Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Biomed Pharmacother ; 147: 112682, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1664682

ABSTRACT

Viral infections have a great impact on human health. The urgent need to find a cure against different viruses led us to investigations in a vast range of drugs. Azithromycin (AZT), classified as a macrolide, showed various effects on different known viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV), Zika, Ebola, Enterovirus (EVs) and Rhinoviruses (RVs), and Influenza A previously; namely, these viruses, which caused global concerns, are considered as targets for AZT different actions. Due to AZT background in the treatment of known viral infections mentioned above (which is described in this study), in the early stages of COVID-19 (a new zoonotic disease caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) development, AZT drew attention to itself due to its antiviral and immunomodulatory effects as a valuable candidate for COVID-19 treatment. AZT usage instructions for treating different viral infections have always been under observation, and COVID-19 is no exception. There are still debates about the use of AZT in COVID-19 treatment. However, eventually, novel researches convinced WHO to announce the discontinuation of AZT use (alone or in combination with hydroxychloroquine) in treating SARS-CoV-2 infection. This research aims to study the structure of all of the viruses mentioned above and the molecular and clinical effects of AZT against the virus.


Subject(s)
Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19/drug therapy , Anti-Bacterial Agents , Antiviral Agents/pharmacology , Azithromycin/pharmacology , Ebolavirus/drug effects , Humans , Influenza A virus/drug effects , SARS Virus/drug effects , SARS-CoV-2/drug effects , Zika Virus/drug effects
2.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article in English | MEDLINE | ID: covidwho-1542584

ABSTRACT

Human cytomegalovirus (HCMV) is a major pathogenic herpesvirus that is prevalent worldwide and it is associated with a variety of clinical symptoms. Current antiviral therapy options do not fully satisfy the medical needs; thus, improved drug classes and drug-targeting strategies are required. In particular, host-directed antivirals, including pharmaceutical kinase inhibitors, might help improve the drug qualities. Here, we focused on utilizing PROteolysis TArgeting Chimeras (PROTACs), i.e., hetero-bifunctional molecules containing two elements, namely a target-binding molecule and a proteolysis-inducing element. Specifically, a PROTAC that was based on a cyclin-dependent kinase (CDK) inhibitor, i.e., CDK9-directed PROTAC THAL-SNS032, was analyzed and proved to possess strong anti-HCMV AD169-GFP activity, with values of EC50 of 0.030 µM and CC50 of 0.175 µM (SI of 5.8). Comparing the effect of THAL-SNS032 with its non-PROTAC counterpart SNS032, data indicated a 3.7-fold stronger anti-HCMV efficacy. This antiviral activity, as illustrated for further clinically relevant strains of human and murine CMVs, coincided with the mid-nanomolar concentration range necessary for a drug-induced degradation of the primary (CDK9) and secondary targets (CDK1, CDK2, CDK7). In addition, further antiviral activities were demonstrated, such as the inhibition of SARS-CoV-2 replication, whereas other investigated human viruses (i.e., varicella zoster virus, adenovirus type 2, and Zika virus) were found insensitive. Combined, the antiviral quality of this approach is seen in its (i) mechanistic uniqueness; (ii) future options of combinatorial drug treatment; (iii) potential broad-spectrum activity; and (iv) applicability in clinically relevant antiviral models. These novel data are discussed in light of the current achievements of anti-HCMV drug development.


Subject(s)
Antiviral Agents/pharmacology , Cytomegalovirus/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Adenoviridae/drug effects , Animals , COVID-19/drug therapy , Cell Line , Cyclin-Dependent Kinase 9 , Drug Delivery Systems , Herpesvirus 3, Human/drug effects , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Mice , Protein Kinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Zika Virus/drug effects
3.
Molecules ; 26(20)2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1480884

ABSTRACT

Mosquito-borne viruses including dengue, Zika, and Chikungunya viruses, and parasites such as malaria and Onchocerca volvulus endanger health and economic security around the globe, and emerging mosquito-borne pathogens have pandemic potential. However, the rapid spread of insecticide resistance threatens our ability to control mosquito vectors. Larvae of Aedes aegypti were screened with the Medicines for Malaria Venture Pandemic Response Box, an open-source compound library, using INVAPP, an invertebrate automated phenotyping platform suited to high-throughput chemical screening of larval motility. We identified rubitecan (a synthetic derivative of camptothecin) as a hit compound that reduced A. aegypti larval motility. Both rubitecan and camptothecin displayed concentration dependent reduction in larval motility with estimated EC50 of 25.5 ± 5.0 µM and 22.3 ± 5.4 µM, respectively. We extended our investigation to adult mosquitoes and found that camptothecin increased lethality when delivered in a blood meal to A. aegypti adults at 100 µM and 10 µM, and completely blocked egg laying when fed at 100 µM. Camptothecin and its derivatives are inhibitors of topoisomerase I, have known activity against several agricultural pests, and are also approved for the treatment of several cancers. Crucially, they can inhibit Zika virus replication in human cells, so there is potential for dual targeting of both the vector and an important arbovirus that it carries.


Subject(s)
Aedes/drug effects , Aedes/virology , Camptothecin/analogs & derivatives , Insecticides/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/virology , Aedes/physiology , Animals , Antiviral Agents/pharmacology , Camptothecin/pharmacology , Drug Discovery , Female , High-Throughput Screening Assays , Humans , Insecticide Resistance , Larva/drug effects , Larva/physiology , Motor Activity/drug effects , Pandemics/prevention & control , Topoisomerase I Inhibitors/pharmacology , Vector Borne Diseases/epidemiology , Vector Borne Diseases/prevention & control , Virus Replication/drug effects , Zika Virus/drug effects
4.
Sci Rep ; 11(1): 11982, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1260953

ABSTRACT

In this study we have developed a method based on Flux Balance Analysis to identify human metabolic enzymes which can be targeted for therapeutic intervention against COVID-19. A literature search was carried out in order to identify suitable inhibitors of these enzymes, which were confirmed by docking calculations. In total, 10 targets and 12 bioactive molecules have been predicted. Among the most promising molecules we identified Triacsin C, which inhibits ACSL3, and which has been shown to be very effective against different viruses, including positive-sense single-stranded RNA viruses. Similarly, we also identified the drug Celgosivir, which has been successfully tested in cells infected with different types of viruses such as Dengue, Zika, Hepatitis C and Influenza. Finally, other drugs targeting enzymes of lipid metabolism, carbohydrate metabolism or protein palmitoylation (such as Propylthiouracil, 2-Bromopalmitate, Lipofermata, Tunicamycin, Benzyl Isothiocyanate, Tipifarnib and Lonafarnib) are also proposed.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Molecular Docking Simulation , SARS-CoV-2/drug effects , Virus Replication/drug effects , Dengue Virus/drug effects , Hepacivirus/drug effects , Zika Virus/drug effects , Zika Virus Infection/drug therapy
5.
Viruses ; 13(4)2021 04 13.
Article in English | MEDLINE | ID: covidwho-1187060

ABSTRACT

The emergence or re-emergence of viruses with epidemic and/or pandemic potential, such as Ebola, Zika, Middle East Respiratory Syndrome (MERS-CoV), Severe Acute Respiratory Syndrome Coronavirus 1 and 2 (SARS and SARS-CoV-2) viruses, or new strains of influenza represents significant human health threats due to the absence of available treatments. Vaccines represent a key answer to control these viruses. However, in the case of a public health emergency, vaccine development, safety, and partial efficacy concerns may hinder their prompt deployment. Thus, developing broad-spectrum antiviral molecules for a fast response is essential to face an outbreak crisis as well as for bioweapon countermeasures. So far, broad-spectrum antivirals include two main categories: the family of drugs targeting the host-cell machinery essential for virus infection and replication, and the family of drugs directly targeting viruses. Among the molecules directly targeting viruses, nucleoside analogues form an essential class of broad-spectrum antiviral drugs. In this review, we will discuss the interest for broad-spectrum antiviral strategies and their limitations, with an emphasis on virus-targeted, broad-spectrum, antiviral nucleoside analogues and their mechanisms of action.


Subject(s)
Antiviral Agents/pharmacology , Nucleosides/analogs & derivatives , Nucleosides/pharmacology , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Amides , Animals , Antiviral Agents/chemistry , COVID-19/drug therapy , Hemorrhagic Fever, Ebola/drug therapy , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Mutagenesis , Pyrazines , Ribavirin , SARS-CoV-2 , Virus Replication/drug effects , Zika Virus/drug effects , Zika Virus Infection/drug therapy
6.
Bioorg Med Chem Lett ; 40: 127906, 2021 05 15.
Article in English | MEDLINE | ID: covidwho-1118337

ABSTRACT

Zika virus has emerged as a potential threat to human health globally. A previous drug repurposing screen identified the approved anthelminthic drug niclosamide as a small molecule inhibitor of Zika virus infection. However, as antihelminthic drugs are generally designed to have low absorption when dosed orally, the very limited bioavailability of niclosamide will likely hinder its potential direct repurposing as an antiviral medication. Here, we conducted SAR studies focusing on the anilide and salicylic acid regions of niclosamide to improve physicochemical properties such as microsomal metabolic stability, permeability and solubility. We found that the 5-bromo substitution in the salicylic acid region retains potency while providing better drug-like properties. Other modifications in the anilide region with 2'-OMe and 2'-H substitutions were also advantageous. We found that the 4'-NO2 substituent can be replaced with a 4'-CN or 4'-CF3 substituents. Together, these modifications provide a basis for optimizing the structure of niclosamide to improve systemic exposure for application of niclosamide analogs as drug lead candidates for treating Zika and other viral infections. Indeed, key analogs were also able to rescue cells from the cytopathic effect of SARS-CoV-2 infection, indicating relevance for therapeutic strategies targeting the COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , Niclosamide/analogs & derivatives , Niclosamide/pharmacology , SARS-CoV-2/drug effects , Zika Virus/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Chlorocebus aethiops , Drug Stability , Humans , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Niclosamide/metabolism , Protein Binding , Rats , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Structure-Activity Relationship , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism
7.
Mater Sci Eng C Mater Biol Appl ; 112: 110924, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-1017020

ABSTRACT

Research on highly effective antiviral drugs is essential for preventing the spread of infections and reducing losses. Recently, many functional nanoparticles have been shown to possess remarkable antiviral ability, such as quantum dots, gold and silver nanoparticles, nanoclusters, carbon dots, graphene oxide, silicon materials, polymers and dendrimers. Despite their difference in antiviral mechanism and inhibition efficacy, these functional nanoparticles-based structures have unique features as potential antiviral candidates. In this topical review, we highlight the antiviral efficacy and mechanism of these nanoparticles. Specifically, we introduce various methods for analyzing the viricidal activity of functional nanoparticles and the latest advances in antiviral functional nanoparticles. Furthermore, we systematically describe the advantages and disadvantages of these functional nanoparticles in viricidal applications. Finally, we discuss the challenges and prospects of antiviral nanostructures. This topic review covers 132 papers and will enrich our knowledge about the antiviral efficacy and mechanism of various functional nanoparticles.


Subject(s)
Antiviral Agents/chemistry , Nanoparticles/chemistry , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA Viruses/drug effects , DNA Viruses/physiology , Graphite/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Nanoparticles/therapeutic use , Nanoparticles/toxicity , Polymers/chemistry , Quantum Dots/chemistry , Quantum Dots/therapeutic use , Quantum Dots/toxicity , Zika Virus/drug effects , Zika Virus Infection/drug therapy , Zika Virus Infection/veterinary
8.
ACS Infect Dis ; 7(2): 471-478, 2021 02 12.
Article in English | MEDLINE | ID: covidwho-1006383

ABSTRACT

A series of 7-deazaadenine ribonucleosides bearing alkyl, alkenyl, alkynyl, aryl, or hetaryl groups at position 7 as well as their 5'-O-triphosphates and two types of monophosphate prodrugs (phosphoramidates and S-acylthioethanol esters) were prepared and tested for antiviral activity against selected RNA viruses (Dengue, Zika, tick-borne encephalitis, West Nile, and SARS-CoV-2). The modified triphosphates inhibited the viral RNA-dependent RNA polymerases at micromolar concentrations through the incorporation of the modified nucleotide and stopping a further extension of the RNA chain. 7-Deazaadenosine nucleosides bearing ethynyl or small hetaryl groups at position 7 showed (sub)micromolar antiviral activities but significant cytotoxicity, whereas the nucleosides bearing bulkier heterocycles were still active but less toxic. Unexpectedly, the monophosphate prodrugs were similarly or less active than the corresponding nucleosides in the in vitro antiviral assays, although the bis(S-acylthioethanol) prodrug 14h was transported to the Huh7 cells and efficiently released the nucleoside monophosphate.


Subject(s)
Antiviral Agents/pharmacology , Prodrugs/pharmacology , Purines/pharmacology , RNA Viruses/drug effects , Ribonucleosides/pharmacology , COVID-19/drug therapy , COVID-19/virology , Cell Line, Tumor , Dengue Virus/drug effects , Encephalitis Viruses, Tick-Borne/drug effects , Humans , Phosphates/pharmacology , Purine Nucleosides , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , West Nile virus/drug effects , Zika Virus/drug effects
9.
Viruses ; 13(1)2020 12 29.
Article in English | MEDLINE | ID: covidwho-1004758

ABSTRACT

RNA viruses have gained plenty of attention during recent outbreaks of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Zika virus (ZIKV), and Ebola virus. ZIKV is a vector borne Flavivirus that is spread by mosquitoes and it mainly infects neuronal progenitor cells. One hallmark of congenital ZIKV disease is a reduced brain size in fetuses, leading to severe neurological defects. The World Health Organization (WHO) is urging the development of new antiviral treatments against ZIKV, as there are no efficient countermeasures against ZIKV disease. Previously, we presented a new class of host-targeting antivirals active against a number of pathogenic RNA viruses, such as SARS-CoV-2. Here, we show the transfer of the image-based phenotypic antiviral assay to ZIKV-infected brain cells, followed by mechanism-of-action studies and a proof-of-concept study in a three-dimensional (3D) organoid model. The novel antiviral compounds showed a therapeutic window against ZIKV in several cell models and rescued ZIKV-induced neurotoxicity in brain organoids. The compound's mechanism-of-action was pinpointed to late steps in the virus life cycle, impairing the formation of new virus particles. Collectively, in this study, we expand the antiviral activity of new small molecule inhibitors to a new virus class of Flaviviruses, but also uncover compounds' mechanism of action, which are important for the further development of antivirals.


Subject(s)
Antiviral Agents/pharmacology , Brain/metabolism , Organoids/metabolism , Zika Virus Infection/metabolism , Zika Virus/drug effects , Animals , Brain/pathology , COVID-19 , Cell Survival/drug effects , Humans , Organoids/pathology , RNA Viruses , Ribavirin/pharmacology , SARS-CoV-2 , Zika Virus/physiology , Zika Virus Infection/virology
10.
Biochemistry ; 60(13): 999-1018, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-889110

ABSTRACT

Carbohydrate-receptor interactions are often involved in the docking of viruses to host cells, and this docking is a necessary step in the virus life cycle that precedes infection and, ultimately, replication. Despite the conserved structures of the glycans involved in docking, they are still considered "undruggable", meaning these glycans are beyond the scope of conventional pharmacological strategies. Recent advances in the development of synthetic carbohydrate receptors (SCRs), small molecules that bind carbohydrates, could bring carbohydrate-receptor interactions within the purview of druggable targets. Here we discuss the role of carbohydrate-receptor interactions in viral infection, the evolution of SCRs, and recent results demonstrating their ability to prevent viral infections in vitro. Common SCR design strategies based on boronic ester formation, metal chelation, and noncovalent interactions are discussed. The benefits of incorporating the idiosyncrasies of natural glycan-binding proteins-including flexibility, cooperativity, and multivalency-into SCR design to achieve nonglucosidic specificity are shown. These studies into SCR design and binding could lead to new strategies for mitigating the grave threat to human health posed by enveloped viruses, which are heavily glycosylated viroids that are the cause of some of the most pressing and untreatable diseases, including HIV, Dengue, Zika, influenza, and SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , Drug Design , Receptors, Artificial/chemistry , Receptors, Virus/metabolism , Small Molecule Libraries/chemistry , Virus Attachment/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/metabolism , Carbohydrate Metabolism/drug effects , Chlorocebus aethiops , Humans , Molecular Docking Simulation , Receptors, Artificial/chemical synthesis , Receptors, Virus/antagonists & inhibitors , SARS-CoV-2/drug effects , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Vero Cells , Virus Diseases/drug therapy , Virus Diseases/metabolism , Zika Virus/drug effects , Zika Virus Infection/drug therapy , Zika Virus Infection/metabolism
11.
J Am Chem Soc ; 142(40): 17024-17038, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-772998

ABSTRACT

Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the "phosphate tweezer" CLR01, a "carboxylate tweezer" CLR05, and a "phosphate clip" PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bridged-Ring Compounds/pharmacology , Organophosphates/pharmacology , Viral Envelope Proteins/drug effects , Acid Phosphatase/chemistry , Acid Phosphatase/metabolism , Amyloid/antagonists & inhibitors , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Arginine/chemistry , Betacoronavirus/drug effects , Bridged-Ring Compounds/chemistry , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/virology , HIV Infections/drug therapy , HIV-1/drug effects , Humans , Lipids/chemistry , Lysine/chemistry , Magnetic Resonance Spectroscopy , Organophosphates/chemistry , SARS-CoV-2 , Seminal Vesicle Secretory Proteins/chemistry , Seminal Vesicle Secretory Proteins/metabolism , Structure-Activity Relationship , Viral Envelope Proteins/metabolism , Zika Virus/drug effects
12.
Sci Adv ; 6(35): eaba7910, 2020 08.
Article in English | MEDLINE | ID: covidwho-760200

ABSTRACT

Targeting a universal host protein exploited by most viruses would be a game-changing strategy that offers broad-spectrum solution and rapid pandemic control including the current COVID-19. Here, we found a common YxxØ-motif of multiple viruses that exploits host AP2M1 for intracellular trafficking. A library chemical, N-(p-amylcinnamoyl)anthranilic acid (ACA), was identified to interrupt AP2M1-virus interaction and exhibit potent antiviral efficacy against a number of viruses in vitro and in vivo, including the influenza A viruses (IAVs), Zika virus (ZIKV), human immunodeficiency virus, and coronaviruses including MERS-CoV and SARS-CoV-2. YxxØ mutation, AP2M1 depletion, or disruption by ACA causes incorrect localization of viral proteins, which is exemplified by the failure of nuclear import of IAV nucleoprotein and diminished endoplasmic reticulum localization of ZIKV-NS3 and enterovirus-A71-2C proteins, thereby suppressing viral replication. Our study reveals an evolutionarily conserved mechanism of protein-protein interaction between host and virus that can serve as a broad-spectrum antiviral target.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Antiviral Agents/pharmacology , Cinnamates/pharmacology , Coronavirus Infections/drug therapy , HIV Infections/drug therapy , Influenza, Human/drug therapy , Pneumonia, Viral/drug therapy , ortho-Aminobenzoates/pharmacology , A549 Cells , Animals , Betacoronavirus/drug effects , Binding Sites/genetics , COVID-19 , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Infections/pathology , Dogs , HEK293 Cells , HIV Infections/pathology , HIV-1/drug effects , Host-Pathogen Interactions/drug effects , Humans , Influenza A virus/drug effects , Influenza, Human/pathology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Middle East Respiratory Syndrome Coronavirus/drug effects , Pandemics , Pneumonia, Viral/pathology , Protein Binding/genetics , Protein Transport/drug effects , RNA, Viral/genetics , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2 , Transforming Growth Factor beta1/metabolism , Vero Cells , Virus Replication/drug effects , Zika Virus/drug effects , Zika Virus Infection/pathology
13.
Trends Biotechnol ; 38(9): 943-947, 2020 09.
Article in English | MEDLINE | ID: covidwho-597298

ABSTRACT

Vaccine solutions rarely reach the public until after an outbreak abates; an Ebola vaccine was approved 5 years after peak outbreak and SARS, MERS, and Zika vaccines are still in clinical development. Despite massive leaps forward in rapid science, other regulatory bottlenecks are hamstringing the global effort for pandemic vaccines.


Subject(s)
Coronavirus Infections/prevention & control , Drug Approval/organization & administration , Hemorrhagic Fever, Ebola/prevention & control , Influenza, Human/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/biosynthesis , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Ebola Vaccines/administration & dosage , Ebola Vaccines/biosynthesis , Ebolavirus/drug effects , Ebolavirus/immunology , Ebolavirus/pathogenicity , Europe/epidemiology , Global Health/trends , Government Regulation , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/biosynthesis , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza, Human/virology , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS Virus/drug effects , SARS Virus/immunology , SARS Virus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/prevention & control , Severe Acute Respiratory Syndrome/virology , United States/epidemiology , Viral Vaccines/administration & dosage , Zika Virus/drug effects , Zika Virus/immunology , Zika Virus/pathogenicity , Zika Virus Infection/epidemiology , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control , Zika Virus Infection/virology
14.
J Cell Mol Med ; 24(12): 6988-6999, 2020 06.
Article in English | MEDLINE | ID: covidwho-186413

ABSTRACT

Outbreaks of infections with viruses like Sars-CoV-2, Ebola virus and Zika virus lead to major global health and economic problems because of limited treatment options. Therefore, new antiviral drug candidates are urgently needed. The promising new antiviral drug candidate silvestrol effectively inhibited replication of Corona-, Ebola-, Zika-, Picorna-, Hepatis E and Chikungunya viruses. Besides a direct impact on pathogens, modulation of the host immune system provides an additional facet to antiviral drug development because suitable immune modulation can boost innate defence mechanisms against the pathogens. In the present study, silvestrol down-regulated several pro- and anti-inflammatory cytokines (IL-6, IL-8, IL-10, CCL2, CCL18) and increased TNF-α during differentiation and activation of M1-macrophages, suggesting that the effects of silvestrol might cancel each other out. However, silvestrol amplified the anti-inflammatory potential of M2-macrophages by increasing expression of anti-inflammatory surface markers CD206, TREM2 and reducing release of pro-inflammatory IL-8 and CCL2. The differentiation of dendritic cells in the presence of silvestrol is characterized by down-regulation of several surface markers and cytokines indicating that differentiation is impaired by silvestrol. In conclusion, silvestrol influences the inflammatory status of immune cells depending on the cell type and activation status.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Cytokines/genetics , Dendritic Cells/drug effects , Immunologic Factors/pharmacology , Macrophages/drug effects , Triterpenes/pharmacology , Betacoronavirus/growth & development , Betacoronavirus/immunology , Cell Differentiation/drug effects , Chikungunya virus/drug effects , Chikungunya virus/growth & development , Chikungunya virus/immunology , Cytokines/classification , Cytokines/immunology , Dendritic Cells/immunology , Dendritic Cells/virology , Ebolavirus/drug effects , Ebolavirus/growth & development , Ebolavirus/immunology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Hepatitis E virus/drug effects , Hepatitis E virus/growth & development , Hepatitis E virus/immunology , Humans , Immunity, Innate/drug effects , Macrophages/immunology , Macrophages/virology , Organ Specificity , Picornaviridae/drug effects , Picornaviridae/growth & development , Picornaviridae/immunology , Primary Cell Culture , SARS-CoV-2 , Signal Transduction , Zika Virus/drug effects , Zika Virus/growth & development , Zika Virus/immunology
15.
Virology ; 546: 88-97, 2020 07.
Article in English | MEDLINE | ID: covidwho-71808

ABSTRACT

The emergence and re-emergence of Zika virus (ZIKV), is a cause for international concern. These highly pathogenic arboviruses represent a serious health burden in tropical and subtropical areas worldwide. Despite these burdens, antiviral therapies do not exist, and inhibitors of ZIKV are therefore urgently needed. To elucidate the anti-ZIKV effect of lycorine, we used reverse transcription-quantitative real-time PCR (qRT-PCR), immunofluorescence, Westernwestern blot, and plaque forming assay to analyse viral RNA (vRNA), viral protein, progeny virus counts, and validated inhibitors in vitro using a variety of cell lines. Additionally, we found that lycorine acts post-infection according to time-of-addition assay, and inhibits RdRp activity. Lycorine protected AG6 mice against ZIKV-induced lethality by decreasing the viral load in the blood. Due to its potency and ability to target ZIKV infection in vivo and in vitro, lycorine might offer promising therapeutic possibilities for combatting ZIKV infections in the future.


Subject(s)
Amaryllidaceae Alkaloids/administration & dosage , Antiviral Agents/administration & dosage , Phenanthridines/administration & dosage , Zika Virus Infection/drug therapy , Zika Virus/drug effects , Amaryllidaceae Alkaloids/chemistry , Animals , Antiviral Agents/chemistry , Female , Humans , Male , Mice , Molecular Docking Simulation , Phenanthridines/chemistry , Virus Replication/drug effects , Zika Virus/genetics , Zika Virus/physiology , Zika Virus Infection/mortality , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL