Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
J Med Virol ; 93(9): 5487-5504, 2021 09.
Article in English | MEDLINE | ID: covidwho-1733919

ABSTRACT

Along with the control and prevention of coronavirus disease 2019 transmission, infected animals might have potential to carry the virus to spark new outbreaks. However, very few studies explore the susceptibility of animals to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Viral attachment as a crucial step for cross-species infection requires angiotensin-converting enzyme 2 (ACE2) as a receptor and depends on TMPRSS2 protease activity. Here, we searched the genomes of metazoans from different classes using an extensive BLASTP survey and found ACE2 and TMPRSS2 occur in vertebrates, but some vertebrates lack Tmprss2. We identified 6 amino acids among 25 known human ACE2 residues are highly associated with the binding of ACE2 to SARS-CoV-2 (p value < .01) by Fisher exact test, and following this, calculated the probability of viral attachment within each species by the randomForest function from R randomForest library. Furthermore, we observed that Ace2 selected from seven animals based on the above analysis lack the hydrophobic contacts identified on human ACE2, indicating less affinity of SARS-CoV-2 to Ace2 in animals than humans. Finally, the alignment of 3D structure between human ACE2 and other animals by I-TASSER and TM-align displayed a reasonable structure for viral attachment within these species. Taken together, our data may shed light on the human-to-animal transmission of SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Vertebrates/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , COVID-19/metabolism , Disease Susceptibility , Genetic Predisposition to Disease , Humans , Receptors, Virus/metabolism , SARS-CoV-2/classification , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vertebrates/genetics , Virus Attachment , Virus Internalization , Virus Release
2.
J Infect Dis ; 224(Supplement_6): S642-S646, 2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1559852

ABSTRACT

We previously demonstrated that the late gestation placental expression pattern of ACE2 (the primary severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] receptor) is localized to the villous syncytiotrophoblast (ST), usually in a polarized membranous pattern at the ST base sparing the apical surface (that directly exposed to maternal blood). We found that the late gestation placental expression pattern of TMPRSS2 (the spike proteinase required for SARS-CoV-2 cellular infection), is usually absent in the trophoblast but is rarely, weakly expressed in the placental endothelium. We now show the developmental protein expression patterns of ACE2 and TMPRSS2 by immunohistochemistry throughout gestation, from the first through third trimester. We found that TMPRSS2 expression was rarely detectable in villous endothelium and very rarely detectable in the ST across gestation. We found that ACE2 expression varied during gestation with circumferential ST expression more common in early gestations and polarized expression more common in later gestation. Although this study is small, these preliminary results suggest that earlier gestation pregnancies may be more vulnerable to infection than later gestation pregnancies.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Placenta/metabolism , Pregnancy Complications, Infectious/virology , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Adult , Angiotensin-Converting Enzyme 2/genetics , Female , Gestational Age , Humans , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/pathology , Serine Endopeptidases/genetics , Trophoblasts
3.
Cancer Res Treat ; 53(3): 650-656, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1403959

ABSTRACT

PURPOSE: Coronavirus disease 2019 (COVID-19) pandemic has spread worldwide rapidly and patients with cancer have been considered as a vulnerable group for this infection. This study aimed to examine the expressions of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in tumor tissues of six common cancer types. MATERIALS AND METHODS: The expression levels of ACE2 and TMPRSS2 in tumors and control samples were obtained from online databases. Survival prognosis and biological functions of these genes were investigated for each tumor type. RESULTS: There was the overexpression of ACE2 in colon and stomach adenocarcinomas compared to controls, meanwhile colon and prostate adenocarcinomas showed a significantly higher expression of TMPRSS2. Additionally, survival prognosis analysis has demonstrated that upregulation of ACE2 in liver hepatocellular carcinoma was associated with higher overall survival (hazard ratio, 0.65; p=0.016) and disease-free survival (hazard ratio, 0.66; p=0.007), while overexpression of TMPRSS2 was associated with a 26% reduced risk of death in lung adenocarcinoma (p=0.047) but 50% increased risk of death in breast invasive carcinoma (p=0.015). CONCLUSION: There is a need to take extra precautions for COVID-19 in patients with colorectal cancer, stomach cancer, and lung cancer. Further information on other types of cancer at different stages should be investigated.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/diagnosis , Neoplasms/diagnosis , Neoplasms/genetics , Serine Endopeptidases/genetics , Adenocarcinoma/complications , Adenocarcinoma/diagnosis , Adenocarcinoma/epidemiology , Adenocarcinoma/genetics , Breast Neoplasms/complications , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , COVID-19/complications , COVID-19/epidemiology , COVID-19/genetics , Case-Control Studies , Databases as Topic , Female , Gastrointestinal Neoplasms/complications , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/epidemiology , Gastrointestinal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Liver Neoplasms/complications , Liver Neoplasms/diagnosis , Liver Neoplasms/epidemiology , Liver Neoplasms/genetics , Lung Neoplasms/complications , Lung Neoplasms/diagnosis , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Male , Mutation , Neoplasms/complications , Neoplasms/epidemiology , Pandemics , Prognosis , Prostatic Neoplasms/complications , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Retrospective Studies , SARS-CoV-2/physiology , Survival Analysis
5.
Microorganisms ; 9(1)2021 Jan 03.
Article in English | MEDLINE | ID: covidwho-1389447

ABSTRACT

The expression rate of SARS-CoV-2 entry genes, angiotensin-converting enzyme 2 (ACE2), the main viral receptor and the proteases, furin and transmembrane serine protease 2 (TMPRSS2) in cystic fibrosis (CF) individuals is poorly known. Hence, we examined their levels in upper respiratory samples of CF patients (n = 46) and healthy controls (n = 45). Moreover, we sought to understand the interplay of type I interferon (IFN-I) with ACE2, furin and TMPRSS2 by evaluating their gene expression with respect to ISG15, a well-known marker of IFN activation, in upper respiratory samples and after ex vivo IFNß exposure. Lower ACE2 levels and trends toward the reduction of furin and TMPRSS2 were found in CF patients compared with the healthy controls; decreased ACE2 amounts were also detected in CF individuals with pancreatic insufficiency and in those receiving inhaled antibiotics. Moreover, there was a strong positive correlation between ISG15 and ACE2 levels. However, after ex vivo IFNß stimulation of nasopharyngeal cells, the truncated isoform (dACE2), recently demonstrated as the IFN stimulated one with respect to the full-length isoform (flACE2), slightly augmented in cells from CF patients whereas in those from healthy donors, dACE2 levels showed variable levels of upregulation. An altered expression of SARS-COV-2 entry genes and a poor responsiveness of dACE2 to IFN-I stimulation might be crucial in the diffusion of SARS-CoV-2 infection in CF.

6.
PLoS One ; 16(6): e0253489, 2021.
Article in English | MEDLINE | ID: covidwho-1388925

ABSTRACT

In the pursuit of suitable and effective solutions to SARS-CoV-2 infection, we investigated the efficacy of several phenolic compounds in controlling key cellular mechanisms involved in its infectivity. The way the SARS-CoV-2 virus infects the cell is a complex process and comprises four main stages: attachment to the cognate receptor, cellular entry, replication and cellular egress. Since, this is a multi-part process, it creates many opportunities to develop effective interventions. Targeting binding of the virus to the host receptor in order to prevent its entry has been of particular interest. Here, we provide experimental evidence that, among 56 tested polyphenols, including plant extracts, brazilin, theaflavin-3,3'-digallate, and curcumin displayed the highest binding with the receptor-binding domain of spike protein, inhibiting viral attachment to the human angiotensin-converting enzyme 2 receptor, and thus cellular entry of pseudo-typed SARS-CoV-2 virions. Both, theaflavin-3,3'-digallate at 25 µg/ml and curcumin above 10 µg/ml concentration, showed binding with the angiotensin-converting enzyme 2 receptor reducing at the same time its activity in both cell-free and cell-based assays. Our study also demonstrates that brazilin and theaflavin-3,3'-digallate, and to a still greater extent, curcumin, decrease the activity of transmembrane serine protease 2 both in cell-free and cell-based assays. Similar pattern was observed with cathepsin L, although only theaflavin-3,3'-digallate showed a modest diminution of cathepsin L expression at protein level. Finally, each of these three compounds moderately increased endosomal/lysosomal pH. In conclusion, this study demonstrates pleiotropic anti-SARS-CoV-2 efficacy of specific polyphenols and their prospects for further scientific and clinical investigations.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/prevention & control , Polyphenols/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , A549 Cells , Benzopyrans/pharmacology , Biflavonoids/pharmacology , COVID-19/virology , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Survival/drug effects , Curcumin/pharmacology , Humans , Protein Binding/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Virion/drug effects , Virion/metabolism , Virion/physiology , Virus Attachment/drug effects
7.
Invest Ophthalmol Vis Sci ; 62(7): 6, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1388618

ABSTRACT

Purpose: To investigate the expression of angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2 in human retina. Methods: Human post-mortem eyes from 13 non-diabetic control cases and 11 diabetic retinopathy cases were analyzed for the expression of ACE2. To compare the vascular ACE2 expression between different organs that involve in diabetes, the expression of ACE2 was investigated in renal specimens from nondiabetic and diabetic nephropathy patients. Expression of TMPRSS2, a cell-surface protease that facilitates SARS-CoV-2 entry, was also investigated in human nondiabetic retinas. Primary human retinal endothelial cells (HRECs) and primary human retinal pericytes (HRPCs) were further used to confirm the vascular ACE2 expression in human retina. Results: We found that ACE2 was expressed in multiple nonvascular neuroretinal cells, including the retinal ganglion cell layer, inner plexiform layer, inner nuclear layer, and photoreceptor outer segments in both nondiabetic and diabetic retinopathy specimens. Strikingly, we observed significantly more ACE2 positive vessels in the diabetic retinopathy specimens. By contrast, in another end-stage organ affected by diabetes, the kidney, ACE2 in nondiabetic and diabetic nephropathy showed apical expression of ACE2 tubular epithelial cells, but no endothelial expression in glomerular or peritubular capillaries. Western blot analysis of protein lysates from HRECs and HRPCs confirmed expression of ACE2. TMPRSS2 expression was present in multiple retinal neuronal cells, vascular and perivascular cells, and Müller glia. Conclusions: Together, these results indicate that retina expresses ACE2 and TMPRSS2. Moreover, there are increased vascular ACE2 expression in diabetic retinopathy retinas.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Diabetic Retinopathy/enzymology , Receptors, Virus/metabolism , Retina/enzymology , SARS-CoV-2/physiology , Adult , Aged , Aged, 80 and over , Binding Sites , Blotting, Western , Cells, Cultured , Diabetic Nephropathies/enzymology , Diabetic Nephropathies/pathology , Diabetic Nephropathies/virology , Diabetic Retinopathy/pathology , Diabetic Retinopathy/virology , Endothelium, Vascular/enzymology , Endothelium, Vascular/virology , Female , Fluorescent Antibody Technique, Indirect , Humans , Immunohistochemistry , Male , Middle Aged , Pericytes/enzymology , Pericytes/virology , Retinal Vessels/enzymology , Retinal Vessels/pathology , Retinal Vessels/virology , Serine Endopeptidases/metabolism
8.
Andrology ; 9(1): 39-41, 2021 01.
Article in English | MEDLINE | ID: covidwho-1388168

ABSTRACT

BACKGROUND: The recent report of SARS-CoV-2 presence in semen samples of six patients, including two subjects who were recovering from the clinical disease, re-opened the discussion on possible male genital tract infection, virus shedding in semen, sexual transmission and safety of fertility treatments during the pandemic period. OBJECTIVES: To explore current data and hypothesis on the possible sites of SARS-CoV-2 infection in the male reproduction system. MATERIALS AND METHODS: We reviewed the current literature to describe: a) the evidences on angiotensin-converting enzyme 2 (AC2E) and transmembrane serine protease 2 (TMPRSS2) expression in the testes, accessory glands (including prostate) and the urinary tract; b) other coronaviruses' (SARS and MERS) ability to infect these sites. RESULTS: The co-expression of both ACE2 and TMPRSS2 genes was reported in spermatogonial stem cells, elongated spermatids, in at least a small percentage of prostate hillock cells and in renal tubular cells. Testicular damage was described in autopsies of SARS patients, without evidence of the virus in the specimens. Prostate is a known infection site for MERS-CoV. SARS-CoV-2 was detected in urines. DISCUSSION: There are still al lot of open questions on the effects of SARS-CoV-2 infection on the male reproductive tract. The presence of receptors is not a proof that the testis provides a site for viral infection and it is still unknown if SARS-CoV-2 is capable to pass the blood-testis barrier. The possibility of a prostate involvement has not been investigated yet: we have no data, but theoretically it cannot be excluded. Moreover, the RNA detected in semen could have been just a residual of urinary shedding. CONCLUSION: Opening our prospective beyond the testis could be the key to better understand the possibility of a semen-related viral transmission as well as COVID19 short and long-term effects on male reproductive function.


Subject(s)
COVID-19/virology , SARS-CoV-2/isolation & purification , Semen/virology , Testis/virology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/metabolism , COVID-19/transmission , Humans , Male , Receptors, Virus/metabolism , Serine Endopeptidases/metabolism , Testis/metabolism , Testis/pathology , Virus Internalization , Virus Shedding
9.
Viruses ; 12(10)2020 10 16.
Article in English | MEDLINE | ID: covidwho-1389518

ABSTRACT

To address the expression pattern of the SARS-CoV-2 receptor ACE2 and the viral priming protease TMPRSS2 in the respiratory tract, this study investigated RNA sequencing transcriptome profiling of samples of airway and oral mucosa. As shown, ACE2 has medium levels of expression in both small airway epithelium and masticatory mucosa, and high levels of expression in nasal epithelium. The expression of ACE2 is low in mucosal-associated invariant T (MAIT) cells and cannot be detected in alveolar macrophages. TMPRSS2 is highly expressed in small airway epithelium and nasal epithelium and has lower expression in masticatory mucosa. Our results provide the molecular basis that the nasal mucosa is the most susceptible locus in the respiratory tract for SARS-CoV-2 infection and consequently for subsequent droplet transmission and should be the focus for protection against SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/genetics , Peptidyl-Dipeptidase A/biosynthesis , Pneumonia, Viral/genetics , Serine Endopeptidases/biosynthesis , Virus Internalization , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Epithelium/metabolism , Epithelium/virology , Gene Expression , Gene Expression Profiling , Humans , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Respiratory System/metabolism , Respiratory System/virology , SARS-CoV-2 , Serine Endopeptidases/genetics
11.
Aging Dis ; 12(3): 718-725, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1315009

ABSTRACT

Recently, emerging evidence has indicated that COVID-19 represents a major threat to older populations, but the underlying mechanisms remain unclear. The pathogen causing COVID-19 is acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection depends on the key entry factors, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Recognizing the importance of ACE2 and TMPRSS2 for the cellular tropism of SARS-CoV-2, we analyzed and presented the landscape of cell-type identities for ACE2+ TMPRSS2+ cells across different human tissues and the age-related alterations in ACE2 and TMPRSS2 expression across different cell types. Additionally, most of the post-acute COVID-19 sequelae could attribute to the ACE2-expressing organ systems. Therefore, these SARS-CoV-2 tropism data should be an essential resource for guiding clinical treatment and pathological studies, which should draw attention toward the prioritization of COVID-19 research in the future. Notably, we discovered the age-related expression of ACE2 and TMPRSS2 in the immune-inflammatory stromal cells, implying the potential interplay between COVID-19, stromal cells, and aging. In this study, we developed a novel and practical analysis framework for mapping the cellular tropism of SARS-CoV-2. This approach was built to aid the identification of viral-specific cell types and age-related alterations of viral tropism, highlighting the power of single-cell RNA sequencing (scRNA-seq) to address viral pathogenesis systematically. With the rapid accumulation of scRNA-seq data and the continuously increasing insight into viral entry factors, we anticipate that this scRNA-seq-based approach will attract broader interest in the virus research communities.

12.
Cell Metab ; 32(6): 1028-1040.e4, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-1310646

ABSTRACT

Isolated reports of new-onset diabetes in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2 is directly cytotoxic to pancreatic islet ß cells. This would require binding and entry of SARS-CoV-2 into ß cells via co-expression of its canonical cell entry factors, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2); however, their expression in human pancreas has not been clearly defined. We analyzed six transcriptional datasets of primary human islet cells and found that ACE2 and TMPRSS2 were not co-expressed in single ß cells. In pancreatic sections, ACE2 and TMPRSS2 protein was not detected in ß cells from donors with and without diabetes. Instead, ACE2 protein was expressed in islet and exocrine tissue microvasculature and in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. These findings reduce the likelihood that SARS-CoV-2 directly infects ß cells in vivo through ACE2 and TMPRSS2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Diabetes Mellitus/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2/analysis , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/complications , COVID-19/genetics , Cells, Cultured , Diabetes Complications/genetics , Diabetes Complications/metabolism , Diabetes Mellitus/genetics , Gene Expression , Humans , Insulin-Secreting Cells/metabolism , Mice , Microvessels/metabolism , Pancreas/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , Serine Endopeptidases/analysis , Serine Endopeptidases/genetics
13.
Front Cell Dev Biol ; 9: 664868, 2021.
Article in English | MEDLINE | ID: covidwho-1273326

ABSTRACT

Acute kidney injury (AKI) is one of the most prevalent complications among hospitalized coronavirus disease 2019 (COVID-19) patients. Here, we aim to investigate the causes, risk factors, and outcomes of AKI in COVID-19 patients. We found that angiotensin-converting enzyme II (ACE2) and transmembrane protease serine 2 (TMPRSS2) were mainly expressed by different cell types in the human kidney. However, in autopsy kidney samples, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein was detected in ACE2+ or TMPRSS2+ renal tubular cells, whereas the RNAscope® Assay targeting the SARS-CoV-2 Spike gene was positive mainly in the distal tubular cells and seldom in the proximal tubular cells. In addition, the TMPRSS2 and kidney injury marker protein levels were significantly higher in the SARS-CoV-2-infected renal distal tubular cells, indicating that SARS-CoV-2-mediated AKI mainly occurred in the renal distal tubular cells. Subsequently, a cohort analysis of 722 patients with COVID-19 demonstrated that AKI was significantly related to more serious disease stages and poor prognosis of COVID-19 patients. The progressive increase of blood urea nitrogen (BUN) level during the course of COVID-19 suggests that the patient's condition is aggravated. These results will greatly increase the current understanding of SARS-CoV-2 infection.

14.
Rhinology ; 59(3): 226-235, 2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1259689

ABSTRACT

BACKGROUND: Unlike other respiratory viruses, SARS-CoV-2 causes anosmia without sinonasal inflammation. Here we systematically review the effects of the 7 known human coronaviruses on olfaction to determine if SARS-CoV-2 distinctly affects the olfactory system. METHOD: PubMed, EMBASE, Web of Science, bioRxiv, medRxiv and DOAJ were searched for studies describing pathophysiological, immunohistochemical, cytological and clinical data. RESULTS: 49 studies were included. Common cold coronaviruses lead to sinonasal inflammation which can cause transient and chronic loss of smell. MERS-CoV entry receptors were not found in the nasal mucosa and it did not impair olfaction. SARS-CoV-1 had low affinity for its receptor ACE2, limiting olfactory effects. Anosmia is frequent in SARS-CoV-2 infections. SARS-CoV-2’s entry factors ACE2 and TMPRSS2 are expressed in the nasal respiratory epithelium and olfactory supporting cells. SARS-CoV-2 appeared to target the olfactory cleft while diffuse nasal inflammation was not observed. Damage of the olfactory epithelium was observed in animal models. Alternative receptors such as furin and neuropilin-1 and the similarity of viral proteins to odourant receptors could amplify olfactory impairment in SARS-CoV-2 infection. CONCLUSIONS: The pathophysiology of anosmia in SARS-CoV-2 infection is distinct from other coronaviruses due to preferentially targeting olfactory supporting cells. However, SARS-CoV-2 does not cause sinonasal inflammation in spite of preferred entry factor expression in the nasal respiratory epithelium. This raises doubts about the attention given to ACE2. Alternative receptors, odourant receptor mimicry and other as yet unknown mechanisms may be crucial in the pathogenesis of anosmia in SARS-CoV-2 infection. Further studies are warranted to investigate infection mechanisms beyond ACE2.


Subject(s)
COVID-19 , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme 2 , Animals , Humans , SARS-CoV-2
15.
Front Oncol ; 11: 644575, 2021.
Article in English | MEDLINE | ID: covidwho-1259357

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has rapidly spread worldwide. Systematic analysis of lung cancer survivors at molecular and clinical levels is warranted to understand the disease course and clinical characteristics. METHODS: A single-center, retrospective cohort study was conducted in 65 patients with COVID-19 from Wuhan Huoshenshan Hospital, of which 13 patients were diagnosed with lung cancer. The study was conducted from February 4 to April 11, 2020. RESULTS: During the course of treatment, lung cancer survivors infected with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) had shorter median time from symptom onset to hospitalization (P = 0.016) and longer clinical symptom remission time (P = 0.020) than non-cancer individuals. No differences were observed among indicators such as time from symptom onset to hospitalization and symptom remission time between medium-term and short-term survivors. The expression of ACE2 (P = 0.013) and TMPRSS2 (P <0.001) was elevated in lung cancer survivors as compared with that in non-cancer individuals. CONCLUSIONS: ACE2 and TMPRSS2 levels were higher at resection margins of lung cancer survivors than those in normal tissues of non-cancerous individuals and may serve as factors responsible for the high susceptibility to COVID-19 among lung cancer survivors. Lung cancer patients diagnosed with COVID-19, including medium-term survivors, have worse outcomes than the general population.

16.
Endocrinology ; 162(8)2021 08 01.
Article in English | MEDLINE | ID: covidwho-1259229

ABSTRACT

Coronavirus disease 2019 (COVID-19) is characterized by a gender disparity in severity, with men exhibiting higher hospitalization and mortality rates than women. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, infects cells following recognition and attachment of the viral spike glycoprotein to the angiotensin-converting enzyme 2 transmembrane protein, followed by spike protein cleavage and activation by cell surface transmembrane protease serine 2 (TMPRSS2). In prostate cancer cells, androgen acting on the androgen receptor increases TMPRSS2 expression, which has led to the hypothesis that androgen-dependent expression of TMPRSS2 in the lung may increase men's susceptibility to severe COVID-19 and that, accordingly, suppressing androgen production or action may mitigate COVID-19 severity by reducing SARS-CoV-2 amplification. Several ongoing clinical trials are testing the ability of androgen deprivation therapies or anti-androgens to mitigate COVID-19. This perspective discusses clinical and molecular advances on the rapidly evolving field of androgen receptor (AR) action on cell surface transmembrane protease serine 2 (TMPRSS2) expression and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the potential effect of anti-androgens on coronavirus disease 2019 (COVID-19) severity in male patients. It discusses limitations of current studies and offers insight for future directions.


Subject(s)
Androgen Antagonists/therapeutic use , COVID-19/drug therapy , SARS-CoV-2 , Animals , Gene Expression/drug effects , Humans , Lung/metabolism , Lung/virology , Male , Mice , Prostatic Neoplasms/drug therapy , Receptors, Androgen/drug effects , Receptors, Androgen/physiology , SARS-CoV-2/physiology , Serine Endopeptidases/drug effects , Serine Endopeptidases/genetics , Serine Endopeptidases/physiology , Sex Factors
17.
Meta Gene ; 29: 100930, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1253394

ABSTRACT

BACKGROUND: Mortality due to COVID-19 caused by SARS-CoV-2 infection varies among populations. Functional relevance of genetic variations in Angiotensin-converting enzyme 2 (ACE2) and Transmembrane serine protease 2 (TMPRSS2), two crucial host factors for viral entry, might explain some of this variation. METHODS: In this comparative study in Indian subjects, we recruited 510 COVID-19 patients and retrieved DNA from 520 controls from a repository. Associations between variants in ACE2 and TMPRSS2 with disease severity were identified by whole exome sequencing (WES, n = 20) and targeted genotyping (n = 1010). Molecular dynamic simulations (MDS) were performed to explore functional relevance of the variants. Cleavage of spike glycoprotein by wild and variant TMPRSS2 was determined in HEK293T cells. Potential effects of confounders on the association between genotype and disease severity were tested (Mantel-Haenszel test). RESULTS: WES identified deleterious variant in TMPRSS2 (rs12329760, G > A, p. V160M). The minor allele frequency (MAF) was 0·27 in controls, 0·31 in asymptomatic, 0·21 in mild-to-moderately affected and 0·19 in severely affected COVID-19 patients. Risk of severity increased with decreasing MAF: Asymptomatic: Odds ratio-0·69 (95% CI-0·52-0·93; p = 0·01); mild-to-moderate: Odds ratio-1·89 (95% CI-1·22-2.92;p = 0·004) and severe: Odds ratio-1·79 (95% CI-1·11-2.88;p = 0·01). No confounding effect of diabetes and hypertension were observed on the risk of developing severe COVID-19 disease with respect to genotype. MDS revealed decreased stability of TMPRSS2 with 160 M variant. Spike glycoprotein cleavage by TMPRSS2 reduced ~2·4-fold in cells expressing 160 M variant. CONCLUSION: We demonstrate association of TMPRSS2 variant rs12329760 with decreased disease severity in COVID-19 patients from India.

18.
Sci Rep ; 11(1): 11130, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1246392

ABSTRACT

The sex discordance in COVID-19 outcomes has been widely recognized, with males generally faring worse than females and a potential link to sex steroids. A plausible mechanism is androgen-induced expression of TMPRSS2 and/or ACE2 in pulmonary tissues that may increase susceptibility or severity in males. This hypothesis is the subject of several clinical trials of anti-androgen therapies around the world. Here, we investigated the sex-associated TMPRSS2 and ACE2 expression in human and mouse lungs and interrogated the possibility of pharmacologic modification of their expression with anti-androgens. We found no evidence for increased TMPRSS2 expression in the lungs of males compared to females in humans or mice. Furthermore, in male mice, treatment with the androgen receptor antagonist enzalutamide did not decrease pulmonary TMPRSS2. On the other hand, ACE2 and AR expression was sexually dimorphic and higher in males than females. ACE2 was moderately suppressible with enzalutamide administration. Our work suggests that sex differences in COVID-19 outcomes attributable to viral entry are independent of TMPRSS2. Modest changes in ACE2 could account for some of the sex discordance.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Lung/drug effects , Receptors, Androgen/metabolism , Serine Endopeptidases/metabolism , Androgen Receptor Antagonists/pharmacology , Androgens , Angiotensin-Converting Enzyme 2/genetics , Animals , Benzamides/pharmacology , COVID-19/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation Sequencing , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Immunohistochemistry , Lung/metabolism , Lung/virology , Male , Mice , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Serine Endopeptidases/genetics , Smokers
19.
Medicina (Kaunas) ; 57(6)2021 May 23.
Article in English | MEDLINE | ID: covidwho-1244067

ABSTRACT

Background and Objectives: The aim of this systematic review is to summarize the current data about the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its entry factors in oral tissues and cells. Materials and Methods: This systematic review was carried out based on the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA). Three databases were analyzed (Pubmed, Web of science and Scopus) by three independent researchers. From the 18 identified studies, 10 of them met the inclusion criteria. The presence of SARS-CoV-2 or its entry factors (angiotensin-converting enzyme II (ACE2), transmembrane serine proteases (TMPRSS), and furin) was analyzed in these 10 studies during the pandemic. Results: ACE2 expression was analyzed in 9 of the 10 studies. ACE2 is expressed mainly in the tongue, oral mucosa, salivary glands and epithelial cells. The expression of the TMPRSS2 gene or protein was analyzed in 6 studies. These studies reported that the expression of TMPRSS2 was mainly in the salivary glands, tongue, sulcular epithelium and oral mucosa; as well as in cells of the salivary glands (ductal, acinar and myoepithelial cells) and the tongue (the spinous-based cell layer, horny layer and the epithelial surface). Other TMPRSS were also reported. The expression of TMPRSS3, TMPRSS4, TMPRSS5, TMPRSS7 and TMPRSS11D was reported mainly in salivary glands and in epithelial-type cells. Furan expression was analyzed in three studies. The expression of furin was detected mainly in epithelial cells of the tongue. A variety of methods were used to carry out the detection of SARS-CoV-2 or its input molecules. Conclusions: These results show that SARS-CoV-2 can infect a wide variety of oral tissues and cells, and that together with the theories dedicated to explaining the oral symptoms present in SARS-CoV-2 positive patients, it provides us with a good scientific basis for understanding the virus infection in the oral cavity and its consequences.


Subject(s)
COVID-19 , SARS-CoV-2 , Furin , Humans , Membrane Proteins , Mouth Mucosa , Neoplasm Proteins , Pandemics , Serine Endopeptidases
20.
Trials ; 22(1): 343, 2021 May 17.
Article in English | MEDLINE | ID: covidwho-1232435

ABSTRACT

OBJECTIVES: Currently, there are no approved treatments for early disease stages of COVID-19 and few strategies to prevent disease progression after infection with SARS-CoV-2. The objective of this study is to evaluate the safety and efficacy of convalescent plasma (CP) or camostat mesylate administered within 72 h of diagnosis of SARS-CoV-2 infection in adult individuals with pre-existing risk factors at higher risk of getting seriously ill with COVID-19. Camostat mesylate acts as an inhibitor of the host cell serine protease TMPRSS2 and prevents the virus from entering the cell. CP represents another antiviral strategy in terms of passive immunization. The working hypothesis to be tested in the RES-Q-HR study is that the early use of CP or camostat mesylate reduces the likelihood of disease progression to (modified) WHO stages 4b-8 in SARS-CoV-2-positive adult patients at high risk of moderate or severe COVID-19 progression. TRIAL DESIGN: This study is a 4-arm (parallel group), multicenter, randomized (2:2:1:1 ratio), partly double-blind, controlled trial to evaluate the safety and efficacy of convalescent plasma (CP) or camostat mesylate with control or placebo in adult patients diagnosed with SARS-CoV-2 infection and high risk for progression to moderate/severe COVID-19. Superiority of the intervention arms will be tested. PARTICIPANTS: The trial is conducted at 10-15 tertiary care centers in Germany. Individuals aged 18 years or above with ability to provide written informed consent with SARS-CoV-2 infection, confirmed by PCR within 3 days or less before enrolment and the presence of at least one SARS-CoV-2 symptom (such as fever, cough, shortness of breath, sore throat, headache, fatigue, smell/and or taste disorder, diarrhea, abdominal symptoms, exanthema) and symptom duration of not more than 3 days. Further inclusion criteria comprise: Presence of at least one of the following criteria indicating increased risk for severe COVID-19: Age > 75 years Chronic obstructive pulmonary disease (COPD) and/or pulmonary fibrosis BMI > 40 kg/m2 Age > 65 years with at least one other risk factor (BMI > 35 kg/m2, coronary artery disease (CAD), chronic kidney disease (CKD) with GFR < 60 ml/min but ≥ 30 ml/min, diabetes mellitus, active tumor disease) BMI > 35 kg/m2 with at least one other risk factor (CAD, CKD with GFR < 60 ml/min but ≥ 30 ml/min, diabetes mellitus, active tumor disease) Exclusion criteria: 1. Age < 18 years 2. Unable to give informed consent 3. Pregnant women or breastfeeding mothers 4. Previous transfusion reaction or other contraindication to a plasma transfusion 5. Known hypersensitivity to camostat mesylate and/or severe pancreatitis 6. Volume stress due to CP administration would be intolerable 7. Known IgA deficiency 8. Life expectancy < 6 months 9. Duration SARS-CoV-2 typical symptoms > 3 days 10. SARS-CoV-2 PCR detection older than 3 days 11. SARS-CoV-2 associated clinical condition ≥ WHO stage 3 (patients hospitalized for other reasons than COVID-19 may be included if they fulfill all inclusion and none of the exclusion criteria) 12. Previously or currently hospitalized due to SARS-CoV-2 13. Previous antiviral therapy for SARS-CoV-2 14. ALT or AST > 5 x ULN at screening 15. Liver cirrhosis > Child A (patients with Child B/C cirrhosis are excluded from the trial) 16. Chronic kidney disease with GFR < 30 ml/min 17. Concurrent or planned anticancer treatment during trial period 18. Accommodation in an institution due to legal orders (§40(4) AMG). 19. Any psycho-social condition hampering compliance with the study protocol. 20. Evidence of current drug or alcohol abuse 21. Use of other investigational treatment within 5 half-lives of enrolment is prohibited 22. Previous use of convalescent plasma for COVID-19 23. Concomitant proven influenza A infection 24. Patients with organ or bone marrow transplant in the three months prior to screening visit INTERVENTION AND COMPARATOR: Participants will be randomized to the following 4 groups: 1) Convalescent plasma (CP), 2 units at screening/baseline visit (day 0) or day 1; CP is defined by the presence of neutralizing anti-SARS-CoV-2 antibodies with titers ≥ 1:160; individuals with body weight ≥ 150 kg will receive a third unit of plasma on day 3 2) Camostat mesylate (200 mg per capsule, one capsule taken each in the morning, afternoon and evening on days 1-7) 3) Standard of care (SOC, control for CP) 4) Placebo (identical in appearance to camostat mesylate capsules, one capsule taken each morning, afternoon and evening on days 1-7; for camostat mesylate control group) Participants will be monitored after screening/baseline on day 3, day 5, day 8, and day 14. On day 28 and day 56, telephone visits and on day 90, another outpatient visit are scheduled. Adverse events and serious adverse events will be monitored and reported until the end of the study. An independent data safety monitoring committee will review trial progression and safety. MAIN OUTCOMES: The primary endpoint of the study is the cumulative number of individuals who progress to or beyond category 4b on the modified WHO COVID-19 ordinal scale (defined as hospitalization with COVID-19 pneumonia and additional oxygen demand via nasal cannula or mask) within 28 days after randomization. RANDOMIZATION: Participants will be randomized using the Alea-Tool ( aleaclinical.com ) in a 2:2:1:1 ratio to the treatment arms (1) CP, (2) camostat mesylate, (3) standard of care (SoC), and (4) placebo matching camostat mesylate. Randomization will be stratified by study center. BLINDING (MASKING): The camostat mesylate treatment arm and the respective placebo will be blinded for participants, caregivers, and those assessing outcomes. The treatment arms convalescent plasma and standard of care will not be blinded and thus are open-labeled, unblinded. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): Overall, n = 994 participants will be randomized to the following groups: n = 331 to convalescent plasma (CP), n = 331 to camostat mesylate, n = 166 to standard of care (SoC), and n = 166 to placebo matching camostat mesylate. TRIAL STATUS: The RES-Q-HR protocol (V04F) was approved on the 18 December 2020 by the local ethics committee and by the regulatory institutions PEI/BfARM on the 2 December 2020. The trial was opened for recruitment on 26 December 2020; the first patient was enrolled on 7 January 2021 and randomized on 8 January 2021. Recruitment shall be completed by June 2021. The current protocol version RES-Q HR V05F is from 4 January 2021, which was approved on the 18 January 2021. TRIAL REGISTRATION: EudraCT Number 2020-004695-18 . Registered on September 29, 2020. ClinicalTrial.gov NCT04681430 . Registered on December 23, 2020, prior to the start of the enrollment (which was opened on December 26, 2020). FULL PROTOCOL: The full protocol (V05F) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
COVID-19 , Pharmaceutical Preparations , Pregnancy Complications, Infectious , Adolescent , Adult , Aged , Blood Component Transfusion , COVID-19/therapy , Child , Esters , Female , Germany , Guanidines , Humans , Immunization, Passive , Mesylates , Multicenter Studies as Topic , Plasma , Polymerase Chain Reaction , Pregnancy , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL