolescent , Adult , Africa/epidemiology , Bangladesh/epidemiology , Child , Child, Preschool , Disease Outbreaks , Humans , Immunization Programs/methods , Infant , Measles/epidemiology , Measles Vaccine/therapeutic use , Meningococcal Infections/epidemiology , Meningococcal Vaccines/therapeutic use , Pandemics , Risk Assessment , SARS-CoV-2 , Vaccination/statistics & numerical data , Yellow Fever/epidemiology , Yellow Fever Vaccine/therapeutic use , Young Adult
6.
Front Immunol ; 11: 575074, 2020.
Article in English | MEDLINE | ID: covidwho-1256374

ABSTRACT

Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.


Subject(s)
Dengue Virus/immunology , Immunity, Cellular , Orthomyxoviridae/immunology , Respiratory Syncytial Virus, Human/immunology , Rotavirus/immunology , Viral Vaccines/therapeutic use , Virus Diseases/immunology , Yellow fever virus/immunology , Biomarkers/blood , Dengue/blood , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/therapeutic use , Dengue Virus/pathogenicity , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Immunogenicity, Vaccine , Influenza Vaccines/therapeutic use , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae/pathogenicity , Predictive Value of Tests , RNA, Messenger/blood , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/pathogenicity , Rotavirus/pathogenicity , Rotavirus Infections/blood , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Vaccines , Signal Transduction/genetics , Virus Diseases/blood , Virus Diseases/prevention & control , Virus Diseases/virology , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever/virology , Yellow Fever Vaccine/therapeutic use , Yellow fever virus/pathogenicity
8.
Nat Med ; 27(4): 591-600, 2021 04.
Article in English | MEDLINE | ID: covidwho-1180259

ABSTRACT

Examination of the vaccine strategies and technical platforms used for the COVID-19 pandemic in the context of those used for previous emerging and reemerging infectious diseases and pandemics may offer some mutually beneficial lessons. The unprecedented scale and rapidity of dissemination of recent emerging infectious diseases pose new challenges for vaccine developers, regulators, health authorities and political constituencies. Vaccine manufacturing and distribution are complex and challenging. While speed is essential, clinical development to emergency use authorization and licensure, pharmacovigilance of vaccine safety and surveillance of virus variants are also critical. Access to vaccines and vaccination needs to be prioritized in low- and middle-income countries. The combination of these factors will weigh heavily on the ultimate success of efforts to bring the current and any future emerging infectious disease pandemics to a close.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Communicable Diseases, Emerging/prevention & control , SARS-CoV-2/immunology , Vaccines/immunology , Cholera Vaccines/immunology , Communicable Diseases, Emerging/epidemiology , Dengue Vaccines/immunology , Health Services Accessibility , Humans , Pharmacovigilance , Typhoid-Paratyphoid Vaccines/immunology , Yellow Fever Vaccine/immunology
10.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: covidwho-1066211

ABSTRACT

Yellow fever virus (YFV) live attenuated vaccine can, in rare cases, cause life-threatening disease, typically in patients with no previous history of severe viral illness. Autosomal recessive (AR) complete IFNAR1 deficiency was reported in one 12-yr-old patient. Here, we studied seven other previously healthy patients aged 13 to 80 yr with unexplained life-threatening YFV vaccine-associated disease. One 13-yr-old patient had AR complete IFNAR2 deficiency. Three other patients vaccinated at the ages of 47, 57, and 64 yr had high titers of circulating auto-Abs against at least 14 of the 17 individual type I IFNs. These antibodies were recently shown to underlie at least 10% of cases of life-threatening COVID-19 pneumonia. The auto-Abs were neutralizing in vitro, blocking the protective effect of IFN-α2 against YFV vaccine strains. AR IFNAR1 or IFNAR2 deficiency and neutralizing auto-Abs against type I IFNs thus accounted for more than half the cases of life-threatening YFV vaccine-associated disease studied here. Previously healthy subjects could be tested for both predispositions before anti-YFV vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , Autoantibodies/immunology , Autoimmune Diseases , COVID-19 , Genetic Diseases, Inborn , Interferon-alpha , Receptor, Interferon alpha-beta , SARS-CoV-2 , Yellow Fever Vaccine , Yellow fever virus , Adolescent , Adult , Aged , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , COVID-19/genetics , COVID-19/immunology , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , HEK293 Cells , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Male , Middle Aged , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Yellow Fever Vaccine/adverse effects , Yellow Fever Vaccine/genetics , Yellow Fever Vaccine/immunology , Yellow fever virus/genetics , Yellow fever virus/immunology
11.
Nature ; 590(7845): 320-325, 2021 02.
Article in English | MEDLINE | ID: covidwho-953381

ABSTRACT

The expanding pandemic of coronavirus disease 2019 (COVID-19) requires the development of safe, efficacious and fast-acting vaccines. Several vaccine platforms are being leveraged for a rapid emergency response1. Here we describe the development of a candidate vaccine (YF-S0) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express a noncleavable prefusion form of the SARS-CoV-2 spike antigen. We assess vaccine safety, immunogenicity and efficacy in several animal models. YF-S0 has an excellent safety profile and induces high levels of SARS-CoV-2 neutralizing antibodies in hamsters (Mesocricetus auratus), mice (Mus musculus) and cynomolgus macaques (Macaca fascicularis), and-concomitantly-protective immunity against yellow fever virus. Humoral immunity is complemented by a cellular immune response with favourable T helper 1 polarization, as profiled in mice. In a hamster model2 and in macaques, YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose conferred protection from lung disease in most of the vaccinated hamsters within as little as 10 days. Taken together, the quality of the immune responses triggered and the rapid kinetics by which protective immunity can be attained after a single dose warrant further development of this potent SARS-CoV-2 vaccine candidate.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Genetic Vectors/genetics , SARS-CoV-2/immunology , Vaccines, Attenuated/immunology , Yellow Fever Vaccine/genetics , Animals , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/genetics , Cricetinae , Disease Models, Animal , Female , Glycosylation , Macaca fascicularis/genetics , Macaca fascicularis/immunology , Macaca fascicularis/virology , Male , Mesocricetus/genetics , Mesocricetus/immunology , Mesocricetus/virology , Mice , Safety , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics
12.
Glob Public Health ; 16(3): 340-353, 2021 03.
Article in English | MEDLINE | ID: covidwho-707442

ABSTRACT

Travel restrictions have become a common disease control measure during the 2019 Coronavirus disease pandemic (COVID-19). Measures have ranged from quarantines when entering a country to outright travel bans. Yet more widespread travel restrictions in the form of country vaccine entry requirements have been in place for a long time for another disease - yellow fever. We track the historical underpinnings and policy developments that have led to stringent vaccine entry requirements today. We also discuss the political issues raised by health measures imposed on borders and discuss the reasons behind some clear regional differences. Almost no European countries currently have vaccine entry requirements, while at the other end of the spectrum, the majority of countries in the African region do, making vaccine entry requirements a global south phenomenon. We argue that vaccine entry requirements should be reassessed in the future as an underused public health tool, likely to become increasingly common. Vaccine entry requirements have proved effective in controlling the international spread of yellow fever but more can be done to ensure better use of this measure. Caution is needed due to the close links between public health and politics, evident since the first travel restriction in quarantines.


Subject(s)
COVID-19/epidemiology , Travel , Yellow Fever/epidemiology , Yellow Fever/history , Health Policy , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Humans , Pandemics , Quarantine , SARS-CoV-2 , World Health Organization , Yellow Fever Vaccine
13.
N Engl J Med ; 383(5): 452-459, 2020 07 30.
Article in English | MEDLINE | ID: covidwho-692294

ABSTRACT

BACKGROUND: Insufficient vaccine doses and the lack of therapeutic agents for yellow fever put global health at risk, should this virus emerge from sub-Saharan Africa and South America. METHODS: In phase 1a of this clinical trial, we assessed the safety, side-effect profile, and pharmacokinetics of TY014, a fully human IgG1 anti-yellow fever virus monoclonal antibody. In a double-blind, phase 1b clinical trial, we assessed the efficacy of TY014, as compared with placebo, in abrogating viremia related to the administration of live yellow fever vaccine (YF17D-204; Stamaril). The primary safety outcomes were adverse events reported 1 hour after the infusion and throughout the trial. The primary efficacy outcome was the dose of TY014 at which 100% of the participants tested negative for viremia within 48 hours after infusion. RESULTS: A total of 27 healthy participants were enrolled in phase 1a, and 10 participants in phase 1b. During phase 1a, TY014 dose escalation to a maximum of 20 mg per kilogram of body weight occurred in 22 participants. During phases 1a and 1b, adverse events within 1 hour after infusion occurred in 1 of 27 participants who received TY014 and in none of the 10 participants who received placebo. At least one adverse event occurred during the trial in 22 participants who received TY014 and in 8 who received placebo. The mean half-life of TY014 was approximately 12.8 days. At 48 hours after the infusion, none of the 5 participants who received the starting dose of TY014 of 2 mg per kilogram had detectable YF17D-204 viremia; these participants remained aviremic throughout the trial. Viremia was observed at 48 hours after the infusion in 2 of 5 participants who received placebo and at 72 hours in 2 more placebo recipients. Symptoms associated with yellow fever vaccine were less frequent in the TY014 group than in the placebo group. CONCLUSIONS: This phase 1 trial of TY014 did not identify worrisome safety signals and suggested potential clinical benefit, which requires further assessment in a phase 2 trial. (Funded by Tysana; ClinicalTrials.gov number, NCT03776786.).


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Yellow Fever Vaccine , Yellow Fever/drug therapy , Yellow fever virus/immunology , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Dose-Response Relationship, Drug , Double-Blind Method , Half-Life , Humans , Kaplan-Meier Estimate , Viremia/drug therapy , Yellow Fever/virology , Yellow fever virus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL