Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Acta Crystallogr C Struct Chem ; 78(Pt 4): 231-239, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1730787

ABSTRACT

The structure of a trinuclear zinc complex, hexakis(µ2-2-anilinobenzoato)diaquatrizinc(II), [Zn2(C13H10NO2)6(H2O)2] or (NPA)6Zn3(H2O)2 (NPA is 2-anilinobenzoate or N-phenylanthranilate), is reported. The complex crystallizes in the triclinic space group P-1 and the central ZnII atom is located on an inversion center. The NPA ligand is found to coordinate via the carboxylate O atoms with unique C-O bond lengths that support an unequal distribution of resonance over the carboxylate fragment. The axial H2O ligands form hydrogen bonds with neighboring molecules that stabilize the supramolecular system in rigid straight chains, with an angle of 180° along the c axis. π stacking is the primary stabilization along the a and b axes, resulting in a highly ordered supramolecular structure. Docking studies show that this unique supramolecular structure of a trinuclear zinc complex has potential for binding to the main protease (Mpro) in SARS-CoV-2 in a different location from Remdesivir, but with a similar binding strength.


Subject(s)
COVID-19 , Zinc , Crystallography, X-Ray , Humans , Hydrogen Bonding , Ligands , SARS-CoV-2 , Zinc/chemistry , ortho-Aminobenzoates
2.
J Inorg Biochem ; 228: 111691, 2022 03.
Article in English | MEDLINE | ID: covidwho-1558451

ABSTRACT

Zinc can play a pathophysiological role in several diseases and can interfere in key processes of microbial growth. This evidence justifies the efforts in applying Zinc ionophores to restore Zinc homeostasis and treat bacterial/viral infections such as coronavirus diseases. Zinc ionophores increase the intracellular concentration of Zinc ions causing significant biological effects. This review provides, for the first time, an overview of the applications of the main Zinc ionophores in Zinc deficiency, infectious diseases, and in cancer, discussing the pharmacological and coordination properties of the Zinc ionophores.


Subject(s)
Communicable Diseases/drug therapy , Ionophores/chemistry , Neoplasms/drug therapy , Zinc/chemistry , Zinc/pharmacology , Acrodermatitis/drug therapy , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/drug therapy , Homeostasis/drug effects , Humans , Ionophores/pharmacology , Zinc/deficiency
3.
Chem Commun (Camb) ; 57(83): 10911-10914, 2021 Oct 19.
Article in English | MEDLINE | ID: covidwho-1488037

ABSTRACT

We present Zn2+-dependent dimethyl-dipyridophenazine PNA conjugates as efficient RNA cleaving artificial enzymes. These PNAzymes display site-specific RNA cleavage with 10 minute half-lives and cleave clinically relevant RNA models.


Subject(s)
Peptide Nucleic Acids/chemistry , Phenazines/chemistry , Pyridines/chemistry , RNA/chemistry , Catalysis , Hydrogen-Ion Concentration , Hydrolysis , Ribonucleases/chemistry , Zinc/chemistry
4.
Sci Rep ; 11(1): 18851, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434149

ABSTRACT

In this pandemic SARS-CoV-2 crisis, any attempt to contain and eliminate the virus will also stop its spread and consequently decrease the risk of severe illness and death. While ozone treatment has been suggested as an effective disinfection process, no precise mechanism of action has been previously reported. This study aimed to further investigate the effect of ozone treatment on SARS-CoV-2. Therefore, virus collected from nasopharyngeal and oropharyngeal swab and sputum samples from symptomatic patients was exposed to ozone for different exposure times. The virus morphology and structure were monitored and analyzed through Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Atomic Absorption Spectroscopy (AAS), and ATR-FTIR. The obtained results showed that ozone treatment not only unsettles the virus morphology but also alters the virus proteins' structure and conformation through amino acid disturbance and Zn ion release from the virus non-structural proteins. These results could provide a clearer pathway for virus elimination and therapeutics preparation.


Subject(s)
COVID-19/drug therapy , Ozone/pharmacology , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Humans , Microscopy, Electron, Transmission , Protein Structure, Secondary/drug effects , Protein Structure, Tertiary/drug effects , SARS-CoV-2/ultrastructure , Time Factors , Viral Envelope/chemistry , Viral Envelope/drug effects , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism , Zinc/chemistry , Zinc/metabolism
5.
Chem Commun (Camb) ; 57(78): 10083-10086, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1404890

ABSTRACT

Zinc deficiency is linked to poor prognosis in COVID-19 patients while clinical trials with zinc demonstrate better clinical outcomes. The molecular targets and mechanistic details of the anti-coronaviral activity of zinc remain obscure. We show that zinc not only inhibits the SARS-CoV-2 main protease (Mpro) with nanomolar affinity, but also viral replication. We present the first crystal structure of the Mpro-Zn2+ complex at 1.9 Å and provide the structural basis of viral replication inhibition. We show that Zn2+ coordinates with the catalytic dyad at the enzyme active site along with two previously unknown water molecules in a tetrahedral geometry to form a stable inhibited Mpro-Zn2+ complex. Further, the natural ionophore quercetin increases the anti-viral potency of Zn2+. As the catalytic dyad is highly conserved across SARS-CoV, MERS-CoV and all variants of SARS-CoV-2, Zn2+ mediated inhibition of Mpro may have wider implications.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Zinc/chemistry , Animals , Binding Sites , COVID-19/pathology , Catalytic Domain , Chlorocebus aethiops , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Ions/chemistry , Kinetics , Molecular Dynamics Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/isolation & purification , Surface Plasmon Resonance , Thermodynamics , Vero Cells , Virus Replication/drug effects
6.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1389394

ABSTRACT

SARS-CoV-2 currently lacks effective first-line drug treatment. We present promising data from in silico docking studies of new Methisazone compounds (modified with calcium, Ca; iron, Fe; magnesium, Mg; manganese, Mn; or zinc, Zn) designed to bind more strongly to key proteins involved in replication of SARS-CoV-2. In this in silico molecular docking study, we investigated the inhibiting role of Methisazone and the modified drugs against SARS-CoV-2 proteins: ribonucleic acid (RNA)-dependent RNA polymerase (RdRp), spike protein, papain-like protease (PlPr), and main protease (MPro). We found that the highest binding interactions were found with the spike protein (6VYB), with the highest overall binding being observed with Mn-bound Methisazone at -8.3 kcal/mol, followed by Zn and Ca at -8.0 kcal/mol, and Fe and Mg at -7.9 kcal/mol. We also found that the metal-modified Methisazone had higher affinity for PlPr and MPro. In addition, we identified multiple binding pockets that could be singly or multiply occupied on all proteins tested. The best binding energy was with Mn-Methisazone versus spike protein, and the largest cumulative increases in binding energies were found with PlPr. We suggest that further studies are warranted to identify whether these compounds may be effective for treatment and/or prophylaxis.


Subject(s)
Antiviral Agents/chemistry , Metals/chemistry , Methisazone/chemistry , Molecular Docking Simulation , SARS-CoV-2/chemistry , Antiviral Agents/metabolism , COVID-19/drug therapy , Calcium/chemistry , Calcium/metabolism , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Drug Design , Humans , Iron/chemistry , Iron/metabolism , Magnesium/chemistry , Magnesium/metabolism , Manganese/chemistry , Manganese/metabolism , Metals/metabolism , Methisazone/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Zinc/chemistry , Zinc/metabolism
7.
Dalton Trans ; 50(35): 12226-12233, 2021 Sep 14.
Article in English | MEDLINE | ID: covidwho-1358359

ABSTRACT

Numerous organic molecules are known to inhibit the main protease of SARS-CoV-2, (SC2Mpro), a key component in viral replication of the 2019 novel coronavirus. We explore the hypothesis that zinc ions, long used as a medicinal supplement and known to support immune function, bind to the SC2Mpro enzyme in combination with lipophilic tropolone and thiotropolone ligands, L, block substrate docking, and inhibit function. This study combines synthetic inorganic chemistry, in vitro protease activity assays, and computational modeling. While the ligands themselves have half maximal inhibition concentrations, IC50, for SC2Mpro in the 8-34 µM range, the IC50 values are ca. 100 nM for Zn(NO3)2 which are further enhanced in Zn-L combinations (59-97 nM). Isolation of the Zn(L)2 binary complexes and characterization of their ability to undergo ligand displacement is the basis for computational modeling of the chemical features of the enzyme inhibition. Blind docking onto the SC2Mpro enzyme surface using a modified Autodock4 protocol found preferential binding into the active site pocket. Such Zn-L combinations orient so as to permit dative bonding of Zn(L)+ to basic active site residues.


Subject(s)
COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Tropolone/pharmacology , Zinc/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/virology , Catalytic Domain/drug effects , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Tropolone/analogs & derivatives , Zinc/chemistry
8.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1304665

ABSTRACT

The paper presents a synthesis of poly(l-lactide) with bacteriostatic properties. This polymer was obtained by ring-opening polymerization of the lactide initiated by selected low-toxic zinc complexes, Zn[(acac)(L)H2O], where L represents N-(pyridin-4-ylmethylene) tryptophan or N-(2-pyridin-4-ylethylidene) phenylalanine. These complexes were obtained by reaction of Zn[(acac)2 H2O] and Schiff bases, the products of the condensation of amino acids and 4-pyridinecarboxaldehyde. The composition, structure, and geometry of the synthesized complexes were determined by NMR and FTIR spectroscopy, elemental analysis, and molecular modeling. Both complexes showed the geometry of a distorted trigonal bipyramid. The antibacterial and antifungal activities of both complexes were found to be much stronger than those of the primary Schiff bases. The present study showed a higher efficiency of polymerization when initiated by the obtained zinc complexes than when initiated by the zinc(II) acetylacetonate complex. The synthesized polylactide showed antibacterial properties, especially the product obtained by polymerization initiated by a zinc(II) complex with a ligand based on l-phenylalanine. The polylactide showed a particularly strong antimicrobial effect against Pseudomonas aeruginosa, Staphylococcus aureus, and Aspergillus brasiliensis. At the same time, this polymer does not exhibit fibroblast cytotoxicity.


Subject(s)
Polyesters/chemistry , Polymers/chemistry , Zinc/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Aspergillus/drug effects , Chelating Agents/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
9.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1136500

ABSTRACT

SARS-CoV-2 currently lacks effective first-line drug treatment. We present promising data from in silico docking studies of new Methisazone compounds (modified with calcium, Ca; iron, Fe; magnesium, Mg; manganese, Mn; or zinc, Zn) designed to bind more strongly to key proteins involved in replication of SARS-CoV-2. In this in silico molecular docking study, we investigated the inhibiting role of Methisazone and the modified drugs against SARS-CoV-2 proteins: ribonucleic acid (RNA)-dependent RNA polymerase (RdRp), spike protein, papain-like protease (PlPr), and main protease (MPro). We found that the highest binding interactions were found with the spike protein (6VYB), with the highest overall binding being observed with Mn-bound Methisazone at -8.3 kcal/mol, followed by Zn and Ca at -8.0 kcal/mol, and Fe and Mg at -7.9 kcal/mol. We also found that the metal-modified Methisazone had higher affinity for PlPr and MPro. In addition, we identified multiple binding pockets that could be singly or multiply occupied on all proteins tested. The best binding energy was with Mn-Methisazone versus spike protein, and the largest cumulative increases in binding energies were found with PlPr. We suggest that further studies are warranted to identify whether these compounds may be effective for treatment and/or prophylaxis.


Subject(s)
Antiviral Agents/chemistry , Metals/chemistry , Methisazone/chemistry , Molecular Docking Simulation , SARS-CoV-2/chemistry , Antiviral Agents/metabolism , COVID-19/drug therapy , Calcium/chemistry , Calcium/metabolism , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Drug Design , Humans , Iron/chemistry , Iron/metabolism , Magnesium/chemistry , Magnesium/metabolism , Manganese/chemistry , Manganese/metabolism , Metals/metabolism , Methisazone/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Zinc/chemistry , Zinc/metabolism
10.
PLoS One ; 16(3): e0246265, 2021.
Article in English | MEDLINE | ID: covidwho-1117479

ABSTRACT

Medicinal uses and applications of metals and their complexes are of increasing clinical and commercial importance. The ligation behavior of quercetin (Q), which is a flavonoid, and its Zn (II) (Q/Zn) complex were studied and characterized based on elemental analysis, molar conductance, Fourier-transform infrared (FTIR) spectra, electronic spectra, proton nuclear magnetic resonance (1H-NMR), thermogravimetric analysis, and transmission electron microscopy (TEM). FTIR spectral data revealed that Q acts as a bidentate ligand (chelating ligand) through carbonyl C(4) = O oxygen and phenolic C(3)-OH oxygen in conjugation with Zn. Electronic, FTIR, and 1H-NMR spectral data revealed that the Q/Zn complex has a distorted octahedral geometry, with the following chemical formula: [Zn(Q)(NO3)(H2O)2].5H2O. Diabetes was induced by streptozotocin (STZ) injection. A total of 70 male albino rats were divided into seven groups: control, diabetic untreated group and diabetic groups treated with either MSCs and/or Q and/or Q/Zn or their combination. Serum insulin, glucose, C-peptide, glycosylated hemoglobin, lipid profile, and enzymatic and non-enzymatic antioxidant levels were determined. Pancreatic and lung histology and TEM for pancreatic tissues in addition to gene expression of both SOD and CAT in pulmonary tissues were evaluated. MSCs in combination with Q/Zn therapy exhibited potent protective effects against STZ induced hyperglycemia and suppressed oxidative stress, genotoxicity, glycometabolic disturbances, and structural alterations. Engrafted MSCs were found inside pancreatic tissue at the end of the experiment. In conclusion, Q/Zn with MSC therapy produced a synergistic effect against oxidative stress and genotoxicity and can be considered potential ameliorative therapy against diabetes with pulmonary dysfunction, which may benefit against COVID-19.


Subject(s)
Diabetes Mellitus, Experimental/therapy , Hypoglycemic Agents/therapeutic use , Mesenchymal Stem Cell Transplantation , Quercetin/therapeutic use , Zinc/therapeutic use , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , C-Peptide/blood , C-Peptide/metabolism , Cells, Cultured , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Glycated Hemoglobin A/analysis , Glycated Hemoglobin A/metabolism , Hyperglycemia/blood , Hyperglycemia/metabolism , Hyperglycemia/pathology , Hyperglycemia/therapy , Hypoglycemic Agents/chemistry , Insulin/blood , Insulin/metabolism , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , Oxidative Stress/drug effects , Quercetin/analogs & derivatives , Rats , Zinc/chemistry
11.
Int J Mol Med ; 47(1): 326-334, 2021 01.
Article in English | MEDLINE | ID: covidwho-945986

ABSTRACT

RNA­dependent RNA­polymerase (RdRp) and 3C­like proteinase (3CLpro) are two main enzymes that play a key role in the replication of SARS­CoV­2. Zinc (Zn) has strong immunogenic properties and is known to bind to a number of proteins, modulating their activities. Zn also has a history of use in viral infection control. Thus, the present study models potential Zn binding to RdRp and the 3CLpro. Through molecular modeling, the Zn binding sites in the aforementioned two important enzymes of viral replication were found to be conserved between severe acute respiratory syndrome (SARS)­coronavirus (CoV) and SARS­CoV­2. The location of these sites may influence the enzymatic activity of 3CLpro and RdRp in coronavirus disease 2019 (COVID­19). Since Zn has established immune health benefits, is readily available, non­expensive and a safe food supplement, with the comparisons presented here between SARS­CoV and COVID­19, the present study proposes that Zn could help ameliorate the disease process of COVID­19 infection.


Subject(s)
Coronavirus 3C Proteases/chemistry , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Models, Molecular , SARS-CoV-2/chemistry , Zinc/chemistry , Binding Sites , COVID-19/metabolism , Coronavirus 3C Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/physiology , Virus Replication , Zinc/metabolism
12.
Biochim Biophys Acta Gen Subj ; 1865(2): 129801, 2021 02.
Article in English | MEDLINE | ID: covidwho-938766

ABSTRACT

BACKGROUND: Due to lack of approved drugs and vaccines, the medical world has resorted to older drugs, produced for viral infections and other diseases, as a remedy to combat COVID-19. The accumulating evidence from in vitro and in vivo studies for SARS-CoV and MERS-CoV have demonstrated that several polyphenols found in plants and zinc- polyphenol clusters have been in use as herbal medicines have antiviral activities against viruses with various mechanisms. SCOPE OF REVIEW: Curcumin, zinc and zinc-ionophores have been considered as nutraceuticals and nutrients showing great antiviral activities with their medicinal like activities. MAJOR CONCLUSIONS: In this work, we discussed the potential prophylactic and/or therapeutic effects of curcumin, zinc and zinc-ionophores in treatment of viral infections including COVID-19. GENERAL SIGNIFICANCE: Curcuminoids and Zinc classified as nutraceuticals under GRAS (Generally Recognized As Safe) by FDA can provide complementary treatment for COVID 19 patients with their immunity-boosting and antiviral properties.


Subject(s)
COVID-19/therapy , Dietary Supplements , Plant Extracts/therapeutic use , Plant Preparations/therapeutic use , Polyphenols/therapeutic use , Zinc/chemistry , Antiviral Agents/therapeutic use , Curcumin/therapeutic use , Cytokine Release Syndrome , Food , Humans , Inflammation , Ionophores/therapeutic use , Pandemics , Trace Elements/therapeutic use , Virus Replication
13.
Med Hypotheses ; 145: 110333, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-813777

ABSTRACT

Zinc and the combination with zinc ionophore have been reported in basic research and several clinical investigations as a potentially viable and economical preventive and therapeutic options for COVID-19 treatment. Zinc is a vital microelement that actively supports respiratory epithelium barrier integrity, innate and adaptive immune functions, and inflammatory regulations. Moreover, zinc may also prevent viral entry, suppress viral replication, and mitigate the damages due to oxidative stress and hyperinflammatory reaction in patients with respiratory infections. Hinokitiol (ß-thujaplicin) is a natural monoterpenoid and is considered as a safe zinc ionophore to help zinc transport into cells. It has been widely used in skin and oral care, and therapeutic products for its potent antiviral, antimicrobial, antifungal, anti-inflammatory, and anticancer applications. The ongoing COVID-19 pandemic and the significant morbidity and mortality exist in the high-risk group of patients associated with other respiratory infections such as influenza, respiratory syncytial virus, and dengue fever. There is an urgent need for the development of inexpensive, safe, and effective therapeutics to prevent and treat these viral infections. Considering that hydroxychloroquine (HCQ), the most studied zinc ionophore drug for COVID-19, is linked to potentially serious side effects, we propose the implementation of hinokitiol as a zinc ionophore and anti-infective agent for the prevention and treatment of COVID-19 and other viral infections.


Subject(s)
Anti-Infective Agents/therapeutic use , COVID-19/drug therapy , COVID-19/prevention & control , Ionophores/therapeutic use , Monoterpenes/therapeutic use , Tropolone/analogs & derivatives , Zinc/chemistry , Antiviral Agents/therapeutic use , Homeostasis , Humans , Hydroxychloroquine/pharmacology , Models, Theoretical , Risk , Tropolone/therapeutic use
14.
Med Hypotheses ; 144: 110044, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-623607

ABSTRACT

The SARS-CoV-2 hyperinflammatory response is associated with high mortality. This hypothesis suggests that a deficiency of nicotinamide adenine dinucleotide (NAD+) may be the primary factor related to the SARS-Cov-2 disease spectrum and the risk for mortality, as subclinical nutritional deficiencies may be unmasked by any significant increase in oxidative stress. NAD+ levels decline with age and are also reduced in conditions associated with oxidative stress as occurs with hypertension, diabetes and obesity. These groups have also been observed to have high mortality following infection with COVID-19. Further consumption of NAD+ in a pre-existent depleted state is more likely to cause progression to the hyperinflammatory stage of the disease through its limiting effects on the production of SIRT1. This provides a unifying hypothesis as to why these groups are at high risk of mortality and suggests that nutritional support with NAD+ and SIRT1 activators, could minimise disease severity if administered prophylactically and or therapeutically. The significance of this, if proven, has far-reaching consequences in the management of COVID-19 especially in third world countries, where resources and finances are limited.


Subject(s)
COVID-19/immunology , Diabetes Mellitus, Type 2/complications , NAD/deficiency , Obesity/complications , Sirtuin 1/immunology , ADAM17 Protein/immunology , ADP-ribosyl Cyclase 1/immunology , Age Factors , Aged , Aging , COVID-19/mortality , Diabetes Mellitus, Type 2/immunology , Disease Progression , Disease Susceptibility , Humans , Inflammation , Membrane Glycoproteins/immunology , NAD/chemistry , Obesity/immunology , Oxidative Stress , Protein Binding , Virus Replication , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL