Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 470
Filter
1.
Postgrad Med J ; 96(1137): 417-421, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-20244607

ABSTRACT

All animal life on earth is thought to have a common origin and have common genetic mechanisms. Evolution has enabled differentiation of species. Pathogens likewise have evolved within various species and mostly come to a settled dynamic equilibrium such that co-existence results (pathogens ideally should not kill their hosts). Problems arise when pathogens jump species because the new host had not developed any resistance. These infections from related species are known as zoonoses. COVID-19 is the latest example of a virus entering another species but HIV (and various strains of influenza) were previous examples. HIV entered the human population from monkeys in Africa. These two papers outline the underlying principle of HIV and the differing epidemiologies in Africa, the USA and in Edinburgh. The underlying immunosuppression of HIV in Africa was initially hidden behind common infections and HIV first came to world awareness in focal areas of the USA as a disease seemingly limited to gay males. The epidemic of intravenous drug abuse in Edinburgh was associated with overlapping epidemics of bloodborne viruses like hepatitis B, hepatitis C and HIV.


Subject(s)
Coinfection/virology , HIV Infections/physiopathology , Hepatitis B/physiopathology , Hepatitis C/physiopathology , Animals , Disease Outbreaks , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , Hepatitis B/genetics , Hepatitis C/genetics , Humans , Needle Sharing/statistics & numerical data , Phylogeny , Substance Abuse, Intravenous/epidemiology , Zoonoses
2.
Dev Comp Immunol ; 133: 104443, 2022 08.
Article in English | MEDLINE | ID: covidwho-20241503

ABSTRACT

The COVID-19 pandemic is a wake-up call on the zoonotic viral spillover events and the need to be prepared for future outbreaks. Zoonotic RNA viruses like the Middle East respiratory syndrome coronavirus (MERS-CoV) are potential pathogens that could trigger the next pandemic. Dromedary camels are the only known animal source of MERS-CoV zoonotic infections, but little is known about the molecular antiviral response in this species. IFN-ß and other type-I interferons provide the first line of defense against invading pathogens in the host immune response. We identified the IFNB gene of the dromedary camel and all extant members of the family Camelidae. Camelid IFN-ß is unique with an even number of cysteines in the mature protein compared to other eutherian mammals with an odd number of cysteines. The viral mimetic poly(I:C) strongly induced IFN-ß expression in camel kidney cells. Induction of IFN-ß expression upon infection with camelpox virus was late and subdued when compared to poly(I:C) treatment. Prokaryotically expressed recombinant dromedary IFN-ß induced expression of IFN-responsive genes in camel kidney cells. Further, recombinant IFN-ß conferred antiviral resistance to camel kidney cells against the cytopathic effects of the camelpox virus, an endemic zoonotic pathogen. IFN-ß from this unique group of mammals will offer insights into antiviral immune mechanisms and aid in the development of specific antivirals against pathogens that have the potential to be the next zoonotic pandemic.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Animals , Antiviral Agents , Camelus , Eutheria , Humans , Interferon-beta/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Pandemics , Zoonoses
3.
Lancet ; 401(10390): 1822-1824, 2023 05 27.
Article in English | MEDLINE | ID: covidwho-20231783

ABSTRACT

Mpox (formerly known as monkeypox) is a zoonotic viral disease endemic in parts of Africa. In May, 2022, the world was alerted to circulation of monkeypox virus in many high-income countries outside of Africa. Continued spread resulted in a WHO declaration of a Public Health Emergency of International Concern. Although there has been much attention on the global outbreak, most of the focus has been on high-income countries outside of Africa, despite the fact that monkeypox virus has been causing disease in parts of Africa for at least 50 years. Furthermore, the long-term consequences of this event, especially the risk that mpox fills the niche vacated through smallpox eradication, have not been sufficiently considered. The heart of the problem is the historical neglect of mpox in Africa where the disease is endemic, and the actual and potential consequences if this neglect is left uncorrected.


Subject(s)
Monkeypox , Smallpox , Humans , Animals , Smallpox/epidemiology , Monkeypox/epidemiology , Zoonoses , Africa/epidemiology , Disease Outbreaks , Monkeypox virus
4.
Viruses ; 15(5)2023 05 17.
Article in English | MEDLINE | ID: covidwho-20236544

ABSTRACT

Since SARS-CoV-2 caused the COVID-19 pandemic, records have suggested the occurrence of reverse zoonosis of pets and farm animals in contact with SARS-CoV-2-positive humans in the Occident. However, there is little information on the spread of the virus among animals in contact with humans in Africa. Therefore, this study aimed to investigate the occurrence of SARS-CoV-2 in various animals in Nigeria. Overall, 791 animals from Ebonyi, Ogun, Ondo, and Oyo States, Nigeria were screened for SARS-CoV-2 using RT-qPCR (n = 364) and IgG ELISA (n = 654). SARS-CoV-2 positivity rates were 45.9% (RT-qPCR) and 1.4% (ELISA). SARS-CoV-2 RNA was detected in almost all animal taxa and sampling locations except Oyo State. SARS-CoV-2 IgGs were detected only in goats from Ebonyi and pigs from Ogun States. Overall, SARS-CoV-2 infectivity rates were higher in 2021 than in 2022. Our study highlights the ability of the virus to infect various animals. It presents the first report of natural SARS-CoV-2 infection in poultry, pigs, domestic ruminants, and lizards. The close human-animal interactions in these settings suggest ongoing reverse zoonosis, highlighting the role of behavioral factors of transmission and the potential for SARS-CoV-2 to spread among animals. These underscore the importance of continuous monitoring to detect and intervene in any eventual upsurge.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Swine , SARS-CoV-2/genetics , Nigeria/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , Pandemics , RNA, Viral/genetics , Zoonoses/epidemiology , Animals, Domestic , Goats
5.
Curr Opin Gastroenterol ; 39(3): 169-174, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-20244686

ABSTRACT

PURPOSE OF REVIEW: Infection with hepatitis E virus (HEV) is a global health concern, yet a clinically underdiagnosed cause of acute and chronic hepatitis. The WHO estimates that 20 million people are infected with HEV annually, yet the epidemiology, diagnosis and prevention remain elusive in many clinical settings. RECENT FINDINGS: Orthohepevirus A (HEV-A) genotypes 1 and 2 cause acute, self-limited hepatitis through faecal-oral transmission. In 2022, the first-ever vaccine campaign was implemented as a response to an HEV outbreak in an endemic region. HEV-A genotypes 3 and 4 are zoonotic infections that primarily cause chronic HEV infection in immunosuppressed populations. Pregnant women and immunocompromised persons are at high risk for severe illness in some settings. Another recent advance in our knowledge of HEV is the zoonotic transmission of Orthohepevirus C (HEV-C) to humans, presumably from contact with rodents and/or their excrement. Previously, HEV infection in humans was presumed to be limited to HEV-A only. SUMMARY: Clinical recognition and accurate diagnosis are essential to the management of HEV infection and understanding the global burden of the disease. Epidemiology affects clinical presentations. Targeted response strategies in HEV outbreaks are needed for the prevention of disease, and vaccine campaigns may prove to be an effective part of these strategies.


Subject(s)
Hepatitis E virus , Hepatitis E , Animals , Humans , Female , Pregnancy , Hepatitis E virus/genetics , Hepatitis E/diagnosis , Hepatitis E/epidemiology , Hepatitis E/prevention & control , Zoonoses/epidemiology , Disease Outbreaks , Acute Disease
6.
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz ; 66(6): 599-616, 2023 Jun.
Article in German | MEDLINE | ID: covidwho-20244056

ABSTRACT

The COVID-19 pandemic and the increasing occurrence of monkeypox (mpox) diseases outside Africa have illustrated the vulnerability of populations to zoonotic pathogens. In addition, other viral zoonotic pathogens have gained importance in recent years.This review article addresses six notifiable viral zoonotic pathogens as examples to highlight the need for the One Health approach in order to understand the epidemiology of the diseases and to derive recommendations for action by the public health service. The importance of environmental factors, reservoirs, and vectors is emphasized, the diseases in livestock and wildlife are analyzed, and the occurrence and frequency of diseases in the population are described. The pathogens selected here differ in their reservoirs and the role of vectors for transmission, the impact of infections on farm animals, and the disease patterns observed in humans. In addition to zoonotic pathogens that have been known in Germany for a long time or were introduced recently, pathogens whose zoonotic potential has only lately been shown are also considered.For the pathogens discussed here, there are still large knowledge gaps regarding the transmission routes. Future One Health-based studies must contribute to the further elucidation of their transmission routes and the development of prevention measures. The holistic approach does not necessarily include a focus on viral pathogens/diseases, but also includes the question of the interaction of viral, bacterial, and other pathogens, including antibiotic resistance and host microbiomes.


Subject(s)
COVID-19 , One Health , Virus Diseases , Animals , Humans , Zoonoses/microbiology , Viral Zoonoses/epidemiology , Pandemics , Germany , COVID-19/epidemiology , Virus Diseases/epidemiology
7.
Curr Opin Infect Dis ; 34(5): 385-392, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-2323925

ABSTRACT

PURPOSE OF REVIEW: The purpose of the review is to summarize recent advances in understanding the origins, drivers and clinical context of zoonotic disease epidemics and pandemics. In addition, we aimed to highlight the role of clinicians in identifying sentinel cases of zoonotic disease outbreaks. RECENT FINDINGS: The majority of emerging infectious disease events over recent decades, including the COVID-19 pandemic, have been caused by zoonotic viruses and bacteria. In particular, coronaviruses, haemorrhagic fever viruses, arboviruses and influenza A viruses have caused significant epidemics globally. There have been recent advances in understanding the origins and drivers of zoonotic epidemics, yet there are gaps in diagnostic capacity and clinical training about zoonoses. SUMMARY: Identifying the origins of zoonotic pathogens, understanding factors influencing disease transmission and improving the diagnostic capacity of clinicians will be crucial to early detection and prevention of further epidemics of zoonoses.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Pandemics/prevention & control , Zoonoses/epidemiology , Animals , COVID-19/epidemiology , Disease Outbreaks/prevention & control , Humans , SARS-CoV-2/pathogenicity
8.
Biol Futur ; 74(1-2): 81-89, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2327336

ABSTRACT

Genomic epidemiology is now a core component in investigating the spread of a disease during an outbreak and for future preparedness to tackle emerging zoonoses. During the last decades, several viral diseases arose and emphasized the importance of molecular epidemiology in tracking the dispersal route, supporting proper mitigation measures, and appropriate vaccine development. In this perspective article, we summarized what has been done so far in the genomic epidemiology field and what should be considered in the future. We traced back the methods and protocols employed over time for zoonotic disease response. Either to small outbreaks such as the severe acute respiratory syndrome (SARS) outbreak identified first in 2002 in Guangdong, China, or to a global pandemic like the one that we are experiencing now since 2019 when the severe acute respiratory syndrome 2 (SARS-CoV-2) virus emerged in Wuhan, China, following several pneumonia cases, and subsequently spread worldwide. We explored both the benefits and shortages encountered when relying on genomic epidemiology, and we clearly present the disadvantages of inequity in accessing these tools around the world, especially in countries with less developed economies. For effectively addressing future pandemics, it is crucial to work for better sequencing equity around the globe.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , SARS-CoV-2/genetics , COVID-19/epidemiology , Pandemics/prevention & control , Zoonoses/epidemiology , Zoonoses/prevention & control , Genomics
9.
Cell ; 186(9): 2040-2040.e1, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2299160

ABSTRACT

Farmed mammals may act as hosts for zoonotic viruses that can cause disease outbreaks in humans. This SnapShot shows which farmed mammals, and to what extent, are of particular risk of harboring and spreading viruses from viral families that are commonly associated with zoonotic disease. It also discusses genome surveillance methods and biosafety measures. To view this SnapShot, open or download the PDF.


Subject(s)
Viruses , Zoonoses , Animals , Humans , Mammals , Disease Outbreaks , Risk Assessment
10.
J Am Vet Med Assoc ; 261(6): 789-797, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2297819

ABSTRACT

Contemporary human and animal viruses have a broad or narrow host range-those with a broad host range are potentially transmitted from animals to humans (ie, zoonosis) or humans to animals (ie, reverse zoonosis). This Currents in One Health article reviews the recent reverse zoonoses involving Coronaviridae, Poxviridae, arboviruses, and, for nonhuman primate species, the human respiratory viruses. The prevention and control of reverse zoonoses are also reviewed. Coronaviruses continue to emerge as new zoonotic agents, including a canine coronavirus, CCoV-HuPn-2018, circulating in people at low levels, and a pangolin coronavirus, MjHKU4r-CoV-1, circulating in Malayan pangolins. Moreover, the risk for SARS-CoV-2 variants to mutate in animal reservoirs and reinfect humans is ongoing. In the case of mpox, the risk of reverse zoonosis is low and there are vaccines for use in humans at risk. The situation with arboviruses is as varied as the number of human arboviruses, and only yellow fever virus and dengue virus have licensed vaccines in the Americas. As for reverse zoonoses in endangered species, solutions require changing human behavior and policies at all levels impacting wildlife. Overall, continuous surveillance and viral discovery in humans and animals remain core components of a one-health approach to reduce and, where possible, eliminate zoonotic and reverse zoonotic diseases. Viral zoonosis and viral reverse zoonosis focusing on recent influenza A virus disease events in humans and other species are the subjects of the companion Currents in One Health by Kibenge, AJVR, June 2023.


Subject(s)
COVID-19 , One Health , Humans , Animals , SARS-CoV-2 , Viral Zoonoses , COVID-19/veterinary , Zoonoses/prevention & control , Animals, Wild
11.
Nat Commun ; 14(1): 2488, 2023 04 29.
Article in English | MEDLINE | ID: covidwho-2293756

ABSTRACT

Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of Bornaviridae. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.


Subject(s)
COVID-19 , Chiroptera , Viruses , Animals , Animals, Domestic/virology , Animals, Wild/virology , Animals, Zoo/virology , Chiroptera/virology , Mammals/virology , Pangolins/virology , Phylogeny , Zoonoses/virology
12.
Emerg Infect Dis ; 29(6): 1136-1142, 2023 06.
Article in English | MEDLINE | ID: covidwho-2291962

ABSTRACT

SARS-CoV-2 can infect domestic animals such as cats and dogs. The zoonotic origin of the disease requires surveillance on animals. Seroprevalence studies are useful tools for detecting previous exposure because the short period of virus shedding in animals makes detection of the virus difficult. We report on an extensive serosurvey on pets in Spain that covered 23 months. We included animals with exposure to SARS-CoV-2-infected persons, random animals, and stray animals in the study. We also evaluated epidemiologic variables such as human accumulated incidence and spatial location. We detected neutralizing antibodies in 3.59% of animals and showed a correlation between COVID-19 incidence in humans and positivity to antibody detection in pets. This study shows that more pets were infected with SARS-CoV-2 than in previous reports based on molecular research, and the findings highlight the need to establish preventive measures to avoid reverse zoonosis events.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Dogs , Cats , COVID-19/epidemiology , COVID-19/veterinary , Spain/epidemiology , Seroepidemiologic Studies , Zoonoses/epidemiology , Pets
14.
Int J Infect Dis ; 130: 211, 2023 05.
Article in English | MEDLINE | ID: covidwho-2305586
15.
Emerg Infect Dis ; 29(3): 1-9, 2023 03.
Article in English | MEDLINE | ID: covidwho-2305357

ABSTRACT

The pathogens that cause most emerging infectious diseases in humans originate in animals, particularly wildlife, and then spill over into humans. The accelerating frequency with which humans and domestic animals encounter wildlife because of activities such as land-use change, animal husbandry, and markets and trade in live wildlife has created growing opportunities for pathogen spillover. The risk of pathogen spillover and early disease spread among domestic animals and humans, however, can be reduced by stopping the clearing and degradation of tropical and subtropical forests, improving health and economic security of communities living in emerging infectious disease hotspots, enhancing biosecurity in animal husbandry, shutting down or strictly regulating wildlife markets and trade, and expanding pathogen surveillance. We summarize expert opinions on how to implement these goals to prevent outbreaks, epidemics, and pandemics.


Subject(s)
Communicable Diseases, Emerging , Zoonoses , Animals , Humans , Zoonoses/epidemiology , Pandemics , Animals, Wild , Animals, Domestic , Communicable Diseases, Emerging/epidemiology , Disease Outbreaks
16.
Annu Rev Virol ; 9(1): 173-192, 2022 09 29.
Article in English | MEDLINE | ID: covidwho-2263072

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has had a profound impact on human health, economic well-being, and societal function. It is essential that we use this generational experience to better understand the processes that underpin the emergence of COVID-19 and other zoonotic diseases. Herein, I review the mechanisms that determine why and how viruses emerge in new hosts, as well as the barriers to this process. I show that traditional studies of virus emergence have an inherent anthropocentric bias, with disease in humans considered the inevitable outcome of virus emergence, when in reality viruses are integral components of a global ecosystem characterized by continual host jumping with humans also transmitting their viruses to other animals. I illustrate these points using coronaviruses, including severe acute respiratory syndrome coronavirus 2, as a case study. I also outline the potential steps that can be followed to help mitigate and prevent future pandemics, with combating climate change a central component.


Subject(s)
COVID-19 , Viruses , Animals , Ecosystem , Humans , Pandemics , SARS-CoV-2 , Zoonoses/epidemiology
17.
Proc Natl Acad Sci U S A ; 119(47): e2214427119, 2022 11 22.
Article in English | MEDLINE | ID: covidwho-2260206
18.
Elife ; 122023 04 04.
Article in English | MEDLINE | ID: covidwho-2273482

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a generalist virus, infecting and evolving in numerous mammals, including captive and companion animals, free-ranging wildlife, and humans. Transmission among non-human species poses a risk for the establishment of SARS-CoV-2 reservoirs, makes eradication difficult, and provides the virus with opportunities for new evolutionary trajectories, including the selection of adaptive mutations and the emergence of new variant lineages. Here, we use publicly available viral genome sequences and phylogenetic analysis to systematically investigate the transmission of SARS-CoV-2 between human and non-human species and to identify mutations associated with each species. We found the highest frequency of animal-to-human transmission from mink, compared with lower transmission from other sampled species (cat, dog, and deer). Although inferred transmission events could be limited by sampling biases, our results provide a useful baseline for further studies. Using genome-wide association studies, no single nucleotide variants (SNVs) were significantly associated with cats and dogs, potentially due to small sample sizes. However, we identified three SNVs statistically associated with mink and 26 with deer. Of these SNVs, ~⅔ were plausibly introduced into these animal species from local human populations, while the remaining ~⅓ were more likely derived in animal populations and are thus top candidates for experimental studies of species-specific adaptation. Together, our results highlight the importance of studying animal-associated SARS-CoV-2 mutations to assess their potential impact on human and animal health.


Subject(s)
COVID-19 , Deer , Animals , Cats , Dogs , SARS-CoV-2/genetics , COVID-19/genetics , Phylogeny , Mink/genetics , Genome-Wide Association Study , Deer/genetics , Zoonoses , Mutation , Genome, Viral
19.
EMBO Rep ; 24(4): e56992, 2023 04 05.
Article in English | MEDLINE | ID: covidwho-2278506

ABSTRACT

After more than 2 years of intensive investigation, the direct ancestors of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain unidentified. Molecular epidemiology strongly supports a timeline marked by multiple, independent zoonoses in late 2019 (Pekar et al, 2022) solidifying the consensus hypothesis that close relatives of SARS-CoV-2 with high zoonotic potential were naturally circulating prior to the start of the pandemic (Andersen et al, 2020). Understanding where and when these ancestors acquired the genomic features that resulted in a virus with epidemic potential could enable the identification and mitigation of future pandemic viruses, even before the first human infection.


Subject(s)
COVID-19 , Viruses , Animals , Humans , SARS-CoV-2 , Zoonoses/epidemiology , Viruses/genetics
20.
Annu Rev Anim Biosci ; 11: 33-55, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2284296

ABSTRACT

Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. Over the years, zoonoses have become increasingly significant threats to global health. They form the dominant group of diseases among the emerging infectious diseases (EID) and currently account for 73% of EID. Approximately 25% of zoonoses originate in domestic animals. The etiological agents of zoonoses include different pathogens, with viruses accounting for approximately 30% of all zoonotic infections. Zoonotic diseases can be transmitted directly or indirectly, by contact, via aerosols, through a vector, or vertically in utero. Zoonotic diseases are found in every continent except Antarctica. Numerous factors associated with the pathogen, human activities, and the environment play significant roles in the transmission and emergence of zoonotic diseases. Effective response and control of zoonotic diseases call for multiple-sector involvement and collaboration according to the One Health concept.


Subject(s)
Communicable Diseases, Emerging , Virus Diseases , Animals , Humans , Animals, Domestic , Disease Reservoirs/veterinary , Zoonoses , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/veterinary , Virus Diseases/epidemiology , Virus Diseases/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL