Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Sci Rep ; 12(1): 4801, 2022 03 21.
Article in English | MEDLINE | ID: covidwho-1751764

ABSTRACT

Ubiquitous microthromboses in the pulmonary vasculature play a crucial role in the pathogenesis of COVID-19 associated acute respiratory distress syndrome (ARDS). Excess of Willebrand factor (vWf) with intravascular multimer formation was identified as a key driver of this finding. Plasma exchange (PLEX) might be a therapeutic option to restore the disbalance between vWf and ADAMTS13. We report the effects of PLEX on vWf, ADAMTS13, inflammatory cytokines and parameters of ventilation. We investigated 25 patients, who were on mechanical ventilation for COVID-19 pneumonia with ARDS at two German university hospitals. All patients received PLEX as an ultima ratio measure for refractory ARDS. VWf antigen (vWf:Ag), ADAMTS13 activity, a cytokine panel mirroring the inflammatory situation and clinical parameters were assessed before and after three to six PLEX therapies with fresh frozen plasma. Before the PLEX sequence there was an excessive release of vWf:Ag (425.4 ± 167.5%) and mildly reduced ADAMTS13 activity (49.7 ± 23.3%). After the PLEX series, there was a significant increase of ADAMTS13 activity to 62.4 ± 17.7% (p = 0.029) and a significant decrease of vWf:Ag to 336.1 ± 138.2% (p = 0.041) resulting in a 63% improvement of the ADAMT13/vWf:Ag ratio from 14.5 ± 10.0 to 23.7 ± 14.6, p = 0.024. Comparison of parameters before and after individual PLEX sessions (n = 35) revealed a mean reduction of vWf from 387.8 ± 165.1 to 213.2 ± 62.3% (p = 0.001) and an increase of ADAMTS13 activity from 60.4 ± 20.1 to 70.5 ± 14.0% (p = 0.001). Parallelly, monocyte chemotactic protein-1 and interleukin-18 decreased significantly (p = 0.034 each). Along the PLEX sequence lactate dehydrogenase (p = 0.001), C-reactive protein (p = 0.001), and positive end expiratory pressure (p = 0.01) significantly decreased accompanied by an improvement of Horovitz index (p = 0.001). PLEX restores the disbalance between ADAMTS13 and vWf:Ag, a driver of immunothrombosis. Moreover, it reduces the inflammatory state and is associated with a benefit of ventilation parameters. These findings render a further rationale to regard PLEX as a therapeutic option in severe COVID-19.


Subject(s)
COVID-19 , Plasma Exchange , von Willebrand Factor , ADAMTS13 Protein/metabolism , COVID-19/therapy , Critical Illness/therapy , Humans , Inflammation/therapy , von Willebrand Factor/metabolism
2.
Int J Hematol ; 115(4): 457-469, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1750844

ABSTRACT

ADAMTS13, a metalloproteinase, specifically cleaves unusually large multimers of von Willebrand factor (VWF), newly released from vascular endothelial cells. The ratio of ADAMTS13 activity to VWF antigen (ADAMTS13/VWF) and indicators of the alternative complement pathway (C3a and sC5b-9) are both related to the severity of COVID-19. The ADAMTS13/VWF ratio is generally moderately decreased (0.18-0.35) in patients with severe COVID-19. When these patients experience cytokine storms, both interleukin-8 and TNFα stimulate VWF release from vascular endothelial cells, while interleukin-6 inhibits both production of ADAMTS13 and its interaction with VWF, resulting in localized severe deficiency of ADAMTS13 activity. Platelet factor 4 and thrombospondin-1, both released upon platelet activation, bind to the VWF-A2 domain and enhance the blockade of ADAMTS13 function. Thus, the released unusually-large VWF multimers remain associated with the vascular endothelial cell surface, via anchoring with syndecan-1 in the glycocalyx. Unfolding of the VWF-A2 domain, which has high sequence homology with complement factor B, allows the domain to bind to activated complement C3b, providing a platform for complement activation of the alternative pathway. The resultant C3a and C5a generate tissue factor-rich neutrophil extracellular traps (NETs), which induce the mixed immunothrombosis, fibrin clots and platelet aggregates typically seen in patients with severe COVID-19.


Subject(s)
ADAMTS13 Protein , COVID-19 , Cytokine Release Syndrome , von Willebrand Factor , ADAMTS13 Protein/metabolism , COVID-19/immunology , Complement Pathway, Alternative , Endothelial Cells/metabolism , Humans , von Willebrand Factor/metabolism
3.
BMC Pregnancy Childbirth ; 22(1): 142, 2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1706234

ABSTRACT

BACKGROUND: Thrombotic microangiopathy has been invoked as one of the most important mechanisms of damage in COVID-19 patients. Protease ADAMTS13 is a marker of microangiopathy responsible for controlling von Willebrand multimers size. Von Willebrand factor/ADAMTS13 ratio has been found impaired in COVID-19 patients outside pregnancy. METHODS: We prospectively investigated 90 pregnant women admitted to two tertiary academic hospitals in Italy with a laboratory-confirmed diagnosis of SARS-CoV-2 infection. Demographic, clinical information and routine laboratory data were collected at the hospital admission and until discharge. We investigated whether vonWillebrand /ADAMTS13 axis imbalance is a predictor of adverse outcomes. Logistic regression analysis, which controlled for potential confounders, was performed to evaluate the association between laboratory parameters and clinical outcomes. RESULTS: Most women (55.6%) were parae, with median gestational age at admission of 39 weeks. At hospital admission, 63.3% were asymptomatic for COVID-19 and 24.4% showed more than one sign or symptom of infection. Nulliparae with group O showed Willebrand / ADA MTS-13 ratios significantly lower than non-O, whereas in multiparae this difference was not observed. Logistic regression showed that ratio von Willebrand to ADAMTS13 was significantly and independently associated with preterm delivery (OR 1.9, 95%CI 1.1-3.5). CONCLUSION: This study shows an imbalance of vonWillebrand /ADAMTS13 axis in pregnant women with COVID-19, leading to a significantly higher and independent risk of preterm delivery. Monitoring these biomarkers might support decision making process to manage and follow-up pregnancies in this setting.


Subject(s)
ADAMTS13 Protein/blood , COVID-19/blood , Pregnancy Complications/blood , Premature Birth/blood , von Willebrand Factor/metabolism , Academic Medical Centers , Adolescent , Adult , Biomarkers/blood , COVID-19/complications , Female , Humans , Italy/epidemiology , Middle Aged , Pregnancy , SARS-CoV-2 , Tertiary Care Centers , Thrombotic Microangiopathies/etiology , Young Adult
4.
Thromb Haemost ; 122(2): 240-256, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1642057

ABSTRACT

BACKGROUND: Endothelial and complement activation were both associated with immunothrombosis, a key determinant of COVID-19 severity, but their interrelation has not yet been investigated. OBJECTIVES: We aimed to determine von Willebrand factor (VWF) antigen (VWF:Ag) concentration, VWF collagen binding activity (VWF:CBA), a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) activity (ADAMTS13:Ac), and their ratios in hospitalized COVID-19 patients, and to investigate how these parameters and their constellation with complement activation relate to disease severity and in-hospital mortality in COVID-19. METHODS: Samples of 102 hospitalized patients with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 positivity were included in our observational cohort study. Patients were stratified according to the peak severity of COVID-19 disease in agreement with the World Health Organization ordinal scale. Twenty-six convalescent plasma donors with previous COVID-19 disease formed the control group. VWF:Ag concentration and VWF:CBA were determined by enzyme-linked immunosorbent assay (ELISA); ADAMTS13:Ac was determined by fluorescence resonance energy transfer. Complement C3 and C3a were measured by turbidimetry and ELISA, respectively. Clinical covariates and markers of inflammation were extracted from hospital records. RESULTS: VWF:Ag and VWF:CBA were elevated in all groups of hospitalized COVID-19 patients and increased in parallel with disease severity. ADAMTS13:Ac was decreased in patients with severe COVID-19, with the lowest values in nonsurvivors. High (> 300%) VWF:Ag concentrations or decreased (< 67%) ADAMTS13:Ac were associated with higher risk of severe COVID-19 disease or in-hospital mortality. The concomitant presence of decreased ADAMTS13:Ac and increased C3a/C3 ratio-indicating complement overactivation and consumption-was a strong independent predictor of in-hospital mortality. CONCLUSION: Our results suggest that an interaction between the VWF-ADAMTS13 axis and complement overactivation and consumption plays an important role in the pathogenesis of COVID-19.


Subject(s)
ADAMTS13 Protein/metabolism , COVID-19/immunology , Complement C3/metabolism , SARS-CoV-2/physiology , von Willebrand Factor/metabolism , Adult , Aged , COVID-19/epidemiology , COVID-19/mortality , Complement Activation , Convalescence , Female , Hospitalization , Humans , Hungary/epidemiology , Male , Middle Aged , Nephelometry and Turbidimetry , Severity of Illness Index , Survival Analysis
5.
Am J Physiol Heart Circ Physiol ; 322(1): H87-H93, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1566407

ABSTRACT

The 2019 coronavirus disease (COVID-19) is the disease caused by SARS-CoV-2 infection. Although this infection has been shown to affect the respiratory system, a high incidence of thrombotic events has been observed in severe cases of COVID-19 and in a significant portion of COVID-19 nonsurvivors. Although prior literature has reported on both the coagulopathy and hypercoagulability of COVID-19, the specifics of coagulation have not been fully investigated. Observations of microthrombosis in patients with COVID-19 have brought attention to potential inflammatory endothelial injury. Von Willebrand factor (VWF) and its protease, A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), play an important homeostatic role in responding to endothelial injury. This report provides an overview of the literature investigating the role the VWF/ADAMTS13 axis may have in COVID-19 thrombotic events and suggests potential therapeutic strategies to prevent the progression of coagulopathy in patients with COVID-19.


Subject(s)
ADAMTS13 Protein/metabolism , Blood Coagulation Disorders/metabolism , COVID-19/blood , von Willebrand Factor/metabolism , Blood Coagulation , Blood Coagulation Disorders/etiology , COVID-19/complications , Humans
6.
Blood ; 138(16): 1481-1489, 2021 10 21.
Article in English | MEDLINE | ID: covidwho-1484294

ABSTRACT

A subset of patients with coronavirus disease 2019 (COVID-19) become critically ill, suffering from severe respiratory problems and also increased rates of thrombosis. The causes of thrombosis in severely ill patients with COVID-19 are still emerging, but the coincidence of critical illness with the timing of the onset of adaptive immunity could implicate an excessive immune response. We hypothesized that platelets might be susceptible to activation by anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) antibodies and might contribute to thrombosis. We found that immune complexes containing recombinant SARS-CoV-2 spike protein and anti-spike immunoglobulin G enhanced platelet-mediated thrombosis on von Willebrand factor in vitro, but only when the glycosylation state of the Fc domain was modified to correspond with the aberrant glycosylation previously identified in patients with severe COVID-19. Furthermore, we found that activation was dependent on FcγRIIA, and we provide in vitro evidence that this pathogenic platelet activation can be counteracted by the therapeutic small molecules R406 (fostamatinib) and ibrutinib, which inhibit tyrosine kinases Syk and Btk, respectively, or by the P2Y12 antagonist cangrelor.


Subject(s)
Blood Platelets/pathology , COVID-19/complications , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/metabolism , Thrombosis/pathology , von Willebrand Factor/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigen-Antibody Complex/immunology , Blood Platelets/immunology , Blood Platelets/metabolism , COVID-19/immunology , COVID-19/virology , Glycosylation , Humans , Platelet Activation/immunology , Thrombosis/immunology , Thrombosis/virology , von Willebrand Factor/genetics
7.
Cells ; 10(10)2021 10 18.
Article in English | MEDLINE | ID: covidwho-1477931

ABSTRACT

Several recent reports have highlighted the onset of vaccine-induced thrombotic thrombocytopaenia (VITT) in some recipients (approximately 1 case out of 100k exposures) of the ChAdOx1 nCoV-19 vaccine (AstraZeneca). Although the underlying events leading to this blood-clotting phenomenon has yet to be elucidated, several critical observations present a compelling potential mechanism. Thrombus formation requires the von Willebrand (VWF) protein to be in ultra-large multimeric state. The conservation of this state is controlled by the ADAMTS13 enzyme, whose proteolytic activity reduces the size of VWF multimers, keeping blood clotting at bay. However, ADAMTS13 cannot act on VWF that is bound to platelet factor 4 (PF4). As such, it is of particular interest to note that a common feature between subjects presenting with VITT is high titres of antibodies against PF4. This raises the possibility that these antibodies preserve the stability of ultra-large VWF complexes, leading to the formation of endothelium-anchored VWF strings, which are capable of recruiting circulating platelets and causing uncontrolled thrombosis in terminal capillaries. Here, we share our viewpoint about the current understanding of the VITT pathogenesis involving the prevention of ADAMTS13's activity on VWF by PF4 antibody-mediated stabilisation/ protection of the PF4-VWF complex.


Subject(s)
ADAMTS13 Protein/metabolism , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Thrombocytopenia/immunology , Antibodies , Autoantibodies/immunology , Blood Platelets/metabolism , Crystallography, X-Ray , Endothelial Cells/immunology , Humans , Platelet Factor 4/metabolism , Polymorphism, Genetic , Protein Domains , Thrombocytopenia/etiology , Thrombosis/etiology , von Willebrand Factor/metabolism
8.
J Biol Chem ; 297(5): 101315, 2021 11.
Article in English | MEDLINE | ID: covidwho-1472025

ABSTRACT

Coagulopathy is associated with both inflammation and infection, including infections with novel severe acute respiratory syndrome coronavirus-2, the causative agent Coagulopathy is associated with both inflammation and infection, including infection with novel severe acute respiratory syndrome coronavirus-2, the causative agent of COVID-19. Clot formation is promoted via cAMP-mediated secretion of von Willebrand factor (vWF), which fine-tunes the process of hemostasis. The exchange protein directly activated by cAMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a regulatory role in suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1-null mouse model and revealed increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1-/- phenotype. In addition, EPAC1 regulated tumor necrosis factor-α-triggered vWF secretion from human umbilical vein endothelial cells in a manner dependent upon inflammatory effector molecules PI3K and endothelial nitric oxide synthase. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro. Our data delineate a novel regulatory role for EPAC1 in vWF secretion and shed light on the potential development of new strategies to control thrombosis during inflammation.


Subject(s)
Endothelial Cells/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , von Willebrand Factor/metabolism , Animals , COVID-19/metabolism , Disease Models, Animal , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/genetics , Inflammation/metabolism , Mice , Mice, Knockout
9.
Int J Mol Sci ; 22(20)2021 Oct 16.
Article in English | MEDLINE | ID: covidwho-1470892

ABSTRACT

BACKGROUND: Atherosclerotic cardiovascular diseases are characterized by a dysregulated inflammatory and thrombotic state, leading to devastating complications with increased morbidity and mortality rates. SUMMARY: In this review article, we present the available evidence regarding the impact of inflammation on platelet activation in atherosclerosis. Key messages: In the context of a dysfunctional vascular endothelium, structural alterations by means of endothelial glycocalyx thinning or functional modifications through impaired NO bioavailability and increased levels of von Willebrand factor result in platelet activation. Moreover, neutrophil-derived mediators, as well as neutrophil extracellular traps formation, have been implicated in the process of platelet activation and platelet-leukocyte aggregation. The role of pro-inflammatory cytokines is also critical since their receptors are also situated in platelets while TNF-α has also been found to induce inflammatory, metabolic, and bone marrow changes. Additionally, important progress has been made towards novel concepts of the interaction between inflammation and platelet activation, such as the toll-like receptors, myeloperoxidase, and platelet factor-4. The accumulating evidence is especially important in the era of the coronavirus disease-19 pandemic, characterized by an excessive inflammatory burden leading to thrombotic complications, partially mediated by platelet activation. Lastly, recent advances in anti-inflammatory therapies point towards an anti-thrombotic effect secondary to diminished platelet activation.


Subject(s)
Atherosclerosis/pathology , COVID-19/pathology , Inflammation Mediators/metabolism , Atherosclerosis/metabolism , COVID-19/virology , Endothelium, Vascular/metabolism , Humans , Neutrophils/metabolism , Nitric Oxide/metabolism , Platelet Activation , SARS-CoV-2/isolation & purification , von Willebrand Factor/metabolism
10.
Chem Biol Interact ; 348: 109657, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1401276

ABSTRACT

COVID-19 is an ongoing public health emergency that has affected millions of people worldwide and is still a threat to many more. One of the pathophysiological features of COVID-19 is associated with the activation of vascular endothelial cells (ECs) leading to the disruption of vascular integrity, coagulation and inflammation. An interlink mechanism between coagulation and inflammatory pathways has been reported in COVID-19. Multiple components are involved in these pathological pathways. Out of all, Von Willebrand Factor (VWF) is one of the primary components of coagulation pathway and also a mediator of vascular inflammation that plays an important role in thrombo-inflammation that further leads to acute respiratory distress syndrome (ARDS). The thrombo-inflammatory co-morbidities such as hyper-coagulation, thrombosis, ARDS etc. have become the major cause of mortality in the patients of COVID-19 admitted to the ICU. Thus, VWF can be explored as a potential target to manage COVID-19 associated co-morbidities. Supporting this hypothesis, there are literature reports which disclose previous attempts to target VWF for the management of thrombo-inflammation in other pathological conditions. The current report summarizes emerging insights into the pathophysiology, mechanism(s), diagnosis, management and foundations for research on this less explored clinically relevant glycoprotein as coagulation biomarker in COVID-19.


Subject(s)
COVID-19/complications , Thrombosis/complications , von Willebrand Factor/metabolism , Biomarkers/metabolism , COVID-19/metabolism , Humans , Inflammation/complications
11.
Angiogenesis ; 24(4): 755-788, 2021 11.
Article in English | MEDLINE | ID: covidwho-1286153

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 ß [IL-1ß] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.


Subject(s)
COVID-19/metabolism , Myelopoiesis , Neovascularization, Pathologic/metabolism , Respiratory Distress Syndrome/metabolism , SARS-CoV-2/metabolism , Thrombosis/metabolism , COVID-19/pathology , COVID-19/therapy , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/virology , Fibrin Fibrinogen Degradation Products/metabolism , Fibroblast Growth Factor 2/metabolism , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Membrane Proteins/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/therapy , Neovascularization, Pathologic/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , Thrombosis/pathology , Thrombosis/therapy , Thrombosis/virology , Vascular Endothelial Growth Factor A/metabolism , von Willebrand Factor/metabolism
12.
Microvasc Res ; 137: 104188, 2021 09.
Article in English | MEDLINE | ID: covidwho-1237818

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been led to a pandemic emergency. So far, different pathological pathways for SARS-CoV-2 infection have been introduced in which the excess release of pro-inflammatory cytokines (such as interleukin 1 ß [IL-1ß], IL-6, and tumor necrosis factor α [TNFα]) has earned most of the attentions. However, recent studies have identified new pathways with at least the same level of importance as cytokine storm in which endothelial cell (EC) dysfunction is one of them. In COVID-19, two main pathologic phenomena have been seen as a result of EC dysfunction: hyper-coagulation state and pathologic angiogenesis. The EC dysfunction-induced hypercoagulation state seems to be caused by alteration in the levels of different factors such as plasminogen activator inhibitor 1 (PAI-1), von Willebrand factor (vWF) antigen, soluble thrombomodulin, and tissue factor pathway inhibitor (TFPI). As data have shown, these thromboembolic events are associated with severity of disease severity or even death in COVID-19 patients. Other than thromboembolic events, pathologic angiogenesis is among the recent findings. Furthermore, over-expression/higher levels of different proangiogenic factors such as vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1 α (HIF-1α), IL-6, TNF receptor super family 1A and 12, and angiotensin-converting enzyme 2 (ACE2) have been found in the lung biopsies/sera of both survived and non-survived COVID-19 patients. Also, there are some hypotheses regarding the role of nitric oxide in EC dysfunction and acute respiratory distress syndrome (ARDS) in SARS-CoV-2 infection. It has been demonstrated that different pathways involved in inflammation are generally common with EC dysfunction and angiogenesis. Altogether, considering the common possible upstream pathways in cytokine storm, pathologic angiogenesis, and EC dysfunction, it seems that targeting these molecules (such as nuclear factor κB) could be more effective in the management of patients with COVID-19.


Subject(s)
COVID-19/blood , COVID-19/physiopathology , Endothelial Cells/metabolism , Neovascularization, Pathologic , Angiotensin-Converting Enzyme 2/metabolism , Biomarkers/metabolism , Blood Coagulation , Cytokine Release Syndrome , Humans , Inflammation , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lipoproteins/metabolism , Nitric Oxide/metabolism , Plasminogen Activator Inhibitor 1/metabolism , SARS-CoV-2 , Tumor Necrosis Factor-alpha/metabolism , von Willebrand Factor/metabolism
13.
Am J Hematol ; 96(8): 1049-1055, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1227715

ABSTRACT

The metalloproteinase ADAMTS13 (a disintegrin with a thrombospondin type 1 motif, member 13), also known as VWF (von Willebrand factor) protease, may be assessed in a vast array of clinical conditions. Notably, a severe deficiency of ADAMTS13 characterizes TTP (thrombotic thrombocytopenic purpura), a rare but potentially fatal disorder associated with thrombosis due to accumulation of prothrombotic ultra-large VWF multimers. Although prompt identification/exclusion of TTP can be facilitated by rapid ADAMTS13 testing, the most commonly utilized assays are based on ELISA (enzyme linked immunosorbent assay) and require long turnaround time and have relatively limited throughput. Nevertheless, several rapid ADAMTS13 assays are now available, at least in select geographies. The current mini-review discusses these issues, as well as the potential utility of ADAMTS13 testing in a range of other conditions, including coronavirus disease 2019 (COVID-19).


Subject(s)
ADAMTS13 Protein/blood , COVID-19/complications , Purpura, Thrombotic Thrombocytopenic/diagnosis , SARS-CoV-2 , ADAMTS13 Protein/deficiency , ADAMTS13 Protein/immunology , Autoantibodies/blood , Autoantibodies/immunology , COVID-19/blood , Enzyme-Linked Immunosorbent Assay , Female , Fluorescence Resonance Energy Transfer , Humans , Luminescent Measurements , Male , Multicenter Studies as Topic , Pre-Eclampsia/diagnosis , Pre-Eclampsia/enzymology , Predictive Value of Tests , Pregnancy , Purpura, Thrombotic Thrombocytopenic/blood , Purpura, Thrombotic Thrombocytopenic/enzymology , Purpura, Thrombotic Thrombocytopenic/etiology , Recombinant Proteins/metabolism , Sensitivity and Specificity , von Willebrand Diseases/diagnosis , von Willebrand Diseases/enzymology , von Willebrand Factor/metabolism
14.
Angiogenesis ; 24(3): 407-411, 2021 08.
Article in English | MEDLINE | ID: covidwho-1222775

ABSTRACT

BACKGROUND: Microthrombosis is a hallmark of COVID-19. We previously described von willebrand factor (VWF) and their high molecular weight multimers (HMWMs) as potential trigger of microthrombosis. OBJECTIVES: Investigate VWF activity with collagen-binding assay and ADAMTS13 in COVID-19. METHODS AND RESULTS: Our study enrolled 77 hospitalized COVID-19 patients including 37 suffering from a non-critical form and 40 with critical form. Plasma levels of VWF collagen-binding ability (VWF:CB) and ADAMTS13 activity (ADAMTS13:Act) were measured in the first 48 hours following admission. VWF:CB was increased in critical (631% IQR [460-704]) patients compared to non-critical patients (259% [235-330], p < 0.005). VWF:CB was significantly associated (r = 0.564, p < 0.001) with HMWMs. Moreover, median ADAMTS13:Act was lower in critical (64.8 IU/dL IQR 50.0-77.7) than non-critical patients (85.0 IU/dL IQR 75.8-94.7, p < 0.001), even if no patients displayed majors deficits. VWF:Ag-to-ADAMTS13:Act ratio was highly associated with VWF:CB (r = 0.916, p < 0.001). Moreover, VWF:CB level was highly predictive of COVID-19 in-hospital mortality as shown by the ROC curve analysis (AUC = 0.92, p < 0.0001) in which we identified a VWF:CB cut-off of 446% as providing the best predictor sensitivity-specificity balance. We confirmed this cut-off thanks to a Kaplan-Meier estimator analysis (log-rank p < 0.001) and a Cox-proportional Hazard model (HR = 49.1, 95% CI 1.81-1328.2, p = 0.021) adjusted on, BMI, C-reactive protein, and D-dimer levels. CONCLUSION: VWF:CB levels could summarize both VWF increased levels and hyper-reactivity subsequent to ADAMTS13 overflow and, therefore, be a valuable and easy to perform clinical biomarker of microthrombosis and COVID-19 severity.


Subject(s)
ADAMTS13 Protein/blood , COVID-19/blood , COVID-19/mortality , Pandemics , SARS-CoV-2 , von Willebrand Factor/metabolism , Aged , Biomarkers/blood , Collagen/metabolism , Cross-Sectional Studies , Female , Hospital Mortality , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Paris/epidemiology , Proportional Hazards Models , Protein Binding , Severity of Illness Index
15.
Semin Thromb Hemost ; 47(4): 400-418, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1203469

ABSTRACT

von Willebrand factor (VWF) is a large adhesive multimeric protein involved in hemostasis. The larger the size (or number of VWF multimers), the greater the functionality of the protein. A deficiency or defect of VWF can lead to von Willebrand disease (VWD) and cause bleeding. Conversely, an increase in VWF may create an environment that promotes thrombosis. ADAMS-13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13), sometimes called VWF-cleaving protease, is primarily responsible for controlling the size of VWF. The most severe deficiency (<10% of normal levels) of ADAMTS-13 arises in thrombotic thrombocytopenic purpura, a condition characterized by the presence of ultralarge VWF and clinically resulting in enhanced risk of thrombosis. However, ADAMTS-13 deficiency may result from other pathological processes. Of relevance is the recent finding that COVID-19 (coronavirus disease 2019) is associated with both increased levels and activity of VWF as well as generally decreased (or occasionally normal) activity levels of ADAMTS-13. Thus, in COVID-19 there is an alteration in the VWF/ADAMTS-13 axis, most often described by increased VWF/ADAMTS-13 ratio (or reduced ADAMTS-13/VWF ratio). COVID-19 is also associated with high prothrombotic risk. Thus, the imbalance of VWF and ADAMTS-13 in COVID-19 may be providing a milieu that promotes (micro)thrombosis, in a clinical picture resembling a secondary thrombotic microangiopathy in some patients. This review therefore assesses the literature on VWF, ADAMTS-13, and COVID-19. Whenever reported in COVID-19, VWF has always been identified as raised (compared with normal reference ranges or control populations). Reports have included VWF level (i.e., VWF antigen) and in some cases one or more VWF "activity" (e.g., collagen binding; platelet glycoprotein Ib [GPIb] binding, using ristocetin cofactor or more modern versions including VWF:GPIbR [recombinant] and VWF:GPIbM [mutant]). Whenever reported, ADAMTS-13 has been reported as "normal" or reduced; however, it should be recognized that "normal" levels may still identify a relative reduction in individual cases. Some reports also discuss the raised VWF/ADAMTS-13 (or reduced ADAMTS-13/VWF) ratio, but very few provide actual numerical data.


Subject(s)
ADAMTS13 Protein/blood , COVID-19 , SARS-CoV-2/metabolism , Thrombosis , von Willebrand Factor/metabolism , COVID-19/blood , COVID-19/complications , COVID-19/mortality , Humans , Thrombosis/blood , Thrombosis/etiology , Thrombosis/mortality
16.
Crit Care Med ; 49(5): e512-e520, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1185992

ABSTRACT

OBJECTIVES: Prevention and therapy of immunothrombosis remain crucial challenges in the management of coronavirus disease 2019, since the underlying mechanisms are incompletely understood. We hypothesized that endothelial damage may lead to substantially increased concentrations of von Willebrand factor with subsequent relative deficiency of a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13). DESIGN: Prospective controlled cross-over trial. SETTING: Blood samples of patients with confirmed coronavirus disease 2019 and healthy controls were obtained in three German hospitals and analyzed in a German hemostaseologic laboratory. PATIENTS: Seventy-five patients with confirmed coronavirus disease 2019 of mild to critical severity and 30 healthy controls. MEASUREMENTS AND MAIN RESULTS: von Willebrand factor antigen, ADAMTS13, and von Willebrand factor multimer formation were analyzed. von Willebrand factor antigen was 4.1 times higher in COVID-19 patients compared with healthy controls (p < 0.0001), whereas ADAMTS13 activities were not significantly different (p = 0.18). The ADAMTS13/von Willebrand factor antigen ratio was significantly lower in COVID-19 than in the control group (24.4 ± 20.5 vs 82.0 ± 30.7; p < 0.0001). Fourteen patients (18.7%) undercut a critical ratio of 10 as described in thrombotic thrombocytopenic purpura. Gel analysis of multimers resembled a thrombotic thrombocytopenic purpura pattern with loss of the largest multimers in 75% and a smeary triplet pattern in 39% of the patients. The ADAMTS13/von Willebrand factor antigen ratio decreased continuously from mild to critical disease (analysis of variance p = 0.026). Furthermore, it differed significantly between surviving patients and those who died from COVID-19 (p = 0.001) yielding an area under the curve of 0.232 in receiver operating characteristic curve curve analysis. CONCLUSION: COVID-19 is associated with a substantial increase in von Willebrand factor levels, which can exceed the ADAMTS13 processing capacity resulting in the formation of large von Willebrand factor multimers indistinguishable from thrombotic thrombocytopenic purpura. The ADAMTS13/von Willebrand factor antigen ratio is an independent predictor of severity of disease and mortality. These findings provide a rationale to consider plasma exchange as a therapeutic option in COVID-19 and to include von Willebrand factor and ADAMTS13 in the diagnostic workup.


Subject(s)
ADAMTS13 Protein/deficiency , COVID-19/blood , COVID-19/immunology , Purpura, Thrombotic Thrombocytopenic/immunology , SARS-CoV-2/immunology , von Willebrand Factor/metabolism , Aged , Aged, 80 and over , Cross-Over Studies , Female , Germany/epidemiology , Humans , Male , Middle Aged , Plasma Exchange , Prospective Studies , Purpura, Thrombotic Thrombocytopenic/therapy
17.
Clin Appl Thromb Hemost ; 27: 1076029621999099, 2021.
Article in English | MEDLINE | ID: covidwho-1175260

ABSTRACT

Among COVID-19 hospitalized patients, high incidence of alterations in inflammatory and coagulation biomarkers correlates with a poor prognosis. Comorbidities such as chronic degenerative diseases are frequently associated with complications in COVID-19 patients. The aim of this study was to evaluate inflammatory and procoagulant biomarkers in COVID-19 patients from a public hospital in Mexico. Blood was sampled within the first 48 h after admission in 119 confirmed COVID-19 patients that were classified in 3 groups according to oxygen demand, evolution and the severity of the disease as follows: 1) Non severe: nasal cannula or oxygen mask; 2) Severe: high flow nasal cannula and 3) Death: mechanical ventilation eventually leading to fatal outcome. Blood samples from 20 healthy donors were included as a Control Group. Analysis of inflammatory and coagulation biomarkers including D-dimer, interleukin 6, interleukin 8, PAI-1, P-selectin and VWF was performed in plasma. Routine laboratory and clinical biomarkers were also included and compared among groups. Concentrations of D-dimer (14.5 ± 13.8 µg/ml) and PAI-1 (1223 ± 889.6 ng/ml) were significantly elevated in severe COVID-19 patients (P < 0.0001). A significant difference was found in interleukin-6, PAI-1 and P-selectin in non-severe and healthy donors when compared to Severe COVID-19 and deceased patients (P < 0.001). VWF levels were also significantly different between severe patients (153.5 ± 24.3 UI/dl) and non-severe ones (133.9 ± 20.2 UI/dl) (P < 0.0001). WBC and glucose levels were also significantly elevated in patients with Severe COVID-19. Plasma concentrations of all prothrombotic biomarkers were significantly higher in patients with a fatal outcome.


Subject(s)
Biomarkers/blood , COVID-19/blood , Inflammation Mediators/blood , SARS-CoV-2 , Adult , Aged , COVID-19/complications , COVID-19/epidemiology , Case-Control Studies , Female , Fibrin Fibrinogen Degradation Products/metabolism , Hospitalization , Humans , Interleukin-6/blood , Male , Mexico/epidemiology , Middle Aged , P-Selectin/blood , Pandemics , Plasminogen Activator Inhibitor 1/blood , Prognosis , Severity of Illness Index , Thrombosis/blood , Thrombosis/etiology , von Willebrand Factor/metabolism
18.
J Thromb Haemost ; 18(12): 3296-3308, 2020 12.
Article in English | MEDLINE | ID: covidwho-1066732

ABSTRACT

BACKGROUND: It is long established that von Willebrand factor (VWF) is central to hemostasis and thrombosis. Endothelial VWF is stored in cell-specific secretory granules, Weibel-Palade bodies (WPBs), organelles generated in a wide range of lengths (0.5-5.0 µm). WPB size responds to physiological cues and pharmacological treatment, and VWF secretion from shortened WPBs dramatically reduces platelet and plasma VWF adhesion to an endothelial surface. OBJECTIVE: We hypothesized that WPB-shortening represented a novel target for antithrombotic therapy. Our objective was to determine whether compounds exhibiting this activity do exist. METHODS: Using a microscopy approach coupled to automated image analysis, we measured the size of WPB bodies in primary human endothelial cells treated with licensed compounds for 24 hours. RESULTS AND CONCLUSIONS: A novel approach to identification of antithrombotic compounds generated a significant number of candidates with the ability to shorten WPBs. In vitro assays of two selected compounds confirm that they inhibit the pro-hemostatic activity of secreted VWF. This set of compounds acting at a very early stage of the hemostatic process could well prove to be a useful adjunct to current antithrombotic therapeutics. Further, in the current SARS-CoV-2 pandemic, with a considerable fraction of critically ill COVID-19 patients affected by hypercoagulability, these WPB size-reducing drugs might also provide welcome therapeutic leads for frontline clinicians and researchers.


Subject(s)
Fibrinolytic Agents/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Organelle Size/drug effects , Weibel-Palade Bodies/drug effects , Cells, Cultured , Drug Evaluation, Preclinical , Drug Repositioning , Hemostasis/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Weibel-Palade Bodies/metabolism , Weibel-Palade Bodies/pathology , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
20.
Clin Appl Thromb Hemost ; 27: 1076029621992128, 2021.
Article in English | MEDLINE | ID: covidwho-1063147

ABSTRACT

Hyperferritinemia is associated with poor outcomes in critically ill patients with sepsis, hemophagocytic lymphohistiocytosis (HLH), macrophage activation syndromes (MAS) and coronavirus disease 19 (COVID-19). Autopsies of hyperferritinemic patients that succumbed to either sepsis, HLH, MAS or COVID-19 have revealed disseminated microvascular thromboses with von Willebrand factor (VWF)-, platelets-, and/or fibrin-rich microthrombi. It is unknown whether high plasma ferritin concentration actively promotes microvascular thrombosis, or merely serves as a prognostic biomarker in these patients. Here, we show that secretion of VWF from human umbilical vein endothelial cells (HUVEC) is significantly enhanced by 100,000 ng/ml of recombinant ferritin heavy chain protein (FHC). Ferritin fraction that was isolated by size exclusion chromatography from the plasma of critically ill HLH patients promoted VWF secretion from HUVEC, compared to similar fraction from non-critically ill control plasma. Furthermore, recombinant FHC moderately suppressed the activity of VWF cleaving metalloprotease ADAMTS-13. These observations suggest that a state of marked hyperferritinemia could promote thrombosis and organ injury by inducing endothelial VWF secretion and reducing the ADAMTS-13 activity.


Subject(s)
ADAMTS13 Protein/metabolism , COVID-19/blood , COVID-19/complications , Ferritins/metabolism , Hyperferritinemia/blood , Hyperferritinemia/complications , von Willebrand Factor/metabolism , ADAMTS13 Protein/antagonists & inhibitors , COVID-19/immunology , Critical Illness , Ferritins/blood , Human Umbilical Vein Endothelial Cells , Humans , Lymphohistiocytosis, Hemophagocytic/blood , Lymphohistiocytosis, Hemophagocytic/complications , Oxidoreductases/blood , Oxidoreductases/metabolism , Recombinant Proteins/blood , Recombinant Proteins/metabolism , SARS-CoV-2 , Thrombosis/blood , Thrombosis/etiology
SELECTION OF CITATIONS
SEARCH DETAIL