Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int J Pharm ; 603: 120686, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1220091

ABSTRACT

It is striking that all marketed SARS-CoV-2 vaccines are developed for intramuscular administration designed to produce humoral and cell mediated immune responses, preventing viremia and the COVID-19 syndrome. They have a high degree of efficacy in humans (70-95%) depending on the type of vaccine. However, little protection is provided against viral replication and shedding in the upper airways due to the lack of a local sIgA immune response, indicating a risk of transmission of virus from vaccinated individuals. A range of novel nasal COVID-19 vaccines are in development and preclinical results in non-human primates have shown a promising prevention of replication and shedding of virus due to the induction of mucosal immune response (sIgA) in upper and lower respiratory tracts as well as robust systemic and humoral immune responses. Whether these results will translate to humans remains to be clarified. An IM prime followed by an IN booster vaccination would likely result in a better well-rounded immune response, including prevention (or strong reduction) in viral replication in the upper and lower respiratory tracts.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunity, Humoral , Vaccination
2.
Sci Rep ; 11(1): 7163, 2021 03 30.
Article in English | MEDLINE | ID: covidwho-1159799

ABSTRACT

The spread of virus via the blood stream has been suggested to contribute to extra-pulmonary organ failure in Coronavirus disease 2019 (COVID-19). We assessed SARS-CoV-2 RNAemia (RNAemia) and the association between RNAemia and inflammation, organ failure and mortality in critically ill COVID-19 patients. We included all patients with PCR verified COVID-19 and consent admitted to ICU. SARS-CoV-2 RNA copies above 1000/ml measured by PCR in plasma was defined as RNAemia and used as surrogate for viremia. In this cohort of 92 patients 59 (64%) were invasively ventilated. RNAemia was found in 31 patients (34%). Hypertension and corticosteroid treatment was more common in patients with RNAemia. Extra-pulmonary organ failure biomarkers and the extent of organ failure were similar in patients with and without RNAemia, but the former group had more renal replacement therapy and higher mortality (26 vs 16%; 35 vs 16%, respectively, p = 0.04). RNAemia was not an independent predictor of death at 30 days after adjustment for age. SARS-CoV2 RNA copies in plasma is a common finding in ICU patients with COVID-19. Although viremia was not associated with extra pulmonary organ failure it was more common in patients who did not survive to 30 days after ICU admission.Trial registration: ClinicalTrials NCT04316884.


Subject(s)
COVID-19/etiology , COVID-19/mortality , Viremia/etiology , Aged , Biomarkers/blood , COVID-19/therapy , Comorbidity , Critical Illness , Female , Humans , Hypertension/epidemiology , Hypertension/etiology , Interleukin-6/blood , Male , Middle Aged , Multiple Organ Failure/etiology , Multiple Organ Failure/virology , Prospective Studies , RNA, Viral/blood , Renal Replacement Therapy , Respiration, Artificial , Sweden/epidemiology , Viremia/mortality , Viremia/therapy
3.
Front Cell Infect Microbiol ; 10: 586054, 2020.
Article in English | MEDLINE | ID: covidwho-1145559

ABSTRACT

Background: The outbreak of coronavirus disease 2019 (COVID-19) has become a global public health concern. Many inpatients with COVID-19 have shown clinical symptoms related to sepsis, which will aggravate the deterioration of patients' condition. We aim to diagnose Viral Sepsis Caused by SARS-CoV-2 by analyzing laboratory test data of patients with COVID-19 and establish an early predictive model for sepsis risk among patients with COVID-19. Methods: This study retrospectively investigated laboratory test data of 2,453 patients with COVID-19 from electronic health records. Extreme gradient boosting (XGBoost) was employed to build four models with different feature subsets of a total of 69 collected indicators. Meanwhile, the explainable Shapley Additive ePlanation (SHAP) method was adopted to interpret predictive results and to analyze the feature importance of risk factors. Findings: The model for classifying COVID-19 viral sepsis with seven coagulation function indicators achieved the area under the receiver operating characteristic curve (AUC) 0.9213 (95% CI, 89.94-94.31%), sensitivity 97.17% (95% CI, 94.97-98.46%), and specificity 82.05% (95% CI, 77.24-86.06%). The model for identifying COVID-19 coagulation disorders with eight features provided an average of 3.68 (±) 4.60 days in advance for early warning prediction with 0.9298 AUC (95% CI, 86.91-99.04%), 82.22% sensitivity (95% CI, 67.41-91.49%), and 84.00% specificity (95% CI, 63.08-94.75%). Interpretation: We found that an abnormality of the coagulation function was related to the occurrence of sepsis and the other routine laboratory test represented by inflammatory factors had a moderate predictive value on coagulopathy, which indicated that early warning of sepsis in COVID-19 patients could be achieved by our established model to improve the patient's prognosis and to reduce mortality.


Subject(s)
COVID-19/blood , Sepsis/virology , Adult , Aged , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , China/epidemiology , Female , Humans , Logistic Models , Machine Learning , Male , Middle Aged , Prognosis , ROC Curve , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Sepsis/blood , Sepsis/diagnosis
4.
Ann Intensive Care ; 11(1): 44, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1133608

ABSTRACT

BACKGROUND: SARS-CoV-2 caused a pandemic and global threat for human health. Presence of liver injury was commonly reported in patients with coronavirus disease 2019 (COVID-19). However, reports on severe liver dysfunction (SLD) in critically ill with COVID-19 are lacking. We evaluated the occurrence, clinical characteristics and outcome of SLD in critically ill patients with COVID-19. METHODS: Clinical course and laboratory was analyzed from all patients with confirmed COVID-19 admitted to ICU of the university hospital. SLD was defined as: bilirubin ≥ 2 mg/dl or elevation of aminotransferase levels (> 20-fold ULN). RESULTS: 72 critically ill patients were identified, 22 (31%) patients developed SLD. Presenting characteristics including age, gender, comorbidities as well as clinical presentation regarding COVID-19 overlapped substantially in both groups. Patients with SLD had more severe respiratory failure (paO2/FiO2: 82 (58-114) vs. 117 (83-155); p < 0.05). Thus, required more frequently mechanical ventilation (95% vs. 64%; p < 0.01), rescue therapies (ECMO) (27% vs. 12%; p = 0.106), vasopressor (95% vs. 72%; p < 0.05) and renal replacement therapy (86% vs. 30%; p < 0.001). Severity of illness was significantly higher (SAPS II: 48 (39-52) vs. 40 (32-45); p < 0.01). Patients with SLD and without presented viremic during ICU stay in 68% and 34%, respectively (p = 0.002). Occurrence of SLD was independently associated with presence of viremia [OR 6.359; 95% CI 1.336-30.253; p < 0.05] and severity of illness (SAPS II) [OR 1.078; 95% CI 1.004-1.157; p < 0.05]. Mortality was high in patients with SLD compared to other patients (68% vs. 16%, p < 0.001). After adjustment for confounders, SLD was independently associated with mortality [HR3.347; 95% CI 1.401-7.999; p < 0.01]. CONCLUSION: One-third of critically ill patients with COVID-19 suffer from SLD, which is associated with high mortality. Occurrence of viremia and severity of illness seem to contribute to occurrence of SLD and underline the multifactorial cause.

5.
Obes Rev ; 22(4): e13221, 2021 04.
Article in English | MEDLINE | ID: covidwho-1079006

ABSTRACT

Obesity and obesogenic comorbidities have been associated with COVID-19 susceptibility and mortality. However, the mechanism of such correlations requires an in-depth understanding. Overnutrition/excess serum amino acid profile during obesity has been linked with inflammation and reprogramming of translational machinery through hyperactivation of amino acid sensor mammalian target of rapamycin (mTOR), which is exploited by SARS-CoV-2 for its replication. Conversely, we have shown that the activation of general control nonderepressible 2 (GCN2)-dependent amino acid starvation sensing pathway suppresses intestinal inflammation by inhibiting the production of reactive oxygen species (ROS) and interleukin-1 beta (IL-1ß). While activation of GCN2 has shown to mitigate susceptibility to dengue infection, GCN2 deficiency increases viremia and inflammation-associated pathologies. These findings reveal that the amino acid sensing pathway plays a significant role in controlling inflammation and viral infections. The current fact is that obesity/excess amino acids/mTOR activation aggravates COVID-19, and it might be possible that activation of amino acid starvation sensor GCN2 has an opposite effect. This article focuses on the amino acid sensing pathways through which host cells sense the availability of amino acids and reprogram the host translation machinery to mount an effective antiviral response. Besides, how SARS-CoV-2 hijack and exploit amino acid sensing pathway for its replication and pathogenesis is also discussed.


Subject(s)
Amino Acids/metabolism , COVID-19/epidemiology , N-Acetylhexosaminyltransferases/physiology , Obesity/epidemiology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/physiopathology , Comorbidity , Humans , Inflammation , Obesity/physiopathology , Protein Biosynthesis/physiology , SARS-CoV-2/physiology , TOR Serine-Threonine Kinases/physiology , Virus Replication/physiology
6.
Int J Infect Dis ; 103: 624-627, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1065181

ABSTRACT

A 21-year-old woman was hospitalized due to coronavirus disease 2019 (COVID-19)-associated respiratory and hepatic impairment concomitant with severe hemolytic anemia. Upon diagnosis of secondary hemophagocytic lymphohistiocytosis, immunosuppression with anakinra and steroids was started, leading to a hepatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and viremia. Subsequent liver biopsy revealed virus particles in hepatocytes by electron microscopy and SARS-CoV-2 virus could be isolated and cultured. Immunosuppression was stopped and convalescent donor plasma given. In the differential diagnosis, an acute crisis of Wilson's disease was raised by laboratory and genetic testing. This case highlights the complexity of balancing immunosuppression to control hyperinflammation versus systemic SARS-CoV-2 dissemination.


Subject(s)
COVID-19/complications , Hepatolenticular Degeneration/diagnosis , Liver/virology , Lymphohistiocytosis, Hemophagocytic/etiology , SARS-CoV-2 , Diagnosis, Differential , Female , Humans , Lymphohistiocytosis, Hemophagocytic/diagnosis , Young Adult
7.
JAMA Ophthalmol ; 139(4): 383-388, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1039144

ABSTRACT

Importance: Current recommendations are to avoid tissue for corneal transplant from donors with coronavirus disease 2019 (COVID-19) or those who were recently exposed to COVID-19 owing to the lack of knowledge about the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in corneal tissues. Evidence of SARS-CoV-2 in corneal tissue would seem to have clinical relevance for corneal transplant. Objectives: To investigate the presence of viral SARS-CoV-2 RNA in corneal discs of deceased patients with confirmed COVID-19 and assess viral genomic and subgenomic RNA load, possible infectivity, and histologic abnormalities. Design, Setting, and Participants: A case series was conducted of 11 deceased patients with COVID-19 who underwent autopsy between March 20 and May 14, 2020. Eleven corneal discs (1 corneal disc per patient) were harvested for molecular detection of viral genomic and subgenomic RNA, virus isolation, and immunohistochemistry. The SARS-CoV-2 RNA loads were compared with RNA loads in the conjunctival and throat swab samples and aqueous humor, vitreous humor, and blood samples. Main Outcomes and Measures: Evidence of SARS-CoV-2 RNA in human corneas. Results: This study comprised 11 patients (6 women [55%]; mean [SD] age, 68.5 [18.8] years). In 6 of 11 eyes (55%), SARS-CoV-2 genomic RNA was detected in the cornea; subgenomic RNA was present in 4 of these 6 eyes (67%). Infectivity or the presence of viral structural proteins could not be confirmed in any eye. However, patients whose corneal disc was positive for SARS-CoV-2 RNA also had positive results for SARS-CoV-2 RNA in 4 of 6 conjunctival swab samples, 1 of 3 aqueous humor samples, 3 of 5 vitreous humor samples, and 4 of 5 blood samples. Overall, conjunctival swab samples had positive results for SARS-CoV-2 RNA in 5 of 11 cases. Postmortem SARS-CoV-2 viremia was detected in 5 of 9 patients. Conclusions and Relevance: Viral genomic and subgenomic RNA of SARS-CoV-2 was detected in the cornea of patients with COVID-19 viremia. The risk of COVID-19 infection via corneal transplant is low even in donors with SARS-CoV-2 viremia, but further research is necessary to assess the rate of SARS-CoV-2 transmission via corneal transplant.


Subject(s)
COVID-19/virology , Cornea/virology , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Viremia/virology , Adult , Aged , Aged, 80 and over , Animals , Chlorocebus aethiops , Corneal Transplantation , Female , Humans , Immunohistochemistry , Male , Middle Aged , SARS-CoV-2/genetics , Vero Cells , Viral Load
8.
Cureus ; 12(11): e11563, 2020 Nov 19.
Article in English | MEDLINE | ID: covidwho-953277

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disorder of uncontrolled immune activation which is usually divided into two main types. Primary, which is associated with genetic mutation and familial predisposition and secondary, which is usually associated with infections, malignancies and autoimmune conditions. More often multiple risk factors are present at the time of initial presentation. We report a case where HLH was the presenting manifestation of relapsed Classic Hodgkin's Lymphoma in the presence of multiple risk factors of secondary HLH such as human immunodeficiency virus (HIV), active genital herpes, Epstein-Barr virus (EBV) viremia, Mycobacterium avium complex (MAC) infection and prior chemotherapy. A 38-year-old male to female transgender woman presented with one-week history of fever, nausea, vomiting and generalized weakness. The past medical history was significant for HIV and previously treated and positron emission tomography (PET) scan confirmed complete remission of Classic Hodgkin's Lymphoma. Physical examination showed BP 92/40 mmHg, fever of 102.6 F, heart rate of 114 beats per minutes, diffuse abdominal tenderness and male genitalia with multiple small ulcerative lesions. Labs showed pancytopenia, hyponatremia, mildly elevated total and direct bilirubin, transaminitis, CD-4 count 96/mcL, HIV viral load undetectable and COVID-19 polymerase chain reaction (PCR) negative. Imaging showed right middle lung lobe consolidation and hepatosplenomegaly with multiple hypodense lesions. Lymphadenopathy was reported in mediastinum and retroperitoneum. The patient was initially treated with broad spectrum antibiotics, IV fluids, vasopressors and stress dose steroids. After initial improvement, vasopressors and steroids were stopped. The patient again started spiking fever on day 9 despite being on antibiotics. Workup showed EBV viremia, genital herpes and evidence of MAC infection on sputum culture. No improvement noted despite appropriate treatment for genital herpes and MAC. Additional lab work showed hyperferritinemia and elevated soluble Interleukin-2 receptors. The patient was diagnosed with HLH as per HLH-2004 criteria and treated with dexamethasone and etoposide. Bone marrow biopsy confirmed hemophagocytosis and immunoperoxidase staining established the diagnosis of relapsed Classic Hodgkin's Lymphoma. We can conclude that in patients with a history of hematological malignancy presenting with HLH, a high degree of suspicion for relapse should be maintained even in the presence of other risk factors.

9.
Crit Care Med ; 49(2): e170-e178, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-930107

ABSTRACT

OBJECTIVES: Complex critical syndromes like sepsis and coronavirus disease 2019 may be composed of underling "endotypes," which may respond differently to treatment. The aim of this study was to test whether a previously defined bacterial sepsis endotypes classifier recapitulates the same clinical and immunological endotypes in coronavirus disease 2019. DESIGN: Prospective single-center observational cohort study. SETTING: Patients were enrolled in Athens, Greece, and blood was shipped to Inflammatix (Burlingame, CA) for analysis. PATIENTS: Adult patients within 24 hours of hospital admission with coronavirus disease 2019 confirmed by polymerase chain reaction and chest radiography. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We studied 97 patients with coronavirus disease 2019, of which 50 went on to severe respiratory failure (SRF) and 16 died. We applied a previously defined 33-messenger RNA classifier to assign endotype (Inflammopathic, Adaptive, or Coagulopathic) to each patient. We tested endotype status against other clinical parameters including laboratory values, severity scores, and outcomes. Patients were assigned as Inflammopathic (29%), Adaptive (44%), or Coagulopathic (27%), similar to our prior study in bacterial sepsis. Adaptive patients had lower rates of SRF and no deaths. Coagulopathic and Inflammopathic endotypes had 42% and 18% mortality rates, respectively. The Coagulopathic group showed highest d-dimers, and the Inflammopathic group showed highest C-reactive protein and interleukin-6 levels. CONCLUSIONS: Our predefined 33-messenger RNA endotypes classifier recapitulated immune phenotypes in viral sepsis (coronavirus disease 2019) despite its prior training and validation only in bacterial sepsis. Further work should focus on continued validation of the endotypes and their interaction with immunomodulatory therapy.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Sepsis/classification , Sepsis/genetics , Adult , COVID-19/complications , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Respiratory Insufficiency , Severity of Illness Index
10.
Am J Med ; 134(4): 542-546, 2021 04.
Article in English | MEDLINE | ID: covidwho-917201

ABSTRACT

BACKGROUND: Patients with coronavirus disease 2019 (COVID-19) have a high prevalence of detectable troponin and myocardial injury. In addition, a subset of patients with COVID-19 has detectable severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral loads. The objective of this study was to understand the relationship among SARS-CoV-2 viremia, detectable troponin, and myocardial injury in hospitalized patients with COVID-19. METHODS: SARS-CoV-2 plasma viral load was measured in plasma samples drawn from patients hospitalized for COVID-19 at 2 academic medical centers. Baseline characteristics and clinically obtained high-sensitivity cardiac troponin T (hs-cTnT) values were abstracted from the medical record. The main outcome was detectable hs-cTnT (≥6 ng/mL) and  myocardial injury (hs-cTnT ≥14 ng/mL; >99th percentile for assay). RESULTS: A total of 70 hospitalized patients with COVID-19 were included in this study, with 39% females and median age 58 ± 17 years; 21 patients (30%) were found to have detectable SARS-CoV-2 viral load and were classified in the viremia group. Patients with viremia were significantly older than those without viremia. All of the patients with viremia (100%) had detectable troponin during hospitalization compared with 59% of patients without viremia (P = 0.0003). Myocardial injury was seen in 76% of patients with viremia and 38% of those patients without viremia (P = 0.004). CONCLUSIONS: Hospitalized patients with COVID-19 with SARS-CoV-2 viremia have a significantly higher prevalence of detectable troponin and myocardial injury during their hospitalization compared with patients who did not. This first report of the relationship among SARS-CoV-2 viremia, detectable troponin, and myocardial injury in patients with COVID-19 points to additional mechanistic pathways that require deeper study to understand the complex interplay among these unique findings, cardiovascular outcomes, and mortality in COVID-19.


Subject(s)
COVID-19 , Heart Diseases , Myocardium/metabolism , SARS-CoV-2/isolation & purification , Troponin/blood , Viremia , Age Factors , COVID-19/blood , COVID-19/epidemiology , COVID-19/physiopathology , Cohort Studies , Female , Heart Diseases/blood , Heart Diseases/epidemiology , Heart Diseases/virology , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Prevalence , United States/epidemiology , Viral Load/methods , Viremia/diagnosis , Viremia/epidemiology , Viremia/etiology
11.
Nat Commun ; 11(1): 5493, 2020 10 30.
Article in English | MEDLINE | ID: covidwho-894389

ABSTRACT

The relationship between SARS-CoV-2 viral load and risk of disease progression remains largely undefined in coronavirus disease 2019 (COVID-19). Here, we quantify SARS-CoV-2 viral load from participants with a diverse range of COVID-19 disease severity, including those requiring hospitalization, outpatients with mild disease, and individuals with resolved infection. We detected SARS-CoV-2 plasma RNA in 27% of hospitalized participants, and 13% of outpatients diagnosed with COVID-19. Amongst the participants hospitalized with COVID-19, we report that a higher prevalence of detectable SARS-CoV-2 plasma viral load is associated with worse respiratory disease severity, lower absolute lymphocyte counts, and increased markers of inflammation, including C-reactive protein and IL-6. SARS-CoV-2 viral loads, especially plasma viremia, are associated with increased risk of mortality. Our data show that SARS-CoV-2 viral loads may aid in the risk stratification of patients with COVID-19, and therefore its role in disease pathogenesis should be further explored.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Pneumonia, Viral/virology , Adult , Aged , Antibodies, Viral/blood , Betacoronavirus/genetics , Betacoronavirus/growth & development , Biomarkers/blood , C-Reactive Protein , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Female , Hospitalization , Humans , Inflammation/blood , Inflammation/virology , Interleukin-6/blood , Longitudinal Studies , Massachusetts/epidemiology , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , RNA, Viral/blood , SARS-CoV-2 , Severity of Illness Index , Viral Load , Viremia/blood , Viremia/virology
12.
Front Cell Dev Biol ; 8: 783, 2020.
Article in English | MEDLINE | ID: covidwho-769193

ABSTRACT

Infection by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) results in the novel coronavirus disease COVID-19, which has posed a serious threat globally. Infection of SARS-CoV-2 during pregnancy is associated with complications such as preterm labor and premature rupture of membranes, and a proportion of neonates born to infected mothers are also positive for the virus. During pregnancy, the placental barrier protects the fetus from pathogens and ensures healthy development. To predict if the placenta is permissive to SARS-CoV-2, we utilized publicly available single-cell RNA-seq data to identify if the placental cells express the necessary factors required for infection. SARS-CoV-2 binding receptor ACE2 and the S protein priming protease TMPRSS2 are co-expressed by a subset of syncytiotrophoblasts (STB) in the first trimester and extravillous trophoblasts (EVT) in the second trimester human placenta. In addition, the non-canonical receptor BSG/CD147 and other proteases (CTSL, CTSB, and FURIN) are detected in most of the placental cells. Other coronavirus family receptors (ANPEP and DPP4) were also expressed in the first and second trimester placental cells. Additionally, the term placenta of multiple species including humans expressed ACE2, DPP4, and ANPEP along with the viral S protein proteases. The ACE2- and TMPRSS2-positive (ACE2 + TMPRSS2 +) placental subsets expressed mRNA for proteins involved in viral budding and replication. These cells also had the mRNA for proteins that physically interact with SARS-CoV-2 in host cells. Further, we discovered unique signatures of genes in ACE2 + TMPRSS2 + STBs and EVTs. The ACE2 + TMPRSS2 + STBs are highly differentiated cells and express genes involving mitochondrial metabolism and glucose transport. The second trimester ACE2 + TMPRSS2 + EVTs are enriched for markers of endovascular trophoblasts. Both these subtypes abundantly expressed genes in the Toll-like receptor pathway. The second trimester EVTs are also enriched for components of the JAK-STAT pathway that drives inflammation. We carried out a systematic review and identified that in 12% of pregnant women with COVID-19, the placenta was infected with SARS-CoV-2, and the virus was detected in STBs. To conclude, herein we have uncovered the cellular targets for SARS-CoV-2 entry and have shown that these cells can potentially drive viremia in the developing human placenta. Our results provide a basic framework toward understanding the paraphernalia involved in SARS-CoV-2 infections in pregnancy.

13.
Braz J Infect Dis ; 24(6): 565-569, 2020.
Article in English | MEDLINE | ID: covidwho-758628

ABSTRACT

COVID-19 has raised worldwide concern as spiraling into a pandemic. Reports about comprehensive investigation of COVID-19 viremia are extremely scanty. Herein, we present four COVID-19 patients with positive SARS-CoV-2 nucleic acid test in blood, accounting for 12.12% of 33 detected cases. Rapid deterioration of these cases with septic shock, accompanying with lung CT images enlarged rapidly, decrease of blood oxygen, heart rate drop (with asynchrony of hypoxemia) accompanied with SARS-CoV-2 viremia. It indicates that massive replication and releasing into blood of SARS-CoV-2 and secondary inflammation storm may lead to injury of multiple organs and poor prognosis. So, positive COVID-19 nucleic acid test in blood may be a good forecasting marker of rapid deterioration of COVID-19 pneumonia. In addition, clearance of viremia may indicate tendency for recovery.


Subject(s)
Betacoronavirus , COVID-19 , Coronavirus Infections , Pneumonia, Viral , Coronavirus Infections/epidemiology , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Viremia
14.
Med Drug Discov ; 8: 100057, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-670913

ABSTRACT

BACKGROUND: Until June 23th 2020, 9,195,635 laboratory-confirmed cases of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection have been reported worldwide, including 473,127 deaths. Bacterial infection is the main cause of sepsis, however, sepsis caused by virus is often ignored. Increased awareness, early recognition of viral sepsis, rapid administration of appropriate antiviral drugs, and urgent treatment can significantly reduce deaths of viral sepsis. OBJECTIVES: Given the rapid global spread of novel Corona Virus Disease (COVID-19), coupled with the high rate of missed diagnosis of viral sepsis caused by SARS-CoV-2 infection, it is urgent to evaluate the multiple organ failure score and viral sepsis in COVID-19 patients, so as to determine the clinical characteristics of viral sepsis more accurately and reveal the risk factors related to mortality. METHODS: Here we provide a full description of three cases of viral sepsis and subsequent multiple organ dysfunction (MODS) caused by SARS-CoV-2 infection imported to Guiyang from Wuhan. RESULTS: We analyzed complete laboratory examination, imaging data and treatment methods for the patients and assessed Sepsis-related Organ Failure Assessment score (SOFA score) and Multiple organ dysfunction scores (MOD score) daily, aimed to elucidate the clinical feature of viral sepsis and MODS and to attract enough attention by clinicians. CONCLUSIONS: Therefore, we strongly suggest to daily evaluate SOFA score and MOD score in severe and critically-ill COVID-19 patients, so as to early diagnose and prevention of sepsis and MODS.Given the rapid global spread of novel Corona Virus Disease (COVID-19), coupled with the high rate of missed diagnosis of viral sepsis caused by SARS-CoV-2 infection, it is urgent to evaluate the multiple organ failure score and viral sepsis in COVID-19 patients, so as to determine the clinical characteristics of viral sepsis more accurately and reveal the risk factors related to mortality. Here we provide a full description of three cases of viral sepsis and subsequent multiple organ dysfunction (MODS) caused by SARS-CoV-2 infection imported to Guiyang from Wuhan. We analyzed complete laboratory examination, imaging data and treatment methods for the patients and assessed Sepsis-related Organ Failure Assessment score (SOFA score) and Multiple organ dysfunction scores (MOD score) daily, aimed to elucidate the clinical feature of viral sepsis and MODS and to attract enough attention by clinicians. Therefore, we strongly suggest to daily evaluate SOFA score and MOD score in severe and critically-ill COVID-19 patients, so as to early diagnose and prevention of sepsis and MODS.

SELECTION OF CITATIONS
SEARCH DETAIL