Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Viruses ; 12(5)2020 04 26.
Article in English | MEDLINE | ID: covidwho-1726007

ABSTRACT

In January 2020, Chinese health agencies reported an outbreak of a novel coronavirus-2 (CoV-2) which can lead to severe acute respiratory syndrome (SARS). The virus, which belongs to the coronavirus family (SARS-CoV-2), was named coronavirus disease 2019 (COVID-19) and declared a pandemic by the World Health Organization (WHO). Full-length genome sequences of SARS-CoV-2 showed 79.6% sequence identity to SARS-CoV, with 96% identity to a bat coronavirus at the whole-genome level. COVID-19 has caused over 133,000 deaths and there are over 2 million total confirmed cases as of April 15th, 2020. Current treatment plans are still under investigation due to a lack of understanding of COVID-19. One potential mechanism to slow disease progression is the use of antiviral drugs to either block the entry of the virus or interfere with viral replication and maturation. Currently, antiviral drugs, including chloroquine/hydroxychloroquine, remdesivir, and lopinavir/ritonavir, have shown effective inhibition of SARS-CoV-2 in vitro. Due to the high dose needed and narrow therapeutic window, many patients are experiencing severe side effects with the above drugs. Hence, repurposing these drugs with a proper formulation is needed to improve the safety and efficacy for COVID-19 treatment. Extracellular vesicles (EVs) are a family of natural carriers in the human body. They play a critical role in cell-to-cell communications. EVs can be used as unique drug carriers to deliver protease inhibitors to treat COVID-19. EVs may provide targeted delivery of protease inhibitors, with fewer systemic side effects. More importantly, EVs are eligible for major aseptic processing and can be upscaled for mass production. Currently, the FDA is facilitating applications to treat COVID-19, which provides a very good chance to use EVs to contribute in this combat.


Subject(s)
Coronavirus Infections/drug therapy , Drug Repositioning , Extracellular Vesicles/chemistry , HIV Protease Inhibitors/administration & dosage , Pneumonia, Viral/drug therapy , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Drug Approval , Drug Delivery Systems , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2
2.
J Biomol Struct Dyn ; 40(1): 348-360, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1597295

ABSTRACT

The novel SARS-CoV-2 is the etiological agent causing the Coronavirus disease 2019 (COVID-19), which continues to become an inevitable pandemic outbreak. Over a short span of time, the structures of therapeutic target proteins for SARS-CoV-2 were identified based on the homology modelled structure of similar virus, SARS-CoV that transmitted rapidly in 2003. Since the outset of the disease, the research community has been looking for a potential drug lead. Out of all the known resolved structures related to SARS-CoV-2; 3-chymotrypsin (3 C) like protease (3CLpro) is considered as an attractive anti-viral drug compound on the grounds of its role in viral replication and probable non-interactive competency to bind to any viral host protein. To the best of our knowledge, till date only one compound has been identified and tested in-vitro as a potent inhibitor of 3CLpro protein, addressed as N3 (PubChem Compound CID: 6323191) and is known to bind irreversibly to 3CLpro suppressing its activity. Using computational approach, we intend to identify a probable natural fungal metabolite to interact and inhibit 3CLpro. Here after performing docking and molecular dynamics of various small molecules derived as a secondary metabolite from fungi, we propose Flaviolin as potent inhibitor of 3CLpro of novel Coronavirus SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Fungi , Humans , Molecular Docking Simulation , Naphthoquinones , Protease Inhibitors , SARS-CoV-2
3.
mBio ; 12(2)2021 03 30.
Article in English | MEDLINE | ID: covidwho-1522913

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged virus that causes coronavirus infectious disease 2019 (COVID-19). SARS-CoV-2 spike protein, like SARS-CoV-1, uses the angiotensin converting enzyme 2 (ACE2) as a cellular receptor to initiate infection. Compounds that interfere with the SARS-CoV-2 spike protein receptor binding domain protein (RBD)-ACE2 receptor interaction may function as entry inhibitors. Here, we used a dual strategy of molecular docking and surface plasmon resonance (SPR) screening of compound libraries to identify those that bind to human ACE2 or the SARS-CoV-2 spike protein receptor binding domain (RBD). Molecular modeling screening interrogated 57,641 compounds and focused on the region of ACE2 that is engaged by RBD of the SARS-CoV-2 spike glycoprotein and vice versa. SPR screening used immobilized human ACE2 and SARS-CoV-2 Spike protein to evaluate the binding of these proteins to a library of 3,141 compounds. These combined screens identified compounds from these libraries that bind at KD (equilibrium dissociation constant) <3 µM affinity to their respective targets, 17 for ACE2 and 6 for SARS-CoV-2 RBD. Twelve ACE2 binders and six of the RBD binders compete with the RBD-ACE2 interaction in an SPR-based competition assay. These compounds included registered drugs and dyes used in biomedical applications. A Vero-E6 cell-based SARS-CoV-2 infection assay was used to evaluate infection blockade by candidate entry inhibitors. Three compounds demonstrated dose-dependent antiviral in vitro potency-Evans blue, sodium lifitegrast, and lumacaftor. This study has identified potential drugs for repurposing as SARS-CoV-2 entry inhibitors or as chemical scaffolds for drug development.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, has caused more than 60 million cases worldwide with almost 1.5 million deaths as of November 2020. Repurposing existing drugs is the most rapid path to clinical intervention for emerging diseases. Using an in silico screen of 57,641 compounds and a biophysical screen of 3,141 compounds, we identified 22 compounds that bound to either the angiotensin converting enzyme 2 (ACE2) and/or the SARS-CoV-2 spike protein receptor binding domain (SARS-CoV-2 spike protein RBD). Nine of these drugs were identified by both screening methods. Three of the identified compounds, Evans blue, sodium lifitegrast, and lumacaftor, were found to inhibit viral replication in a Vero-E6 cell-based SARS-CoV-2 infection assay and may have utility as repurposed therapeutics. All 22 identified compounds provide scaffolds for the development of new chemical entities for the treatment of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/drug therapy , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment/drug effects , Virus Replication/drug effects , Aminopyridines/pharmacology , Animals , Benzodioxoles/pharmacology , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drug Repositioning , Evans Blue/pharmacology , Humans , Molecular Docking Simulation , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Protein Binding/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sulfones/pharmacology , Surface Plasmon Resonance , Vero Cells
4.
Biomol NMR Assign ; 15(2): 335-340, 2021 10.
Article in English | MEDLINE | ID: covidwho-1442184

ABSTRACT

The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5'-untranslated region (5'-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.


Subject(s)
5' Untranslated Regions , Nuclear Magnetic Resonance, Biomolecular , SARS-CoV-2/genetics , Inverted Repeat Sequences/genetics
6.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1276013

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in viral infectivity. It is also the major antigen stimulating the host's protective immune response, specifically, the production of neutralizing antibodies. Recently, a new variant of SARS-CoV-2 possessing multiple mutations in the S protein, designated P.1, emerged in Brazil. Here, we characterized a P.1 variant isolated in Japan by using Syrian hamsters, a well-established small animal model for the study of SARS-CoV-2 disease (COVID-19). In hamsters, the variant showed replicative abilities and pathogenicity similar to those of early and contemporary strains (i.e., SARS-CoV-2 bearing aspartic acid [D] or glycine [G] at position 614 of the S protein). Sera and/or plasma from convalescent patients and BNT162b2 messenger RNA vaccinees showed comparable neutralization titers across the P.1 variant, S-614D, and S-614G strains. In contrast, the S-614D and S-614G strains were less well recognized than the P.1 variant by serum from a P.1-infected patient. Prior infection with S-614D or S-614G strains efficiently prevented the replication of the P.1 variant in the lower respiratory tract of hamsters upon reinfection. In addition, passive transfer of neutralizing antibodies to hamsters infected with the P.1 variant or the S-614G strain led to reduced virus replication in the lower respiratory tract. However, the effect was less pronounced against the P.1 variant than the S-614G strain. These findings suggest that the P.1 variant may be somewhat antigenically different from the early and contemporary strains of SARS-CoV-2.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Virus Replication , Animals , Antibodies, Neutralizing , COVID-19/diagnostic imaging , COVID-19/pathology , Cricetinae , Humans , Immunogenicity, Vaccine , Lung/pathology , Mesocricetus , Mice , Spike Glycoprotein, Coronavirus/genetics , X-Ray Microtomography
7.
Acta Virol ; 65(2): 115-126, 2021.
Article in English | MEDLINE | ID: covidwho-1271015

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) devastation on the central nervous system (CNS) is ascertained by the present clinical findings and the noticeable signs and symptoms. The CNS involvement of the virus is not trivial; although the brain has highly protective systems, the virus has ways to breach them with a destructive potential. For successful entry of the virus, different possible routes with favorable mechanisms are used. The SARS-CoV-2 invasion induces a mechanism of both the innate and adaptive immune response to control virus replication and removal from the CNS tissues. The cytokine storm and autoimmune response during the immunological events result in demyelination, damage of resident cells and neurons, cerebrovascular thrombosis, and dysregulation of neuro signaling pathways. Furthermore, hypoxia and toxemia accelerate the neurological destruction process. The acute attributions on psychology due to inflammation is a hallmark of CNS involved pathogenesis; nevertheless, the productivity, durability, and longevity of virus-specific lymphocytes are the vital indicators for complete removal of viral antigen and in combat against reinfection of the CNS. Keywords: CNS invasion; immune response; cytokine storm; demyelination; mental status.


Subject(s)
COVID-19 , SARS-CoV-2 , Brain , Central Nervous System , Humans , Virus Replication
8.
Cell Discov ; 7(1): 44, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1269383

ABSTRACT

The presence of SARS-CoV-2 mutants, including the emerging variant B.1.1.7, has raised great concerns in terms of pathogenesis, transmission, and immune escape. Characterizing SARS-CoV-2 mutations, evolution, and effects on infectivity and pathogenicity is crucial to the design of antibody therapies and surveillance strategies. Here, we analyzed 454,443 SARS-CoV-2 spike genes/proteins and 14,427 whole-genome sequences. We demonstrated that the early variant B.1.1.7 may not have evolved spontaneously in the United Kingdom or within human populations. Our extensive analyses suggested that Canidae, Mustelidae or Felidae, especially the Canidae family (for example, dog) could be a possible host of the direct progenitor of variant B.1.1.7. An alternative hypothesis is that the variant was simply yet to be sampled. Notably, the SARS-CoV-2 whole-genome represents a large number of potential co-mutations. In addition, we used an experimental SARS-CoV-2 reporter replicon system to introduce the dominant co-mutations NSP12_c14408t, 5'UTR_c241t, and NSP3_c3037t into the viral genome, and to monitor the effect of the mutations on viral replication. Our experimental results demonstrated that the co-mutations significantly attenuated the viral replication. The study provides valuable clues for discovering the transmission chains of variant B.1.1.7 and understanding the evolutionary process of SARS-CoV-2.

9.
Mol Cell Biol ; 41(9): e0018521, 2021 08 24.
Article in English | MEDLINE | ID: covidwho-1268135

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic, responsible for millions of deaths globally. Even with effective vaccines, SARS-CoV-2 will likely maintain a hold in the human population through gaps in efficacy, percent vaccinated, and arising new strains. Therefore, understanding how SARS-CoV-2 causes widespread tissue damage and the development of targeted pharmacological treatments will be critical in fighting this virus and preparing for future outbreaks. Herein, we summarize the progress made thus far by using in vitro or in vivo models to investigate individual SARS-CoV-2 proteins and their pathogenic mechanisms. We have grouped the SARS-CoV-2 proteins into three categories: host entry, self-acting, and host interacting. This review focuses on the self-acting and host-interacting SARS-CoV-2 proteins and summarizes current knowledge on how these proteins promote virus replication and disrupt host systems, as well as drugs that target the virus and virus interacting host proteins. Encouragingly, many of these drugs are currently in clinical trials for the treatment of COVID-19. Future coronavirus outbreaks will most likely be caused by new virus strains that evade vaccine protection through mutations in entry proteins. Therefore, study of individual self-acting and host-interacting SARS-CoV-2 proteins for targeted therapeutic interventions is not only essential for fighting COVID-19 but also valuable against future coronavirus outbreaks.


Subject(s)
Antiviral Agents/pharmacology , Host-Pathogen Interactions/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Viral Proteins/metabolism , COVID-19/drug therapy , COVID-19 Vaccines/pharmacology , Drug Development , Humans , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Internalization , Virus Replication/drug effects , Virus Replication/physiology
10.
Pediatr Dev Pathol ; 24(5): 450-454, 2021.
Article in English | MEDLINE | ID: covidwho-1259128

ABSTRACT

An emerging complication of COVID-19 (SARS-CoV-2) infection is reported. A 23-year-old patient presented with high temperature and reduced fetal movements at 25 + 5/40 weeks of gestation. RT-PCR proved maternal COVID-19 infection. Ultrasound examination confirmed intrauterine death. Placenta histology showed necrosis of the villous trophoblast, associated with Chronic Histiocytic Intervillositis (CHI) and Massive Perivillous Fibrin Deposition (MPFD) with up to 90% - of the intervillous spaces being involved. Immunohistochemistry showed CD68 positive histiocytes in the intervillous spaces and the villous trophoblast was positive for the COVID-19 spike protein. RNA scope signal was indicative of the presence of the viral genome and active viral replication in the villous trophoblastic cells, respectively. MPFD is a gradually developing end-stage disease with various etiology, including autoimmune and alloimmune maternal response to antigens expressed at the feto-maternal interface and frequently accompanies chronic alloimmune villitis or histiocytic intervillositis. Covid-19 infection is associated with similar pattern of histological changes of the placenta leading to placental insufficiency and fetal death. This case report supports maternal- fetal vertical transmission of SARS-CoV-2 virus leading to placental insufficiency and fetal demise. MPFD and CHI appear to be the typical placental histology for SARS-CoV-2 virus infection associated fetal demise.


Subject(s)
COVID-19/virology , Chorionic Villi/virology , Fibrin/metabolism , Pregnancy Complications, Infectious/virology , SARS-CoV-2/pathogenicity , Adult , Chorionic Villi/pathology , Female , Fetal Death/etiology , Histiocytes/virology , Humans , Placenta/pathology , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/pathology , RNA, Viral
11.
Science ; 371(6536): 1374-1378, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1255508

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continually poses serious threats to global public health. The main protease (Mpro) of SARS-CoV-2 plays a central role in viral replication. We designed and synthesized 32 new bicycloproline-containing Mpro inhibitors derived from either boceprevir or telaprevir, both of which are approved antivirals. All compounds inhibited SARS-CoV-2 Mpro activity in vitro, with 50% inhibitory concentration values ranging from 7.6 to 748.5 nM. The cocrystal structure of Mpro in complex with MI-23, one of the most potent compounds, revealed its interaction mode. Two compounds (MI-09 and MI-30) showed excellent antiviral activity in cell-based assays. In a transgenic mouse model of SARS-CoV-2 infection, oral or intraperitoneal treatment with MI-09 or MI-30 significantly reduced lung viral loads and lung lesions. Both also displayed good pharmacokinetic properties and safety in rats.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/pathology , COVID-19/virology , Cell Line , Cell Survival/drug effects , Chemokine CXCL10/metabolism , Disease Models, Animal , Drug Design , Humans , Interferon-beta/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Oligopeptides , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , Protease Inhibitors/toxicity , Rats , Rats, Sprague-Dawley , Viral Load/drug effects , Virus Replication
12.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G99-G112, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1234310

ABSTRACT

COVID-19 represents a novel infectious disease induced by SARS-CoV-2. It has to date affected 24,240,000 individuals and killed 2,735,805 people worldwide. The highly infectious virus attacks mainly the lung, causing fever, cough, and fatigue in symptomatic patients, but also pneumonia in severe cases. However, growing evidence highlights SARS-CoV-2-mediated extrarespiratory manifestations, namely, gastrointestinal (GI) and hepatic complications. The detection of 1) the virus in the GI system (duodenum, colon, rectum, anal region, and feces); 2) the high expression of additional candidate coreceptors/auxiliary proteins to facilitate the virus entry; 3) the abundant viral angiotensin-converting enzyme 2 receptor; 4) the substantial expression of host transmembrane serine protease 2, necessary to induce virus-cell fusion; 5) the viral replication in the intestinal epithelial cells; and 6) the primarily GI disorders in the absence of respiratory symptoms lead to increased awareness of the risk of disease transmission via the fecal-oral route. The objectives of this review are to provide a brief update of COVID-19 pathogenesis and prevalence, present a critical overview of its GI and liver complications that affect clinical COVID-19 outcomes, clarify associated mechanisms (notably microbiota-related), define whether gut/liver disorders occur more frequently among critically ill patients with COVID-19, determine the impact of COVID-19 on preexisting gut/liver complications and vice versa, and discuss the available strategies for prevention and treatment to improve prognosis of the patients. The novel SARS-CoV-2 can cause gastrointestinal and hepatobiliary manifestations. Metagenomics studies of virobiota in response to SARS-CoV-2 infection are necessary to highlight the contribution of bacterial microflora to COVID-19 phenotype, which is crucial for developing biomarkers and therapeutics.


Subject(s)
COVID-19/virology , Gastrointestinal Tract/virology , Liver Diseases/virology , SARS-CoV-2 , Humans
13.
Int J Pharm ; 603: 120686, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1220091

ABSTRACT

It is striking that all marketed SARS-CoV-2 vaccines are developed for intramuscular administration designed to produce humoral and cell mediated immune responses, preventing viremia and the COVID-19 syndrome. They have a high degree of efficacy in humans (70-95%) depending on the type of vaccine. However, little protection is provided against viral replication and shedding in the upper airways due to the lack of a local sIgA immune response, indicating a risk of transmission of virus from vaccinated individuals. A range of novel nasal COVID-19 vaccines are in development and preclinical results in non-human primates have shown a promising prevention of replication and shedding of virus due to the induction of mucosal immune response (sIgA) in upper and lower respiratory tracts as well as robust systemic and humoral immune responses. Whether these results will translate to humans remains to be clarified. An IM prime followed by an IN booster vaccination would likely result in a better well-rounded immune response, including prevention (or strong reduction) in viral replication in the upper and lower respiratory tracts.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunity, Humoral , Vaccination
14.
J Biomol Struct Dyn ; : 1-15, 2021 May 05.
Article in English | MEDLINE | ID: covidwho-1216503

ABSTRACT

In March 2020, the World Health Organization (WHO) declared coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a pandemic. Since then, the search for a vaccine or drug for COVID-19 treatment has started worldwide. In this regard, a fast approach is the repurposing of drugs, primarily antiviral drugs. Herein, we performed a virtual screening using 22 antiviral drugs retrieved from the DrugBank repository, azithromycin (antibiotic), ivermectin (antinematode), and seven non-structural proteins (Nsps) of SARS-CoV-2, which are considered important targets for drugs, via molecular docking and molecular dynamics simulations. Drug-receptor binding energy was employed as the main descriptor. Based on the results, paritaprevir was predicted as a promising multi-target drug that favorably bound to all tested Nsps, mainly adipose differentiation-related protein (ADRP) (-36.2 kcal mol-1) and coronavirus main proteinase (Mpro) (-32.2 kcal mol-1). Moreover, the results suggest that simeprevir is a strong inhibitor of Mpro (-37.2 kcal mol-1), which is an interesting finding because Mpro plays an important role in viral replication. In addition to drug-receptor affinity, hot spot residues were characterized to facilitate the design of new drug derivatives with improved biological responses.

15.
Exp Biol Med (Maywood) ; 246(14): 1643-1649, 2021 07.
Article in English | MEDLINE | ID: covidwho-1201841

ABSTRACT

The year 2020 witnessed an unpredictable pandemic situation due to novel coronavirus (COVID-19) outbreaks. This condition can be more severe if the patient has comorbidities. Failure of viable treatment for such viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is due to lack of identification. Thus, modern and productive biotechnology-based tools are being used to manipulate target genes by introducing the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas (CRISPR-associated) system. Moreover, it has now been used as a tool to inhibit viral replication. Hence, it can be hypothesized that the CRISPR/Cas system can be a viable tool to target both the SARS-CoV-2 genome with specific target RNA sequence and host factors to destroy the SARS-CoV-2 community via inhibition of viral replication and infection. Moreover, comorbidities and COVID-19 escalate the rate of mortality globally, and as a result, we have faced this pandemic. CRISPR/Cas-mediated genetic manipulation to knockdown viral sequences may be a preventive strategy against such pandemic caused by SARS-CoV-2. Furthermore, prophylactic antiviral CRISPR in human cells (PAC-MAN) along with CRISPR/Cas13d efficiently degrades the specific RNA sequence to inhibit viral replication. Therefore, we suggest that CRISPR/Cas system with PAC-MAN could be a useful tool to fight against such a global pandemic caused by SARS-CoV-2. This is an alternative preventive approach of management against the pandemic to destroy the target sequence of RNA in SARS-CoV-2 by viral inhibition.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/virology , Gene Transfer Techniques , Host-Pathogen Interactions/physiology , SARS-CoV-2/genetics , Antiviral Agents/administration & dosage , COVID-19/epidemiology , COVID-19/genetics , CRISPR-Cas Systems , Gene Editing/methods , Host-Pathogen Interactions/genetics , Humans , RNA, Guide/administration & dosage , RNA, Guide/pharmacology , SARS-CoV-2/pathogenicity
16.
Curr Opin Virol ; 49: 36-40, 2021 08.
Article in English | MEDLINE | ID: covidwho-1201247

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. The coronavirus 3-chymotrypsin-like protease (3CLpro) controls virus replication and is therefore considered a major target and promising opportunity for rational-based antiviral discovery with direct acting agents. Here we review first-generation SARS-CoV-2 3CLpro inhibitors PF-07304814, GC-376, and CDI-45205 that are being delivered either by injection or inhalation due to their low intrinsic oral bioavailability. In addition, PF-07321332 is now emerging as a promising second-generation clinical candidate for oral delivery. A key challenge to the development of novel 3CLpro inhibitors is the poor understanding of the predictive value of in vitro potency toward clinical efficacy, an issue complicated by the involvement of host proteases in virus entry. Further preclinical and clinical validation will be key to establishing 3CLpro inhibitors as a bona fide class for future SARS-CoV-2 therapeutics for both hospitalized and outpatient populations.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/therapeutic use , Drug Administration Routes , Drug Development , Drug Discovery , Humans , SARS-CoV-2/enzymology
17.
Genome Med ; 13(1): 62, 2021 04 19.
Article in English | MEDLINE | ID: covidwho-1191796

ABSTRACT

BACKGROUND: The genome of SARS-CoV-2 is susceptible to mutations during viral replication due to the errors generated by RNA-dependent RNA polymerases. These mutations enable the SARS-CoV-2 to evolve into new strains. Viral quasispecies emerge from de novo mutations that occur in individual patients. In combination, these sets of viral mutations provide distinct genetic fingerprints that reveal the patterns of transmission and have utility in contact tracing. METHODS: Leveraging thousands of sequenced SARS-CoV-2 genomes, we performed a viral pangenome analysis to identify conserved genomic sequences. We used a rapid and highly efficient computational approach that relies on k-mers, short tracts of sequence, instead of conventional sequence alignment. Using this method, we annotated viral mutation signatures that were associated with specific strains. Based on these highly conserved viral sequences, we developed a rapid and highly scalable targeted sequencing assay to identify mutations, detect quasispecies variants, and identify mutation signatures from patients. These results were compared to the pangenome genetic fingerprints. RESULTS: We built a k-mer index for thousands of SARS-CoV-2 genomes and identified conserved genomics regions and landscape of mutations across thousands of virus genomes. We delineated mutation profiles spanning common genetic fingerprints (the combination of mutations in a viral assembly) and a combination of mutations that appear in only a small number of patients. We developed a targeted sequencing assay by selecting primers from the conserved viral genome regions to flank frequent mutations. Using a cohort of 100 SARS-CoV-2 clinical samples, we identified genetic fingerprints consisting of strain-specific mutations seen across populations and de novo quasispecies mutations localized to individual infections. We compared the mutation profiles of viral samples undergoing analysis with the features of the pangenome. CONCLUSIONS: We conducted an analysis for viral mutation profiles that provide the basis of genetic fingerprints. Our study linked pangenome analysis with targeted deep sequenced SARS-CoV-2 clinical samples. We identified quasispecies mutations occurring within individual patients and determined their general prevalence when compared to over 70,000 other strains. Analysis of these genetic fingerprints may provide a way of conducting molecular contact tracing.


Subject(s)
COVID-19/virology , Genome, Viral , Mutation , SARS-CoV-2/genetics , Base Sequence , Conserved Sequence , DNA Fingerprinting , Humans , RNA, Viral , Sequence Analysis, RNA
18.
Curr Top Med Chem ; 21(6): 442-460, 2021.
Article in English | MEDLINE | ID: covidwho-1183719

ABSTRACT

[Coronaviruses (CoVs) are enveloped positive-stranded RNA viruses with spike (S) protein projections that allow the virus to enter and infect host cells. The S protein is a key virulence factor determining viral pathogenesis, host tropism, and disease pathogenesis. There are currently diverse corona viruses that are known to cause disease in humans. The occurrence of Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), as fatal human CoV diseases, has induced significant interest in the medical field. The novel coronavirus disease (COVID-19) is an infectious disease caused by a novel strain of coronavirus (SAR-CoV-2). The SARS-CoV2 outbreak has been evolved in Wuhan, China, in December 2019, and identified as a pandemic in March 2020, resulting in 53.24 M cases and 1.20M deaths worldwide. SARS-CoV-2 main proteinase (MPro), a key protease of CoV-2, mediates viral replication and transcription. SARS-CoV-2 MPro has been emerged as an attractive target for SARS-CoV-2 drug design and development. Diverse scaffolds have been released targeting SARS-CoV-2 MPro. In this review, we culminate the latest published information about SARS-CoV-2 main proteinase (MPro) and reported inhibitors.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Phytochemicals/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/chemistry , Amino Acid Sequence , Antiviral Agents/classification , Antiviral Agents/pharmacology , COVID-19/drug therapy , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Drug Discovery , Gene Expression , High-Throughput Screening Assays , Humans , Molecular Docking Simulation , Phytochemicals/classification , Phytochemicals/pharmacology , Protease Inhibitors/classification , Protease Inhibitors/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Structure-Activity Relationship
19.
J Virol ; 95(9)2021 04 12.
Article in English | MEDLINE | ID: covidwho-1180915

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an α-coronavirus causing severe diarrhea and high mortality rates in suckling piglets and posing significant economic impact. PEDV replication is completed and results in a large amount of RNA in the cytoplasm. Stress granules (SGs) are dynamic cytosolic RNA granules formed under various stress conditions, including viral infections. Several previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. However, the underlying mechanisms are poorly understood. This study aimed to delineate the molecular mechanisms regulating the SG response to PEDV infection. SG formation is induced early during PEDV infection, but as infection proceeds, this ability is lost and SGs disappear at late stages of infection (>18 h postinfection). PEDV infection resulted in the cleavage of Ras-GTPase-activating protein-binding protein 1 (G3BP1) mediated by caspase-8. Using mutational analysis, the PEDV-induced cleavage site within G3BP1 was identified, which differed from the 3C protease cleavage site previously identified. Furthermore, G3BP1 cleavage by caspase-8 at D168 and D169 was confirmed in vitro as well as in vivo The overexpression of cleavage-resistant G3BP1 conferred persistent SG formation and suppression of viral replication. Additionally, the knockdown of endogenous G3BP1 abolished SG formation and potentiated viral replication. Taken together, these data provide new insights into novel strategies in which PEDV limits the host stress response and antiviral responses and indicate that caspase-8-mediated G3BP1 cleavage is important in the failure of host defense against PEDV infection.IMPORTANCE Coronaviruses (CoVs) are drawing extensive attention again since the outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019. CoVs are prone to variation and own the transmission capability by crossing the species barrier resulting in reemergence. How CoVs manipulate the antiviral responses of their hosts needs to be explored. Overall, the study provides new insight into how porcine epidemic diarrhea virus (PEDV) impaired SG assembly by targeting G3BP1 via the host proteinase caspase-8. These findings enhanced the understanding of PEDV infection and might help identify new antiviral targets that could inhibit viral replication and limit the pathogenesis of PEDV.


Subject(s)
Caspase 8/metabolism , Coronavirus Infections/metabolism , Cytoplasmic Granules/metabolism , Porcine epidemic diarrhea virus/physiology , Proteolysis , RNA Recognition Motif Proteins/metabolism , Virus Replication , Animals , Caspase 8/genetics , Chlorocebus aethiops , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Cytoplasmic Granules/genetics , Cytoplasmic Granules/virology , HEK293 Cells , Humans , RNA Recognition Motif Proteins/genetics , Swine , Vero Cells
20.
Biochem Biophys Res Commun ; 557: 273-279, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1174101

ABSTRACT

Recently, the novel coronavirus (SARS-CoV-2), which has spread from China to the world, was declared a global public health emergency, which causes lethal respiratory infections. Acetylation of several proteins plays essential roles in various biological processes, such as viral infections. We reported that the nucleoproteins of influenza virus and Zaire Ebolavirus were acetylated, suggesting that these modifications contributed to the molecular events involved in viral replication. Similar to influenza virus and Ebolavirus, the coronavirus also contains single-stranded RNA, as its viral genome interacts with the nucleocapsid (N) proteins. In this study, we report that SARS-CoV and SARS-CoV-2 N proteins are strongly acetylated by human histone acetyltransferases, P300/CBP-associated factor (PCAF), and general control nonderepressible 5 (GCN5), but not by CREB-binding protein (CBP) in vitro. Liquid chromatography-mass spectrometry analyses identified 2 and 12 acetyl-lysine residues from SARS-CoV and SARS-CoV-2 N proteins, respectively. Particularly in the SARS-CoV-2 N proteins, the acetyl-lysine residues were localized in or close to several functional sites, such as the RNA interaction domains and the M-protein interacting site. These results suggest that acetylation of SARS-CoV-2 N proteins plays crucial roles in their functions.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Histone Acetyltransferases/metabolism , SARS Virus/metabolism , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , CREB-Binding Protein/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Humans , Models, Molecular , Phosphoproteins/chemistry , Phosphoproteins/metabolism , SARS Virus/chemistry , SARS-CoV-2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL