Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 290
Filter
1.
J Med Virol ; 93(9): 5487-5504, 2021 09.
Article in English | MEDLINE | ID: covidwho-1733919

ABSTRACT

Along with the control and prevention of coronavirus disease 2019 transmission, infected animals might have potential to carry the virus to spark new outbreaks. However, very few studies explore the susceptibility of animals to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Viral attachment as a crucial step for cross-species infection requires angiotensin-converting enzyme 2 (ACE2) as a receptor and depends on TMPRSS2 protease activity. Here, we searched the genomes of metazoans from different classes using an extensive BLASTP survey and found ACE2 and TMPRSS2 occur in vertebrates, but some vertebrates lack Tmprss2. We identified 6 amino acids among 25 known human ACE2 residues are highly associated with the binding of ACE2 to SARS-CoV-2 (p value < .01) by Fisher exact test, and following this, calculated the probability of viral attachment within each species by the randomForest function from R randomForest library. Furthermore, we observed that Ace2 selected from seven animals based on the above analysis lack the hydrophobic contacts identified on human ACE2, indicating less affinity of SARS-CoV-2 to Ace2 in animals than humans. Finally, the alignment of 3D structure between human ACE2 and other animals by I-TASSER and TM-align displayed a reasonable structure for viral attachment within these species. Taken together, our data may shed light on the human-to-animal transmission of SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Vertebrates/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , COVID-19/metabolism , Disease Susceptibility , Genetic Predisposition to Disease , Humans , Receptors, Virus/metabolism , SARS-CoV-2/classification , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vertebrates/genetics , Virus Attachment , Virus Internalization , Virus Release
2.
Biophys J ; 120(14): 2828-2837, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1606137

ABSTRACT

The cell surface receptor Neuropilin-1 (Nrp1) was recently identified as a host factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. The Spike protein of SARS-CoV-2 is cleaved into two segments, the S1 (residues (res.) 1-685) and the S2 (res. 686-1273) domains by furin protease. Nrp1 predominantly binds to the C-terminal RRAR amino acid motif (res. 682-685) of the S1 domain. In this study, we firstly modeled the association of an Nrp1 protein (consisting of domains a2-b1-b2) with the Spike protein. Next, we studied the separation of S2 from the S1 domain, with and without Nrp1 bound, by utilizing molecular dynamics pulling simulations. During the separation, Nrp1 stabilizes the S1 C-terminal region (res. 640-685) and thereby assists the detachment of S2 N-terminal region (res. 686-700). Without Nrp1 bound, S1 tends to become stretched, whereas the bound Nrp1 stimulates an earlier separation of S2 from the S1 domain. The liberated S2 domain is known to mediate the fusion of virus and host membranes; thus, Nrp1 likely increases virus infectivity by facilitating the S1 and S2 separation. We further analyzed the possible topological structure of the SARS-CoV-2 Spike protein when bound with Nrp1 and angiotensin-converting enzyme 2 (ACE2). Understanding of such an Nrp1-assisted viral infection opens the gate for the generation of protein-protein inhibitors, such as antibodies, which could attenuate the infection mechanism and protect certain cells in a future Nrp1-ACE2 targeted combination therapy.

3.
Mayo Clin Proc ; 95(7): 1354-1368, 2020 07.
Article in English | MEDLINE | ID: covidwho-1500136

ABSTRACT

OBJECTIVE: To explore the transcriptomic differences between patients with hypertrophic cardiomyopathy (HCM) and controls. PATIENTS AND METHODS: RNA was extracted from cardiac tissue flash frozen at therapeutic surgical septal myectomy for 106 patients with HCM and 39 healthy donor hearts. Expression profiling of 37,846 genes was performed using the Illumina Human HT-12v3 Expression BeadChip. All patients with HCM were genotyped for pathogenic variants causing HCM. Technical validation was performed using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. This study was started on January 1, 1999, and final analysis was completed on April 20, 2020. RESULTS: Overall, 22% of the transcriptome (8443 of 37,846 genes) was expressed differentially between HCM and control tissues. Analysis by genotype revealed that gene expression changes were similar among genotypic subgroups of HCM, with only 4% (1502 of 37,846) to 6% (2336 of 37,846) of the transcriptome exhibiting differential expression between genotypic subgroups. The qRT-PCR confirmed differential expression in 92% (11 of 12 genes) of tested transcripts. Notably, in the context of coronavirus disease 2019 (COVID-19), the transcript for angiotensin I converting enzyme 2 (ACE2), a negative regulator of the angiotensin system, was the single most up-regulated gene in HCM (fold-change, 3.53; q-value =1.30×10-23), which was confirmed by qRT-PCR in triplicate (fold change, 3.78; P=5.22×10-4), and Western blot confirmed greater than 5-fold overexpression of ACE2 protein (fold change, 5.34; P=1.66×10-6). CONCLUSION: More than 20% of the transcriptome is expressed differentially between HCM and control tissues. Importantly, ACE2 was the most up-regulated gene in HCM, indicating perhaps the heart's compensatory effort to mount an antihypertrophic, antifibrotic response. However, given that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 for viral entry, this 5-fold increase in ACE2 protein may confer increased risk for COVID-19 manifestations and outcomes in patients with increased ACE2 transcript expression and protein levels in the heart.


Subject(s)
Betacoronavirus , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/virology , Coronavirus Infections/complications , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/complications , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2 , COVID-19 , Cardiomyopathy, Hypertrophic/metabolism , Case-Control Studies , Child , Genotype , Humans , Middle Aged , Myocardium/metabolism , Pandemics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Young Adult
4.
J Nucl Med ; 62(11): 1631-1637, 2021 11.
Article in English | MEDLINE | ID: covidwho-1496930

ABSTRACT

In this study, we developed angiotensin-converting enzyme 2 (ACE2)-specific, peptide-derived 68Ga-labeled radiotracers, motivated by the hypotheses that ACE2 is an important determinant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility and that modulation of ACE2 in coronavirus disease 2019 (COVID-19) drives severe organ injury. Methods: A series of NOTA-conjugated peptides derived from the known ACE2 inhibitor DX600 were synthesized, with variable linker identity. Since DX600 bears 2 cystine residues, both linear and cyclic peptides were studied. An ACE2 inhibition assay was used to identify lead compounds, which were labeled with 68Ga to generate peptide radiotracers (68Ga-NOTA-PEP). The aminocaproate-derived radiotracer 68Ga-NOTA-PEP4 was subsequently studied in a humanized ACE2 (hACE2) transgenic model. Results: Cyclic DX-600-derived peptides had markedly lower half-maximal inhibitory concentrations than their linear counterparts. The 3 cyclic peptides with triglycine, aminocaproate, and polyethylene glycol linkers had calculated half-maximal inhibitory concentrations similar to or lower than the parent DX600 molecule. Peptides were readily labeled with 68Ga, and the biodistribution of 68Ga-NOTA-PEP4 was determined in an hACE2 transgenic murine cohort. Pharmacologic concentrations of coadministered NOTA-PEP (blocking) showed a significant reduction of 68Ga-NOTA-PEP4 signals in the heart, liver, lungs, and small intestine. Ex vivo hACE2 activity in these organs was confirmed as a correlate to in vivo results. Conclusion: NOTA-conjugated cyclic peptides derived from the known ACE2 inhibitor DX600 retain their activity when N-conjugated for 68Ga chelation. In vivo studies in a transgenic hACE2 murine model using the lead tracer, 68Ga-NOTA-PEP4, showed specific binding in the heart, liver, lungs and intestine-organs known to be affected in SARS-CoV-2 infection. These results suggest that 68Ga-NOTA-PEP4 could be used to detect organ-specific suppression of ACE2 in SARS-CoV-2-infected murine models and COVID-19 patients.


Subject(s)
Angiotensin-Converting Enzyme 2 , Gallium Radioisotopes/chemistry , Peptides, Cyclic , Animals , Male , Mice , Positron-Emission Tomography , Tissue Distribution
5.
J Virol ; 95(16): e0061721, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1486509

ABSTRACT

The current pandemic of COVID-19 is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 spike protein receptor-binding domain (RBD) is the critical determinant of viral tropism and infectivity. To investigate whether naturally occurring RBD mutations during the early transmission phase have altered the receptor binding affinity and infectivity, we first analyzed in silico the binding dynamics between SARS-CoV-2 RBD mutants and the human angiotensin-converting enzyme 2 (ACE2) receptor. Among 32,123 genomes of SARS-CoV-2 isolates (December 2019 through March 2020), 302 nonsynonymous RBD mutants were identified and clustered into 96 mutant types. The six dominant mutations were analyzed applying molecular dynamics simulations (MDS). The mutant type V367F continuously circulating worldwide displayed higher binding affinity to human ACE2 due to the enhanced structural stabilization of the RBD beta-sheet scaffold. The MDS also indicated that it would be difficult for bat SARS-like CoV to infect humans. However, the pangolin CoV is potentially infectious to humans. The increased infectivity of V367 mutants was further validated by performing receptor-ligand binding enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance, and pseudotyped virus assays. Phylogenetic analysis of the genomes of V367F mutants showed that during the early transmission phase, most V367F mutants clustered more closely with the SARS-CoV-2 prototype strain than the dual-mutation variants (V367F+D614G), which may derivate from recombination. The analysis of critical RBD mutations provides further insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin under negative selection pressure and supports the continuing surveillance of spike mutations to aid in the development of new COVID-19 drugs and vaccines. IMPORTANCE A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the pandemic of COVID-19. The origin of SARS-CoV-2 was associated with zoonotic infections. The spike protein receptor-binding domain (RBD) is identified as the critical determinant of viral tropism and infectivity. Thus, whether mutations in the RBD of the circulating SARS-CoV-2 isolates have altered the receptor binding affinity and made them more infectious has been the research hot spot. Given that SARS-CoV-2 is a novel coronavirus, the significance of our research is in identifying and validating the RBD mutant types emerging during the early transmission phase and increasing human angiotensin-converting enzyme 2 (ACE2) receptor binding affinity and infectivity. Our study provides insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin. The continuing surveillance of RBD mutations with increased human ACE2 affinity in human or other animals is critical to the development of new COVID-19 drugs and vaccines against these variants during the sustained COVID-19 pandemic.


Subject(s)
Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , COVID-19/transmission , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Gene Expression , Host-Pathogen Interactions/genetics , Humans , Kinetics , Molecular Dynamics Simulation , Phenylalanine/chemistry , Phenylalanine/metabolism , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/classification , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , Valine/chemistry , Valine/metabolism , Virulence , Virus Attachment
6.
J Virol ; 95(13): e0019221, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1486499

ABSTRACT

Understanding factors that affect the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is central to combatting coronavirus disease 2019 (COVID-19). The virus surface spike protein of SARS-CoV-2 mediates viral entry into cells by binding to the ACE2 receptor on epithelial cells and promoting fusion. We found that Epstein-Barr virus (EBV) induces ACE2 expression when it enters the lytic replicative cycle in epithelial cells. By using vesicular stomatitis virus (VSV) particles pseudotyped with the SARS-CoV-2 spike protein, we showed that lytic EBV replication enhances ACE2-dependent SARS-CoV-2 pseudovirus entry. We found that the ACE2 promoter contains response elements for Zta, an EBV transcriptional activator that is essential for EBV entry into the lytic cycle of replication. Zta preferentially acts on methylated promoters, allowing it to reactivate epigenetically silenced EBV promoters from latency. By using promoter assays, we showed that Zta directly activates methylated ACE2 promoters. Infection of normal oral keratinocytes with EBV leads to lytic replication in some of the infected cells, induces ACE2 expression, and enhances SARS-CoV-2 pseudovirus entry. These data suggest that subclinical EBV replication and lytic gene expression in epithelial cells, which is ubiquitous in the human population, may enhance the efficiency and extent of SARS-CoV-2 infection of epithelial cells by transcriptionally activating ACE2 and increasing its cell surface expression. IMPORTANCE SARS-CoV-2, the coronavirus responsible for COVID-19, has caused a pandemic leading to millions of infections and deaths worldwide. Identifying the factors governing susceptibility to SARS-CoV-2 is important in order to develop strategies to prevent SARS-CoV-2 infection. We show that Epstein-Barr virus, which infects and persists in >90% of adult humans, increases susceptibility of epithelial cells to infection by SARS-CoV-2. EBV, when it reactivates from latency or infects epithelial cells, increases expression of ACE2, the cellular receptor for SARS-CoV-2, enhancing infection by SARS-CoV-2. Inhibiting EBV replication with antivirals may therefore decrease susceptibility to SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Epithelial Cells/virology , Herpesvirus 4, Human/physiology , SARS-CoV-2/physiology , Virus Internalization , Virus Replication , Angiotensin-Converting Enzyme 2/metabolism , Cell Line , DNA Methylation , Epithelial Cells/metabolism , Gene Expression Regulation , Humans , Promoter Regions, Genetic , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Trans-Activators/metabolism , Virus Activation
8.
Angew Chem Int Ed Engl ; 60(13): 7098-7110, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1384107

ABSTRACT

We investigate binding of linoleate and other potential ligands to the recently discovered fatty acid binding site in the SARS-CoV-2 spike protein, using docking and molecular dynamics simulations. Simulations suggest that linoleate and dexamethasone stabilize the locked spike conformation, thus reducing the opportunity for ACE2 interaction. In contrast, cholesterol may expose the receptor-binding domain by destabilizing the closed structure, preferentially binding to a different site in the hinge region of the open structure. We docked a library of FDA-approved drugs to the fatty acid site using an approach that reproduces the structure of the linoleate complex. Docking identifies steroids (including dexamethasone and vitamin D); retinoids (some known to be active in vitro, and vitamin A); and vitamin K as potential ligands that may stabilize the closed conformation. The SARS-CoV-2 spike fatty acid site may bind a diverse array of ligands, including dietary components, and therefore provides a promising target for therapeutics or prophylaxis.


Subject(s)
Molecular Dynamics Simulation , Retinoids/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Steroids/metabolism , Vitamins/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Fatty Acids/chemistry , Fatty Acids/metabolism , Humans , Ligands , Molecular Docking Simulation , Protein Structure, Quaternary , Retinoids/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Steroids/chemistry , Vitamins/chemistry
9.
Front Med (Lausanne) ; 8: 672629, 2021.
Article in English | MEDLINE | ID: covidwho-1389198

ABSTRACT

SARS-CoV-2 infection across the world has led to immense turbulence in the treatment modality, thus demanding a swift drug discovery process. Spike protein of SARS-CoV-2 binds to ACE2 receptor of human to initiate host invasion. Plethora of studies demonstrate the inhibition of Spike-ACE2 interactions to impair infection. The ancient Indian traditional medicine has been of great interest of Virologists worldwide to decipher potential antivirals. Hence, in this study, phytochemicals (1,952 compounds) from eight potential medicinal plants used in Indian traditional medicine were meticulously collated, based on their usage in respiratory disorders, along with immunomodulatory and anti-viral potential from contemporary literature. Further, these compounds were virtually screened against Receptor Binding Domain (RBD) of Spike protein. The potential compounds from each plant were prioritized based on the binding affinity, key hotspot interactions at ACE2 binding region and glycosylation sites. Finally, the potential hits in complex with spike protein were subjected to Molecular Dynamics simulation (450 ns), to infer the stability of complex formation. Among the compounds screened, Tellimagrandin-II (binding energy of -8.2 kcal/mol and binding free energy of -32.08 kcal/mol) from Syzygium aromaticum L. and O-Demethyl-demethoxy-curcumin (binding energy of -8.0 kcal/mol and binding free energy of -12.48 kcal/mol) from Curcuma longa L. were found to be highly potential due to their higher binding affinity and significant binding free energy (MM-PBSA), along with favorable ADMET properties and stable intermolecular interactions with hotspots (including the ASN343 glycosylation site). The proposed hits are highly promising, as these are resultant of stringent in silico checkpoints, traditionally used, and are documented through contemporary literature. Hence, could serve as promising leads for subsequent experimental validations.

10.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1388433

ABSTRACT

The recent outbreaks of SARS-CoV-2 pose a global health emergency. The SARS-CoV-2 trimeric spike (S) glycoprotein interacts with the human ACE2 receptor to mediate viral entry into host cells. We report the cryo-EM structures of a tightly closed SARS-CoV-2 S trimer with packed fusion peptide and an ACE2-bound S trimer at 2.7- and 3.8-Å resolution, respectively. Accompanying ACE2 binding to the up receptor-binding domain (RBD), the associated ACE2-RBD exhibits continuous swing motions. Notably, the SARS-CoV-2 S trimer appears much more sensitive to the ACE2 receptor than the SARS-CoV S trimer regarding receptor-triggered transformation from the closed prefusion state to the fusion-prone open state, potentially contributing to the superior infectivity of SARS-CoV-2. We defined the RBD T470-T478 loop and Y505 as viral determinants for specific recognition of SARS-CoV-2 RBD by ACE2. Our findings depict the mechanism of ACE2-induced S trimer conformational transitions from the ground prefusion state toward the postfusion state, facilitating development of anti-SARS-CoV-2 vaccines and therapeutics.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Animals , Cryoelectron Microscopy , Enzyme-Linked Immunosorbent Assay , Humans , Image Processing, Computer-Assisted , Ligands , Mice , Mice, Inbred BALB C , Mutation , Peptides/chemistry , Polysaccharides , Principal Component Analysis , Protein Binding , Protein Domains
11.
Brief Bioinform ; 22(2): 1006-1022, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1387712

ABSTRACT

Interaction of SARS-CoV-2 spike glycoprotein with the ACE2 cell receptor is very crucial for virus attachment to human cells. Selected mutations in SARS-CoV-2 S-protein are reported to strengthen its binding affinity to mammalian ACE2. The N501T mutation in SARS-CoV-2-CTD furnishes better support to hotspot 353 in comparison with SARS-CoV and shows higher affinity for receptor binding. Recombination analysis exhibited higher recombination events in SARS-CoV-2 strains, irrespective of their geographical origin or hosts. Investigation further supports a common origin among SARS-CoV-2 and its predecessors, SARS-CoV and bat-SARS-like-CoV. The recombination events suggest a constant exchange of genetic material among the co-infecting viruses in possible reservoirs and human hosts before SARS-CoV-2 emerged. Furthermore, a comprehensive analysis of codon usage bias (CUB) in SARS-CoV-2 revealed significant CUB among the S-genes of different beta-coronaviruses governed majorly by natural selection and mutation pressure. Various indices of codon usage of S-genes helped in quantifying its adaptability in other animal hosts. These findings might help in identifying potential experimental animal models for investigating pathogenicity for drugs and vaccine development experiments.


Subject(s)
Biological Evolution , Codon Usage , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Humans , Models, Animal , Mutation , RNA, Transfer/genetics , Spike Glycoprotein, Coronavirus/metabolism
15.
Sci Bull (Beijing) ; 66(9): 925-936, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1386590

ABSTRACT

The SARS-CoV-2 infection is spreading rapidly worldwide. Efficacious antiviral therapeutics against SARS-CoV-2 is urgently needed. Here, we discovered that protoporphyrin IX (PpIX) and verteporfin, two Food and Drug Administration (FDA)-approved drugs, completely inhibited the cytopathic effect produced by SARS-CoV-2 infection at 1.25 µmol/L and 0.31 µmol/L, respectively, and their EC50 values of reduction of viral RNA were at nanomolar concentrations. The selectivity indices of PpIX and verteporfin were 952.74 and 368.93, respectively, suggesting a broad margin of safety. Importantly, PpIX and verteporfin prevented SARS-CoV-2 infection in mice adenovirally transduced with human angiotensin-converting enzyme 2 (ACE2). The compounds, sharing a porphyrin ring structure, were shown to bind viral receptor ACE2 and interfere with the interaction between ACE2 and the receptor-binding domain of viral S protein. Our study suggests that PpIX and verteporfin are potent antiviral agents against SARS-CoV-2 infection and sheds new light on developing novel chemoprophylaxis and chemotherapy against SARS-CoV-2.

16.
J Proteome Res ; 19(12): 4844-4856, 2020 12 04.
Article in English | MEDLINE | ID: covidwho-1387125

ABSTRACT

Despite considerable research progress on SARS-CoV-2, the direct zoonotic origin (intermediate host) of the virus remains ambiguous. The most definitive approach to identify the intermediate host would be the detection of SARS-CoV-2-like coronaviruses in wild animals. However, due to the high number of animal species, it is not feasible to screen all the species in the laboratory. Given that binding to ACE2 proteins is the first step for the coronaviruses to invade host cells, we propose a computational pipeline to identify potential intermediate hosts of SARS-CoV-2 by modeling the binding affinity between the Spike receptor-binding domain (RBD) and host ACE2. Using this pipeline, we systematically examined 285 ACE2 variants from mammals, birds, fish, reptiles, and amphibians, and found that the binding energies calculated for the modeled Spike-RBD/ACE2 complex structures correlated closely with the effectiveness of animal infection as determined by multiple experimental data sets. Built on the optimized binding affinity cutoff, we suggest a set of 96 mammals, including 48 experimentally investigated ones, which are permissive to SARS-CoV-2, with candidates from primates, rodents, and carnivores at the highest risk of infection. Overall, this work not only suggests a limited range of potential intermediate SARS-CoV-2 hosts for further experimental investigation, but also, more importantly, it proposes a new structure-based approach to general zoonotic origin and susceptibility analyses that are critical for human infectious disease control and wildlife protection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Binding Sites/genetics , COVID-19/pathology , COVID-19/virology , Host-Pathogen Interactions/genetics , Humans , Mammals/genetics , Mammals/virology , Pandemics , Protein Binding/genetics , Protein Domains/genetics , SARS-CoV-2/pathogenicity , Viral Zoonoses/genetics , Viral Zoonoses/virology
17.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1343152

ABSTRACT

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Binding Sites , COVID-19/therapy , COVID-19/virology , Cell Line , Humans , Immune Evasion , Immunization, Passive , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/genetics , Sequence Deletion , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines/immunology
18.
Elife ; 92020 04 27.
Article in English | MEDLINE | ID: covidwho-1344522

ABSTRACT

COVID-19 patients can present with pulmonary edema early in disease. We propose that this is due to a local vascular problem because of activation of bradykinin 1 receptor (B1R) and B2R on endothelial cells in the lungs. SARS-CoV-2 enters the cell via ACE2 that next to its role in RAAS is needed to inactivate des-Arg9 bradykinin, the potent ligand of the B1R. Without ACE2 acting as a guardian to inactivate the ligands of B1R, the lung environment is prone for local vascular leakage leading to angioedema. Here, we hypothesize that a kinin-dependent local lung angioedema via B1R and eventually B2R is an important feature of COVID-19. We propose that blocking the B2R and inhibiting plasma kallikrein activity might have an ameliorating effect on early disease caused by COVID-19 and might prevent acute respiratory distress syndrome (ARDS). In addition, this pathway might indirectly be responsive to anti-inflammatory agents.


The COVID-19 pandemic represents an unprecedented threat to global health. Millions of cases have been confirmed around the world, and hundreds of thousands of people have lost their lives. Common symptoms include a fever and persistent cough and COVID-19 patients also often experience an excess of fluid in the lungs, which makes it difficult to breathe. In some cases, this develops into a life-threatening condition whereby the lungs cannot provide the body's vital organs with enough oxygen. The SARS-CoV-2 virus, which causes COVID-19, enters the lining of the lungs via an enzyme called the ACE2 receptor, which is present on the outer surface of the lungs' cells. The related coronavirus that was responsible for the SARS outbreak in the early 2000s also needs the ACE2 receptor to enter the cells of the lungs. In SARS, the levels of ACE2 in the lung decline during the infection. Studies with mice have previously revealed that a shortage of ACE2 leads to increased levels of a hormone called angiotensin II, which regulates blood pressure. As a result, much attention has turned to the potential link between this hormone system in relation to COVID-19. However, other mouse studies have shown that ACE2 protects against a build-up of fluid in the lungs caused by a different molecule made by the body. This molecule, which is actually a small fragment of a protein, lowers blood pressure and causes fluid to leak out of blood vessels. It belongs to a family of molecules known as kinins, and ACE2 is known to inactivate certain kinins. This led van de Veerdonk et al. to propose that the excess of fluid in the lungs seen in COVID-19 patients may be because kinins are not being neutralized due to the shortage of the ACE2 receptor. This had not been hypothesized before, even though the mechanism could be the same in SARS which has been researched for the past 17 years. If this hypothesis is correct, it would mean that directly inhibiting the receptor for the kinins (or the proteins that they come from) may be the only way to stop fluid leaking into the lungs of COVID-19 patients in the early stage of disease. This hypothesis is unproven, and more work is needed to see if it is clinically relevant. If that work provides a proof of concept, it means that existing treatments and registered drugs could potentially help patients with COVID-19, by preventing the need for mechanical ventilation and saving many lives.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Drug Development , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Angioedema/drug therapy , Angioedema/metabolism , Angioedema/pathology , Anti-Inflammatory Agents/therapeutic use , Betacoronavirus/physiology , Bradykinin Receptor Antagonists/therapeutic use , COVID-19 , Coronavirus Infections/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Kallikreins/metabolism , Kinins/metabolism , Lung/metabolism , Lung/pathology , Pandemics , Pneumonia, Viral/metabolism , Receptor, Bradykinin B1/metabolism , Receptor, Bradykinin B2/metabolism , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/prevention & control , SARS-CoV-2 , Signal Transduction
19.
Comput Biol Med ; 134: 104538, 2021 07.
Article in English | MEDLINE | ID: covidwho-1315427

ABSTRACT

The outbreak of COVID-19 disease caused by SARS-CoV-2, along with the lack of targeted medicaments, forced the scientific world to search for new antiviral formulations. In the current emergent situation, drug repurposing of well-known traditional and/or approved drugs could be the most effective strategy. Herein, through computational approaches, we aimed to screen 14 natural compounds from limonoids and terpenoids class for their ability to inhibit the key therapeutic target proteins of SARS-CoV-2. Among these, some limonoids, namely deacetylnomilin, ichangin and nomilin, and the terpenoid ß-amyrin provided good interaction energies with SARS-CoV-2 3CL hydrolase (Mpro) in molecular dynamic simulation. Interestingly, deacetylnomilin and ichangin showed direct interaction with the catalytic dyad of the enzyme so supporting their potential role in preventing SARS-CoV-2 replication and growth. On the contrary, despite the good affinity with the spike protein RBD site, all the selected phytochemicals lose contact with the amino acid residues over the course of 120ns-long molecular dynamics simulations therefore suggesting they scarcely can interfere in SARS-CoV-2 binding to the ACE2 receptor. The in silico analyses of docking score and binding energies, along with predicted pharmacokinetic profiles, indicate that these triterpenoids might have potential as inhibitors of SARS-CoV-2 Mpro, recommending further in vitro and in vivo investigations for a complete understanding and confirmation of their inhibitory potential.


Subject(s)
COVID-19 , SARS-CoV-2 , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Terpenes
20.
Biophys J ; 120(14): 2828-2837, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1310632

ABSTRACT

The cell surface receptor Neuropilin-1 (Nrp1) was recently identified as a host factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. The Spike protein of SARS-CoV-2 is cleaved into two segments, the S1 (residues (res.) 1-685) and the S2 (res. 686-1273) domains by furin protease. Nrp1 predominantly binds to the C-terminal RRAR amino acid motif (res. 682-685) of the S1 domain. In this study, we firstly modeled the association of an Nrp1 protein (consisting of domains a2-b1-b2) with the Spike protein. Next, we studied the separation of S2 from the S1 domain, with and without Nrp1 bound, by utilizing molecular dynamics pulling simulations. During the separation, Nrp1 stabilizes the S1 C-terminal region (res. 640-685) and thereby assists the detachment of S2 N-terminal region (res. 686-700). Without Nrp1 bound, S1 tends to become stretched, whereas the bound Nrp1 stimulates an earlier separation of S2 from the S1 domain. The liberated S2 domain is known to mediate the fusion of virus and host membranes; thus, Nrp1 likely increases virus infectivity by facilitating the S1 and S2 separation. We further analyzed the possible topological structure of the SARS-CoV-2 Spike protein when bound with Nrp1 and angiotensin-converting enzyme 2 (ACE2). Understanding of such an Nrp1-assisted viral infection opens the gate for the generation of protein-protein inhibitors, such as antibodies, which could attenuate the infection mechanism and protect certain cells in a future Nrp1-ACE2 targeted combination therapy.

SELECTION OF CITATIONS
SEARCH DETAIL