Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
Add filters

Year range
1.
J Neuropathol Exp Neurol ; 79(8): 823-842, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-639090

ABSTRACT

Biological evolution of the microbiome continually drives the emergence of human viral pathogens, a subset of which attack the nervous system. The sheer number of pathogens that have appeared, along with their abundance in the environment, demand our attention. For the most part, our innate and adaptive immune systems have successfully protected us from infection; however, in the past 5 decades, through pathogen mutation and ecosystem disruption, a dozen viruses emerged to cause significant neurologic disease. Most of these pathogens have come from sylvatic reservoirs having made the energetically difficult, and fortuitously rare, jump into humans. But the human microbiome is also replete with agents already adapted to the host that need only minor mutations to create neurotropic/toxic agents. While each host/virus symbiosis is unique, this review examines virologic and immunologic principles that govern the pathogenesis of different viral CNS infections that were described in the past 50 years (Influenza, West Nile Virus, Zika, Rift Valley Fever Virus, Hendra/Nipah, Enterovirus-A71/-D68, Human parechovirus, HIV, and SARS-CoV). Knowledge of these pathogens provides us the opportunity to respond and mitigate infection while at the same time prepare for inevitable arrival of unknown agents.


Subject(s)
Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/transmission , Zoonoses/epidemiology , Zoonoses/transmission , Animals , Birds , Central Nervous System Viral Diseases/prevention & control , Ecosystem , Humans , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Influenza in Birds/transmission , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/transmission , West Nile Fever/epidemiology , West Nile Fever/prevention & control , West Nile Fever/transmission , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission , Zoonoses/prevention & control
2.
Nat Commun ; 11(1): 4235, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-738373

ABSTRACT

Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. Here we use a Bayesian statistical framework and a large sequence data set from bat-CoVs (including 630 novel CoV sequences) in China to study their macroevolution, cross-species transmission and dispersal. We find that host-switching occurs more frequently and across more distantly related host taxa in alpha- than beta-CoVs, and is more highly constrained by phylogenetic distance for beta-CoVs. We show that inter-family and -genus switching is most common in Rhinolophidae and the genus Rhinolophus. Our analyses identify the host taxa and geographic regions that define hotspots of CoV evolutionary diversity in China that could help target bat-CoV discovery for proactive zoonotic disease surveillance. Finally, we present a phylogenetic analysis suggesting a likely origin for SARS-CoV-2 in Rhinolophus spp. bats.


Subject(s)
Chiroptera/virology , Coronavirus Infections/veterinary , Coronavirus/genetics , Evolution, Molecular , Zoonoses/transmission , Animals , Bayes Theorem , Betacoronavirus/classification , Betacoronavirus/genetics , Biodiversity , China , Chiroptera/classification , Coronavirus/classification , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Pandemics , Phylogeny , Phylogeography , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Zoonoses/virology
3.
Vet Microbiol ; 247: 108777, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-733593

ABSTRACT

Coronaviruses (CoVs) cause disease in a range of agricultural and companion animal species, and can be important causes of zoonotic infections. In humans, several coronaviruses circulate seasonally. Recently, a novel zoonotic CoV named SARS-CoV-2 emerged from a bat reservoir, resulting in the COVID-19 pandemic. With a focus on felines, we review here the evidence for SARS-CoV-2 infection in cats, ferrets and dogs, describe the relationship between SARS-CoV-2 and the natural coronaviruses known to infect these species, and provide a rationale for the relative susceptibility of these species to SARS-CoV-2 through comparative analysis of the ACE-2 receptor.


Subject(s)
Cat Diseases/virology , Coronavirus Infections/veterinary , Dog Diseases/virology , Evolution, Molecular , Pandemics/veterinary , Pneumonia, Viral/veterinary , Zoonoses/transmission , Animals , Betacoronavirus , Cats/virology , Dogs/virology , Ferrets/virology , Humans , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/genetics , Zoonoses/virology
4.
Cell Physiol Biochem ; 54(4): 767-790, 2020 Aug 25.
Article in English | MEDLINE | ID: covidwho-729851

ABSTRACT

The pandemic of the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 at the end of 2019 marked the third outbreak of a highly pathogenic coronavirus affecting the human population in the past twenty years. Cross-species zoonotic transmission of SARS-CoV-2 has caused severe pathogenicity and led to more than 655,000 fatalities worldwide until July 28, 2020. Outbursts of this virus underlined the importance of controlling infectious pathogens across international frontiers. Unfortunately, there is currently no clinically approved antiviral drug or vaccine against SARS-CoV-2, although several broad-spectrum antiviral drugs targeting multiple RNA viruses have shown a positive response and improved recovery in patients. In this review, we compile our current knowledge of the emergence, transmission, and pathogenesis of SARS-CoV-2 and explore several features of SARS-CoV-2. We emphasize the current therapeutic approaches used to treat infected patients. We also highlight the results of in vitro and in vivo data from several studies, which have broadened our knowledge of potential drug candidates for the successful treatment of patients infected with and discuss possible virus and host-based treatment options against SARS-CoV-2.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/genetics , Betacoronavirus/physiology , Coronaviridae/pathogenicity , Coronaviridae Infections/epidemiology , Coronaviridae Infections/virology , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/prevention & control , Cytokines/antagonists & inhibitors , Drug Delivery Systems , Endocytosis/drug effects , Forecasting , Genome, Viral , Global Health , Humans , Immunity, Herd , Immunization, Passive , Pandemics/prevention & control , Peptide Hydrolases/pharmacology , Peptide Hydrolases/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , RNA, Viral/genetics , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Viral Vaccines , Virus Internalization/drug effects , Virus Replication/drug effects , Zoonoses
5.
Med Sci (Paris) ; 36(8-9): 783-796, 2020.
Article in French | MEDLINE | ID: covidwho-706965

ABSTRACT

SARS-CoV-2 is a new human coronavirus (CoV), which emerged in People's Republic of China at the end of 2019 and is responsible for the global Covid-19 pandemic that caused more than 540 000 deaths in six months. Understanding the origin of this virus is an important issue and it is necessary to determine the mechanisms of its dissemination in order to be able to contain new epidemics. Based on phylogenetic inferences, sequence analysis and structure-function relationships of coronavirus proteins, informed by the knowledge currently available, we discuss the different scenarios evoked to account for the origin - natural or synthetic - of the virus. On the basis of currently available data, it is impossible to determine whether SARS-CoV-2 is the result of a natural zoonotic emergence or an accidental escape from experimental strains. Regardless of its origin, the study of the evolution of the molecular mechanisms involved in the emergence of this pandemic virus is essential to develop therapeutic and vaccine strategies.


Subject(s)
Betacoronavirus/genetics , Communicable Diseases, Emerging/virology , Coronavirus Infections/virology , Coronavirus/classification , Evolution, Molecular , Pandemics , Phylogeny , Pneumonia, Viral/virology , RNA, Viral/genetics , Amino Acid Sequence , Animals , Betacoronavirus/classification , Betacoronavirus/isolation & purification , Biohazard Release , China/epidemiology , Coronaviridae Infections/transmission , Coronaviridae Infections/veterinary , Coronaviridae Infections/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Reservoirs , Gain of Function Mutation , Genome, Viral , HIV/genetics , Host Specificity , Humans , Mammals/virology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Reassortant Viruses/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/physiology , Zoonoses
6.
Med Sci (Paris) ; 36(8-9): 775-782, 2020.
Article in French | MEDLINE | ID: covidwho-696614

ABSTRACT

The recent emergence of a new coronavirus, SARS-CoV-2, responsible for COVID-19, is a new warning of the risk to public health represented by viral zoonoses and in particular by coronaviruses. Mainly described as being able to infect the upper and lower respiratory tract, coronaviruses can also infect the central and peripheral nervous systems as many other respiratory viruses, such as influenza or respiratory syncytial virus. Viral infections of the nervous system are a major public health concern as they can cause devastating illnesses up to death, especially when they occur in the elderly, who are more susceptible to these infections. Knowledge concerning the pathophysiology of recently emerging coronaviruses (MERS-CoV, SARS-CoV and SARS-CoV-2) and how they reach the central nervous system are very sketchy and the work in progress aims in particular to better understand their biology and the mechanisms associated with neurological damage. In this review we will discuss the current state of knowledge on the neurotropism of human coronaviruses and the associated mechanisms by developing in particular the latest data concerning SARS-CoV-2.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/complications , Nervous System Diseases/etiology , Pandemics , Pneumonia, Viral/complications , Animals , Biological Transport , Clinical Laboratory Techniques , Communicable Diseases, Emerging , Coronaviridae/pathogenicity , Coronaviridae/physiology , Coronaviridae/ultrastructure , Coronaviridae Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Humans , Nervous System/virology , Nervous System Diseases/diagnosis , Nervous System Diseases/therapy , Nervous System Diseases/virology , Organ Specificity , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Viral Tropism , Virulence , Virus Replication , Zoonoses
7.
Viruses ; 12(8)2020 08 05.
Article in English | MEDLINE | ID: covidwho-696041

ABSTRACT

Zoonoses can constitute a threat for public health that can have a global importance, as seen with the current COVID-19 pandemic of severe acute respiratory syndrome coronavirus (SARS-CoV2). Bats have been recognized as an important reservoir of zoonotic coronaviruses (CoVs). In West Africa, where there is a high diversity of bat species, little is known on the circulation of CoVs in these hosts, especially at the interface with human populations. In this study, in Guinea, we tested a total of 319 bats belonging to 14 genera and six families of insectivorous and frugivorous bats across the country, for the presence of coronaviruses. We found CoVs in 35 (11%) of the tested bats-in three insectivorous bat species and five fruit bat species that were mostly captured close to human habitat. Positivity rates varied from 5.7% to 100%, depending on bat species. A wide diversity of alpha and beta coronaviruses was found across the country, including three sequences belonging to SarbeCoVs and MerbeCoVs subgenera known to harbor highly pathogenic human coronaviruses. Our findings suggest that CoVs are widely spread in West Africa and their circulation should be assessed to evaluate the risk of exposure of potential zoonotic CoVs to humans.


Subject(s)
Chiroptera/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus/classification , Coronavirus/genetics , Animals , Betacoronavirus/isolation & purification , Biodiversity , Coronavirus/isolation & purification , Female , Genome, Viral , Guinea , Humans , Male , Pandemics , Phylogeny , Pilot Projects , Pneumonia, Viral/veterinary , Pneumonia, Viral/virology , Zoonoses/virology
8.
Int J Environ Res Public Health ; 17(16)2020 08 05.
Article in English | MEDLINE | ID: covidwho-695846

ABSTRACT

Over the past two decades, there have been two major outbreaks where the crossover of animal Betacoronaviruses to humans has resulted in severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). In December 2019, a global public health concern started with the emergence of a new strain of coronavirus (SARS-CoV-2 or 2019 novel coronavirus, 2019-nCoV) which has rapidly spread all over the world from its origin in Wuhan, China. SARS-CoV-2 belongs to the Betacoronavirus genus, which includes human SARS-CoV, MERS and two other human coronaviruses (HCoVs), HCoV-OC43 and HCoV-HKU1. The fatality rate of SARS-CoV-2 is lower than the two previous coronavirus epidemics, but it is faster spreading and the large number of infected people with severe viral pneumonia and respiratory illness, showed SARS-CoV-2 to be highly contagious. Based on the current published evidence, herein we summarize the origin, genetics, epidemiology, clinical manifestations, preventions, diagnosis and up to date treatments of SARS-CoV-2 infections in comparison with those caused by SARS-CoV and MERS-CoV. Moreover, the possible impact of weather conditions on the transmission of SARS-CoV-2 is also discussed. Therefore, the aim of the present review is to reconsider the two previous pandemics and provide a reference for future studies as well as therapeutic approaches.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Animals , Betacoronavirus , China/epidemiology , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Disease Outbreaks , Emergency Service, Hospital , Humans , Middle East Respiratory Syndrome Coronavirus , Pandemics , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Public Health , Zoonoses
9.
Curr Biol ; 30(15): R846-R848, 2020 08 03.
Article in English | MEDLINE | ID: covidwho-693937

ABSTRACT

Much discussion about the impact of the Covid-19 pandemic and whatever emerges as the 'new normal' has been psychological or political in nature, but there is a more inclusive evolutionary biological context in which we might understand it, ourselves, and our responsibilities to the planet.


Subject(s)
Biological Evolution , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Animals , Coronavirus Infections/economics , Humans , Pandemics/economics , Pneumonia, Viral/economics , Social Behavior , Socioeconomic Factors , Zoonoses
11.
Nat Ecol Evol ; 4(9): 1168-1173, 2020 09.
Article in English | MEDLINE | ID: covidwho-688983

ABSTRACT

The SARS-CoV-2 epidemic is merely the most recent demonstration that our current approach to emerging zoonotic infectious disease is ineffective. SARS, MERS, Ebola, Nipah and an array of arenavirus infections sporadically spillover into human populations and are often contained only as a result of their poor transmission in human hosts, coupled with intense public health control efforts in the early stages of an emerging epidemic. It is now more apparent than ever that we need a better and more proactive approach. One possibility is to eliminate the threat of spillover before it occurs using vaccines capable of autonomously spreading through wild animal reservoirs. We are now poised to begin developing self-disseminating vaccines targeting a wide range of human pathogens, but important decisions remain about how they can be most effectively designed and used to target pathogens with a high risk of spillover and/or emergence. In this Perspective, we first review the basic epidemiological theory establishing the feasibility and utility of self-disseminating vaccines. We then outline a road map for overcoming remaining technical challenges: identifying high-risk pathogens before they emerge, optimizing vaccine design with an eye to evolution, behaviour and epidemiology, and minimizing the risk of unintended consequences.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Vaccines , Animals , Betacoronavirus , Humans , Zoonoses
12.
Indian J Med Microbiol ; 38(1): 1-8, 2020.
Article in English | MEDLINE | ID: covidwho-688753

ABSTRACT

A novel coronavirus infection, which began as an outbreak of unusual viral pneumonia in Wuhan, a central city in China, has evolved into a global health crisis. The outbreak is an unembellished reminder of the hazard coronaviruses pose to public health. Government and researchers around the world have been taking swift measures to control the outbreak and conduct aetiological studies to understand the various facets of the outbreak. This review is an attempt at providing an insight about the current understanding, knowledge gaps and a perspective on the future of coronavirus disease 2019 (COVID-19) infections. All the authentic data published so far on COVID-19 has been systematically analysed. PubMed, NCBI, World Health Organisation, Ministry of Health and Family Welfare (India), and Centers for Disease Control and Prevention databases and bibliographies of relevant studies up to 22nd June 2020 have been included. The Wuhan outbreak is a stark reminder of the continuing threat posed by zoonotic diseases to global health. Despite an armamentarium of Government officials, researchers and medical fraternity working towards the containment of this novel coronavirus viral pneumonia continues to spread at an alarming rate infecting multitudes and claiming hundreds of lives.


Subject(s)
Betacoronavirus/isolation & purification , Communicable Disease Control/methods , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Zoonoses/transmission , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Biomedical Research/trends , Child , Child, Preschool , Communicable Disease Control/organization & administration , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Female , Global Health , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Young Adult
15.
Am J Primatol ; 82(8): e23176, 2020 08.
Article in English | MEDLINE | ID: covidwho-656485

ABSTRACT

The emergence of SARS-CoV-2 in late 2019 and human responses to the resulting COVID-19 pandemic in early 2020 have rapidly changed many aspects of human behavior, including our interactions with wildlife. In this commentary, we identify challenges and opportunities at human-primate interfaces in light of COVID-19, focusing on examples from Asia, and make recommendations for researchers working with wild primates to reduce zoonosis risk and leverage research opportunities. First, we briefly review the evidence for zoonotic origins of SARS-CoV-2 and discuss risks of zoonosis at the human-primate interface. We then identify challenges that the pandemic has caused for primates, including reduced nutrition, increased intraspecific competition, and increased poaching risk, as well as challenges facing primatologists, including lost research opportunities. Subsequently, we highlight opportunities arising from pandemic-related lockdowns and public health messaging, including opportunities to reduce the intensity of problematic human-primate interfaces, opportunities to reduce the risk of zoonosis between humans and primates, opportunities to reduce legal and illegal trade in primates, new opportunities for research on human-primate interfaces, and opportunities for community education. Finally, we recommend specific actions that primatologists should take to reduce contact and aggression between humans and primates, to reduce demand for primates as pets, to reduce risks of zoonosis in the context of field research, and to improve understanding of human-primate interfaces. Reducing the risk of zoonosis and promoting the well-being of humans and primates at our interfaces will require substantial changes from "business as usual." We encourage primatologists to help lead the way.


Subject(s)
Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Primate Diseases/prevention & control , Zoonoses/prevention & control , Animals , Conservation of Natural Resources/trends , Coronavirus Infections/transmission , Feeding Behavior/physiology , Humans , Pneumonia, Viral/transmission , Primate Diseases/transmission , Primate Diseases/virology , Primates , Risk Factors , Zoonoses/transmission
16.
Rev Bras Parasitol Vet ; 29(3): e012220, 2020.
Article in English | MEDLINE | ID: covidwho-646346

ABSTRACT

In this commentary, the authors highlight the importance of basic research in the field of public health regarding the recent pandemic Covid-19, using tick-borne rickettsioses as an example. In addition, they alert politicians, government officials and managers of research funding agencies to increase the allocated financial resources to enhance basic research on public health in Brazil.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Rickettsia Infections/epidemiology , Ticks/microbiology , Zoonoses/microbiology , Animals , Betacoronavirus , Brazil
17.
Postgrad Med J ; 96(1137): 408-411, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-639885

ABSTRACT

All animal life on earth is thought to have a common origin and have common genetic mechanisms. Evolution has enabled differentiation of species. Pathogens likewise have evolved within various species and mostly come to a settled dynamic equilibrium such that co-existence results (pathogens ideally should not kill their hosts). Problems arise when pathogens jump species because the new host had not developed any resistance. These infections from related species are known as zoonoses. COVID-19 is the latest example of a virus entering another species but HIV (and various strains of influenza) were previous examples.


Subject(s)
Disease Outbreaks/statistics & numerical data , HIV Infections/transmission , HIV-1/pathogenicity , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Immunodeficiency Virus/pathogenicity , Zoonoses/transmission , Animals , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Coronavirus Infections/transmission , Coronavirus Infections/virology , Evolution, Molecular , HIV Infections/virology , HIV-1/genetics , Humans , Pandemics , Phylogeny , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Primates/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Zoonoses/virology
18.
mSphere ; 5(4)2020 07 08.
Article in English | MEDLINE | ID: covidwho-639765

ABSTRACT

Nipah disease is listed as one of the WHO priority diseases that pose the greatest public health risk due to their epidemic potential. More than 200 experts from around the world convened in Singapore last year to mark the 20th anniversary of the first Nipah virus outbreaks in Malaysia and Singapore. Most of these experts are now involved in responding to the coronavirus disease 2019 (COVID-19) pandemic. Here, members of the Organizing Committee of the 2019 Nipah Virus International Conference review highlights from the Nipah@20 Conference and reflect on key lessons learned from Nipah that could be applied to the understanding of the COVID-19 pandemic and to preparedness against future emerging infectious diseases (EIDs) of pandemic potential.


Subject(s)
Henipavirus Infections , Nipah Virus/pathogenicity , Animals , Betacoronavirus/pathogenicity , Congresses as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Henipavirus Infections/diagnosis , Henipavirus Infections/prevention & control , Henipavirus Infections/therapy , Humans , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Zoonoses/epidemiology
19.
Infect Dis Poverty ; 9(1): 86, 2020 Jul 10.
Article in English | MEDLINE | ID: covidwho-637965

ABSTRACT

Emerging and re-emerging zoonotic diseases represent a public health challenge of international concern. They include a large group of neglected tropical diseases (NTDs), many of which are of zoonotic nature. Coronavirus disease 2019 (COVID-19), another emerging zoonotic disease, has just increased the stakes exponentially. Most NTDs are subject to the impact of some of the very same human-related activities triggering other emerging and re-emerging diseases, including COVID-19, severe acute respiratory syndrome (SARS), bird flu and swine flu. It is conceivable that COVID-19 will exacerbate the NTDs, as it will divert much needed financial and human resources. There is considerable concern that recent progress achieved with control and elimination efforts will be reverted. Future potential strategies will need to reconsider the determinants of health in NTDs in order to galvanize efforts and come up with a comprehensive, well defined programme that will set the stage for an effective multi-sectorial approach. In this Commentary, we propose areas of potential synergies between the COVID-19 pandemic control efforts, other health and non-health sector initiatives and NTD control and elimination programmes.


Subject(s)
Communicable Diseases, Emerging/prevention & control , Coronavirus Infections/epidemiology , Neglected Diseases/prevention & control , Pneumonia, Viral/epidemiology , Tropical Medicine/methods , Animals , Betacoronavirus , Communicable Diseases, Emerging/epidemiology , Coronavirus Infections/prevention & control , Global Health , Humans , Intersectoral Collaboration , Neglected Diseases/epidemiology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Resource Allocation , Tropical Medicine/trends , Zoonoses/epidemiology , Zoonoses/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL