Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Vox Sang ; 116(7): 798-807, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1370878

ABSTRACT

BACKGROUND AND OBJECTIVES: Cytokine release syndrome in COVID-19 is due to a pathological inflammatory response of raised cytokines. Removal of these cytokines by therapeutic plasma exchange (TPE) prior to end-organ damage may improve clinical outcomes. This manuscript is intended to serve as a preliminary guidance document for application of TPE in patients with severe COVID-19. MATERIAL AND METHODS: The available literature pertaining to the role of TPE for treatment of COVID-19 patients was reviewed to guide optimal management. It included indication, contraindication, optimal timing of initiation and termination of TPE, vascular access and anticoagulants, numbers and mode of procedures, outcome measures and adverse events. RESULTS: Out of a total of 78 articles, only 65 were directly related to the topic. From these 65, only 32 were acceptable as primary source, while 33 were used as supporting references. TPE in critically ill COVID-19 patients may be classified under ASFA category III grade 2B. The early initiation of TPE for 1-1·5 patient's plasma volume with fresh frozen plasma, or 4-5% albumin or COVID-19 convalescent plasma as replacement fluids before multiorgan failure, has better chances of recovery. The number of procedures can vary from three to nine depending on patient response. CONCLUSION: TPE in COVID-19 patients may help by removing toxic cytokines, viral particles and/or by correcting coagulopathy or restoring endothelial membrane. Severity score (SOFA & APACHE II) and cytokine levels (IL-6, C-reactive protein) can be used to execute TPE therapy and to monitor response in COVID-19 patients.


Subject(s)
COVID-19 , Plasma Exchange , COVID-19/therapy , Humans , Immunization, Passive , Plasmapheresis , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
2.
Int J Environ Res Public Health ; 18(7)2021 04 04.
Article in English | MEDLINE | ID: covidwho-1173681

ABSTRACT

The COVID-19 pandemic led to panic-buying of alcohol-based hand rubs (ABHRs). In response, governmental agencies (e.g., Health Canada) permitted the sale of ABHRs formulated with "technical-grade" ethanol to alleviate the growing demand. Technical-grade ethanol contains elevated concentrations of impurities (e.g., acetaldehyde, etc.), which may exhibit dose-dependent toxicity. In this study, a rapid solvent extraction was employed to analyze gelled ABHRs via gas chromatography with flame ionization detection. In total, 26 liquid and 16 gelled ABHRs were analyzed for nine common impurities to determine compliance with Health Canada interim guidelines. Of 42 samples analyzed, 11 ABHRs appear to be non-compliant with interim Health Canada guidelines. Non-compliant ABHRs exhibited elevated concentrations of acetaldehyde, with a maximal concentration observed of 251 ± 10 µL L-1; 3.3× higher than currently permitted. Nonetheless, frequent testing of ABHRs should be routinely conducted to reduce the risk of consumer exposure to non-compliant ABHRs.


Subject(s)
COVID-19 , Ethanol , Acetaldehyde , Canada , Hand Disinfection , Humans , Pandemics , SARS-CoV-2
3.
Bio Protoc ; 11(9): e4005, 2021 May 05.
Article in English | MEDLINE | ID: covidwho-1257396

ABSTRACT

The COVID-19 pandemic requires mass screening to identify those infected for isolation and quarantine. Individually screening large populations for the novel pathogen, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is costly and requires a lot of resources. Sample pooling methods improve the efficiency of mass screening and consume less reagents by increasing the capacity of testing and reducing the number of experiments performed, and are therefore especially suitable for under-developed countries with limited resources. Here, we propose a simple, reliable pooling strategy for COVID-19 testing using clinical nasopharyngeal (NP) and/or oropharyngeal (OP) swabs. The strategy includes the pooling of 10 NP/OP swabs for extraction and subsequent testing via quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), and may also be applied to the screening of other pathogens.

4.
J Hazard Mater ; 418: 126210, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1240441

ABSTRACT

Quaternary ammonium compounds (QACs) are active ingredients of many disinfectants used against SARS-CoV-2 to control the transmission of the virus through human-contact surfaces. As a result, QAC consumption has increased more than twice during the pandemic. Consequently, the concentration of QACs in wastewater and receiving environments may increase. Due to their antimicrobial activity, high levels of QACs in wastewater may cause malfunctioning of biological treatment systems resulting in inadequate treatment of wastewater. In this study, a biocatalyst was produced by entrapping Pseudomonas sp. BIOMIG1 capable of degrading QACs in calcium alginate. Bioactive 3-mm alginate beads degraded benzalkonium chlorides (BACs), a group of QACs, with a rate of 0.47 µM-BACs/h in shake flasks. A bench-scale continuous up-flow reactor packed with BIOMIG1-beads was operated over one and a half months with either synthetic wastewater or secondary effluent containing 2-20 µM BACs at an empty bed contact time (EBCT) ranging between 0.6 and 4.7 h. Almost complete BAC removal was achieved from synthetic and real wastewater at and above 1.2 h EBCT without aeration and effluent recirculation. The microbial community in beads dominantly composed of BIOMIG1 with trace number of Achromobacter spp. after the operation of the reactor with the real wastewater, suggesting that BIOMIG1 over-competed native wastewater bacteria during the operation. This reactor system offers a low cost and robust treatment of QACs in wastewater. It can be integrated to conventional treatment systems for efficient removal of QACs from the wastewater, especially during the pandemic period.


Subject(s)
COVID-19 , Waste Water , Benzalkonium Compounds , Bioreactors , Cells, Immobilized , Chlorides , Humans , Pseudomonas , SARS-CoV-2
5.
Sci Total Environ ; 785: 147270, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1201954

ABSTRACT

Wastewater-based epidemiology is currently being utilized to monitor the dissemination of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), on a population scale. The detection of SARS-CoV-2 in wastewater is highly influenced by methodologies used for its isolation, concentration and RNA extraction. Although various viral concentration methods are currently employed, including polyethylene glycol (PEG) precipitation, adsorption-extraction, ultracentrifugation and ultrafiltration, to our knowledge, none of these methods have been standardized for use with a variety of wastewater matrices and/or different kits for RNA extraction and quantification. To address this, wastewater with different physical characteristics was seeded with gamma-irradiated SARS-CoV-2 and used to test the efficiency of PEG precipitation and adsorption-extraction to concentrate the virus from three physiochemically different wastewater samples, sourced from three distinct wastewater plants. Efficiency of viral concentration and RNA extraction was assessed by reverse-transcriptase polymerase chain reaction and the recovery yields calculated. As co-purification of inhibitors can be problematic for subsequent detection, two commonly used commercial master mixes were assessed for their sensitivity and efficiency to detect two SARS-CoV-2 target nucleocapsid (N) gene sequences. Recovery rates varied greatly between wastewater matrices and concentration methods, with the highest and most reproducible recovery rates (46.6-56.7%) observed when SARS-CoV-2 was precipitated with PEG and detected by the Luna® Universal master mix. The adsorption-extraction method was less effective (0-21.7%). This study demonstrates that PEG precipitation is the more robust method, which translates well to varying wastewater matrices, producing consistent and reproducible recovery rates. Furthermore, it is compatible with different kits for RNA extraction and quantitation.


Subject(s)
COVID-19 , Viruses , Humans , SARS-CoV-2 , Waste Water
6.
Sci Rep ; 11(1): 7122, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1157917

ABSTRACT

Since the first reported case of the new coronavirus infection in Wuhan, China, researchers and governments have witnessed an unseen rise in the number of cases. Thanks to the rapid work of Chinese scientists, the pathogen now called SARS-CoV-2 has been identified and its whole genome was deposited in public databases by early January 2020. The availability of the genome has allowed researchers to develop Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assays, which are now the gold-standard for molecular diagnosis of the respiratory syndrome COVID19. Because of the rising number of cases and rapid spreading, the world has been facing a shortage of RT-PCR supplies, especially the ones involved in RNA extraction. This has been a major bottleneck to increase testing capacity in many countries that do not significantly manufacture these supplies, such as Brazil. Additionally, RT-qPCR scalability is highly dependent on equipment that usually performs testing of 96 samples at a time. In this work, we describe a cost-effective molecular NGS-based test for diagnosis of COVID19, which uses a single-step RNA extraction and presents high scalability and accuracy when compared to the gold-standard RT-qPCR. A single run of the NGS-based test using the Illumina NextSeq 550 mid-end sequencing equipment is able to multiplex 1,536 patient's samples, providing individual semi-qualitative results (detected, not detected). Detected results are provided with fragments per million (FPM) values, which was demonstrated to correlate with RT-qPCR Cycle Threshold (CT) values. Besides, usage of the high-end Illumina Novaseq platform may yield diagnostic for up to 6144 samples in a single run. Performance results when compared with RT-qPCR show general accuracy of 96%, and 98% when only samples with CT values (gene N) lower than 30 are considered. We have also developed an online platform, termed VarsVID, to help test executors to easily scale testing numbers. Sample registering, wet-lab worksheets generation, sample sheet for sequencing and results' display are all features provided by VarsVID. Altogether, these results will contribute to control COVID19 pandemics.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , High-Throughput Nucleotide Sequencing/methods , Molecular Diagnostic Techniques/methods , COVID-19/virology , Humans , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Workflow
7.
BMJ Case Rep ; 14(3)2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1153655

ABSTRACT

Double filtration plasmapheresis (DFPP) is an apheretic technique that selectively removes high molecular weight substances using a plasma component filter. DFPP has been used to treat positive-sense RNA virus infections, mainly chronic hepatitis C virus (HCV) infection, because of its ability to directly eliminate viral particles from blood plasma from 2008 to about 2015, before direct-acting antiviral agents was marketed. This effect has been termed virus removal and eradication by DFPP. HCV is a positive-sense RNA virus similar to West Nile virus, dengue virus and the SARS and Middle East respiratory syndrome coronaviruses. SARS-CoV-2 is classified same viral species. These viruses are all classified in Family Flaviviridae which are family of single-stranded plus-stranded RNA viruses. Viral particles are 40-60 nm in diameter, enveloped and spherical in shape. We present a rare case of HCV removal where an RNA virus infection that copresented with virus-associated autoimmune hepatitis was eliminated using DFPP. Our results indicate that DFPP may facilitate prompt viraemia reduction and may have novel treatment applications for SARS-CoV-2, that is, use of therapeutic plasma exchange for fulminant COVID-19.


Subject(s)
Coinfection/therapy , Coinfection/virology , Hepatitis C, Chronic/therapy , Hepatitis, Autoimmune/therapy , Plasmapheresis/methods , Antiviral Agents/therapeutic use , COVID-19/complications , COVID-19/therapy , Drug Therapy, Combination , Female , Hepatitis C, Chronic/complications , Hepatitis, Autoimmune/complications , Humans , Interferon alpha-2/therapeutic use , Middle Aged , Polyethylene Glycols/therapeutic use , Positive-Strand RNA Viruses/isolation & purification , Ribavirin/therapeutic use , SARS-CoV-2 , Treatment Outcome , Viral Load
8.
J Infect ; 82(6): 253-259, 2021 06.
Article in English | MEDLINE | ID: covidwho-1152506

ABSTRACT

BACKGROUND: Human to human transmission of SARS-CoV-2 is driven by the respiratory route but little is known about the pattern and quantity of virus output from exhaled breath. We have previously shown that face-mask sampling (FMS) can detect exhaled tubercle bacilli and have adapted its use to quantify exhaled SARS-CoV-2 RNA in patients admitted to hospital with Coronavirus Disease-2019 (COVID-19). METHODS: Between May and December 2020, we took two concomitant FMS and nasopharyngeal samples (NPS) over two days, starting within 24 h of a routine virus positive NPS in patients hospitalised with COVID-19, at University Hospitals of Leicester NHS Trust, UK. Participants were asked to wear a modified duckbilled facemask for 30 min, followed by a nasopharyngeal swab. Demographic, clinical, and radiological data, as well as International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) mortality and deterioration scores were obtained. Exposed masks were processed by removal, dissolution and analysis of sampling matrix strips fixed within the mask by RT-qPCR. Viral genome copy numbers were determined and results classified as Negative; Low: ≤999 copies; Medium: 1000-99,999 copies and High ≥ 100,000 copies per strip for FMS or per 100 µl for NPS. RESULTS: 102 FMS and NPS were collected from 66 routinely positive patients; median age: 61 (IQR 49 - 77), of which FMS was positive in 38% of individuals and concomitant NPS was positive in 50%. Positive FMS viral loads varied over five orders of magnitude (<10-3.3 x 106 genome copies/strip); 21 (32%) patients were asymptomatic at the time of sampling. High FMS viral load was associated with respiratory symptoms at time of sampling and shorter interval between sampling and symptom onset (FMS High: median (IQR) 2 days (2-3) vs FMS Negative: 7 days (7-10), p = 0.002). On multivariable linear regression analysis, higher FMS viral loads were associated with higher ISARIC mortality (Medium FMS vs Negative FMS gave an adjusted coefficient of 15.7, 95% CI 3.7-27.7, p = 0.01) and deterioration scores (High FMS vs Negative FMS gave an adjusted coefficient of 37.6, 95% CI 14.0 to 61.3, p = 0.002), while NPS viral loads showed no significant association. CONCLUSION: We demonstrate a simple and effective method for detecting and quantifying exhaled SARS-CoV-2 in hospitalised patients with COVID-19. Higher FMS viral loads were more likely to be associated with developing severe disease compared to NPS viral loads. Similar to NPS, FMS viral load was highest in early disease and in those with active respiratory symptoms, highlighting the potential role of FMS in understanding infectivity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Masks , Middle Aged , RNA, Viral , Viral Load
9.
AJR Am J Roentgenol ; 216(3): 563-569, 2021 03.
Article in English | MEDLINE | ID: covidwho-1133848

ABSTRACT

Despite inferior vena cava (IVC) filter practice spanning over 50 years, interventionalists face many controversies in proper utilization and management. This article reviews recent literature and offers opinions on filter practices. IVC filtration is most likely to benefit patients at high risk of iatrogenic pulmonary embolus during endovenous intervention. Filters should be used selectively in patients with acute trauma or who are undergoing bariatric surgery. Retrieval should be attempted for perforating filter and fractured filter fragments when imaging suggests feasibility and favorable risk-to-benefit ratio. Antibiotic prophylaxis should be considered when removing filters with confirmed gastrointestinal penetration. Anticoagulation solely because of filter presence is not recommended except in patients with active malignancy. Anticoagulation while filters remain in place may decrease long-term filter complications in these patients. Patients with a filter and symptomatic IVC occlusion should be offered filter removal and IVC reconstruction. Physicians implanting filters may maximize retrieval by maintaining physician-patient relationships and scheduling follow-up at time of placement. Annual follow-up allows continued evaluation for removal or replacement as appropriate. Advanced retrieval techniques increase retrieval rates but require caution. Certain cases may require referral to experienced centers with additional retrieval resources. The views expressed should help guide clinical practice, future innovation, and research.


Subject(s)
Device Removal/methods , Prosthesis Implantation/methods , Pulmonary Embolism/prevention & control , Vena Cava Filters , Vena Cava, Inferior , Venous Thrombosis/prevention & control , Antibiotic Prophylaxis , Anticoagulants/administration & dosage , Bariatric Surgery , COVID-19/complications , Device Removal/instrumentation , Endovascular Procedures , Humans , Neoplasms/complications , Physician-Patient Relations , Practice Guidelines as Topic , Prosthesis Design , Recurrence , Risk Assessment , Vena Cava Filters/adverse effects , Venous Thrombosis/etiology , Wounds and Injuries/complications
10.
J Assist Reprod Genet ; 38(4): 785-789, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1116946

ABSTRACT

INTRODUCTION: Whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be detected in semen and transmitted sexually is a vital question that has, thus far, been inconclusive. Prior studies, with limited numbers, have included men in various stages of infection with most in the recovery phase of the illness. The timing of test results and severity of illness has made recruiting study participants a significant challenge. Our pilot study will examine semen from men with a recent diagnosis of COVID-19 as well as those in the convalescent phase to determine if SARS-CoV-2 can be detected and its relationship, if any, with the severity of the disease. METHODS: Eighteen men with a median age of 32 (range, 24-57) who tested positive for COVID-19 by rt-PCR analysis were enrolled and provided a semen sample. The study group demonstrated symptoms of COVID-19 ranging from asymptomatic to moderate and none required hospitalization. Samples were subjected to viral RNA extraction and then processed by real-time RT-PCR using the US Centers for Disease Control and Prevention (CDC, USA) panel of 2019-Novel Coronavirus (2019-nCoV) primers and probes to detect the presence of SARS-CoV-2 RNA. RESULTS: Length of time from diagnosis to providing a specimen ranged from 1 to 28 days (median, 6 days). Fifteen participants were symptomatic and three were asymptomatic, including recovering men, at the time of semen collection. No SARS-CoV-2 was detected in any of the semen samples. CONCLUSION: Based on these preliminary results and consistent with prior findings, we suggest SARS-CoV-2 is not present in semen during the acute or convalescent phase of COVID-19.


Subject(s)
Body Fluids/virology , COVID-19/virology , SARS-CoV-2/pathogenicity , Semen/virology , Adult , COVID-19/genetics , COVID-19/transmission , Cohort Studies , Female , Humans , Male , Middle Aged , Pilot Projects , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Spermatozoa/virology , Young Adult
11.
Sensors (Basel) ; 21(4)2021 Feb 21.
Article in English | MEDLINE | ID: covidwho-1112769

ABSTRACT

Infrared thermography for camera-based skin temperature measurement is increasingly used in medical practice, e.g., to detect fevers and infections, such as recently in the COVID-19 pandemic. This contactless method is a promising technology to continuously monitor the vital signs of patients in clinical environments. In this study, we investigated both skin temperature trend measurement and the extraction of respiration-related chest movements to determine the respiratory rate using low-cost hardware in combination with advanced algorithms. In addition, the frequency of medical examinations or visits to the patients was extracted. We implemented a deep learning-based algorithm for real-time vital sign extraction from thermography images. A clinical trial was conducted to record data from patients on an intensive care unit. The YOLOv4-Tiny object detector was applied to extract image regions containing vital signs (head and chest). The infrared frames were manually labeled for evaluation. Validation was performed on a hold-out test dataset of 6 patients and revealed good detector performance (0.75 intersection over union, 0.94 mean average precision). An optical flow algorithm was used to extract the respiratory rate from the chest region. The results show a mean absolute error of 2.69 bpm. We observed a computational performance of 47 fps on an NVIDIA Jetson Xavier NX module for YOLOv4-Tiny, which proves real-time capability on an embedded GPU system. In conclusion, the proposed method can perform real-time vital sign extraction on a low-cost system-on-module and may thus be a useful method for future contactless vital sign measurements.


Subject(s)
Deep Learning , Intensive Care Units , Thermography/instrumentation , Vital Signs , Humans
12.
Colorectal Dis ; 23(6): 1562-1568, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1096721

ABSTRACT

AIM: The COVID-19 pandemic has forced surgeons to adapt their standard procedures. The modifications introduced are designed to favour minimally invasive surgery. The positive results obtained with intracorporeal resection and anastomosis in the right colon and rectum prompt us to adapt these procedures to the left colon. We describe a 'don't touch the bowel' technique and outline the benefits to patients of the use of less surgically aggressive techniques and also to surgeons in terms of the lower emission of aerosols that might transmit the COVID-19 infection. METHODS: This was an observational study of intracorporeal resection and anastomosis in left colectomy. We describe the technical details of intracorporeal resection, end-to-end stapled anastomosis and extraction of the specimen through mini-laparotomy in the ideal location. RESULTS: We present preliminary results of 17 patients with left-sided colonic pathologies, 15 neoplasia and two diverticular disease, who underwent four left hemicolectomies, six sigmoidectomies and seven high anterior resections. Median operating time was 186 min (range 120-280). No patient required conversion to extracorporeal laparoscopy or open surgery. Median hospital stay was 4.7 days (range 3-12 days). There was one case of anastomotic leak managed with conservative treatment. CONCLUSION: Intracorporeal resection and end-to-end anastomosis with the possibility of extraction of the specimen by a mini-laparotomy in the ideal location may present benefits and also adapts well to the conditions imposed by the COVID-19 pandemic. Future comparative studies are needed to demonstrate these benefits with respect to extracorporeal anastomosis.


Subject(s)
COVID-19/prevention & control , Colectomy/methods , Colonic Diseases/surgery , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Laparoscopy/methods , Aged , Aged, 80 and over , Anastomosis, Surgical/methods , COVID-19/epidemiology , COVID-19/transmission , Female , Humans , Length of Stay , Male , Middle Aged , Operative Time
13.
Lancet Microbe ; 1(5): e218-e225, 2020 09.
Article in English | MEDLINE | ID: covidwho-1087372

ABSTRACT

BACKGROUND: In December, 2019, a novel zoonotic severe acute respiratory syndrome-related coronavirus emerged in China. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became pandemic within weeks and the number of human infections and severe cases is increasing. We aimed to investigate the susceptibilty of potential animal hosts and the risk of anthropozoonotic spill-over infections. METHODS: We intranasally inoculated nine fruit bats (Rousettus aegyptiacus), ferrets (Mustela putorius), pigs (Sus scrofa domesticus), and 17 chickens (Gallus gallus domesticus) with 105 TCID50 of a SARS-CoV-2 isolate per animal. Direct contact animals (n=3) were included 24 h after inoculation to test viral transmission. Animals were monitored for clinical signs and for virus shedding by nucleic acid extraction from nasal washes and rectal swabs (ferrets), oral swabs and pooled faeces samples (fruit bats), nasal and rectal swabs (pigs), or oropharyngeal and cloacal swabs (chickens) on days 2, 4, 8, 12, 16, and 21 after infection by quantitative RT-PCR (RT-qPCR). On days 4, 8, and 12, two inoculated animals (or three in the case of chickens) of each species were euthanised, and all remaining animals, including the contacts, were euthanised at day 21. All animals were subjected to autopsy and various tissues were collected for virus detection by RT-qPCR, histopathology immunohistochemistry, and in situ hybridisation. Presence of SARS-CoV-2 reactive antibodies was tested by indirect immunofluorescence assay and virus neutralisation test in samples collected before inoculation and at autopsy. FINDINGS: Pigs and chickens were not susceptible to SARS-CoV-2. All swabs, organ samples, and contact animals were negative for viral RNA, and none of the pigs or chickens seroconverted. Seven (78%) of nine fruit bats had a transient infection, with virus detectable by RT-qPCR, immunohistochemistry, and in situ hybridisation in the nasal cavity, associated with rhinitis. Viral RNA was also identified in the trachea, lung, and lung-associated lymphatic tissue in two animals euthanised at day 4. One of three contact bats became infected. More efficient virus replication but no clinical signs were observed in ferrets, with transmission to all three direct contact animals. Mild rhinitis was associated with viral antigen detection in the respiratory and olfactory epithelium. Prominent viral RNA loads of 0-104 viral genome copies per mL were detected in the upper respiratory tract of fruit bats and ferrets, and both species developed SARS-CoV-2-reactive antibodies reaching neutralising titres of up to 1/1024 after 21 days. INTERPRETATION: Pigs and chickens could not be infected intranasally by SARS-CoV-2, whereas fruit bats showed characteristics of a reservoir host. Virus replication in ferrets resembled a subclinical human infection with efficient spread. Ferrets might serve as a useful model for further studies-eg, testing vaccines or antivirals. FUNDING: German Federal Ministry of Food and Agriculture.


Subject(s)
COVID-19 , Chiroptera , Rhinitis , Animals , Antibodies, Viral , COVID-19/veterinary , Chickens/genetics , Chiroptera/genetics , Ferrets/genetics , RNA, Viral/genetics , SARS-CoV-2
14.
Artif Organs ; 45(6): E187-E194, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1087949

ABSTRACT

The coronavirus disease 2019 (COVID-19) has been shown to involve the gastrointestinal tract, which implies bacterial translocation and endotoxemia. The aim of this study was to evaluate the role of extracorporeal endotoxin removal by Polymyxin B hemoperfusion (PMX-HP), in the treatment of patients with COVID-19 and secondary bacterial infection. We conducted a subgroup analysis of a multicenter, multinational, prospective, and observational web-based database (EUPHAS2 registry). We included 12 patients with severe acute respiratory syndrome coronavirus 2 infection confirmed by real-time reverse transcriptase-polymerase chain reaction from nasal/oral swab, admitted to the intensive care unit between February and May 2020, who were affected by septic shock and received PMX-HP as per clinical indication of the attending physician. Septic shock was diagnosed in nine patients (75%), with a median time between symptoms onset and PMX-HP treatment of 16 (14-22) days. We identified Gram-negative bacteria in most of the microbiological cultures (N = 17, 65%), followed by Gram-positive bacteria in (N = 4, 15%), fungi (N = 3, 12%) and no growth (N = 2, 8%). Sequential Organ Failure Assessment (SOFA) score progressively improved over the next 120 hours following PMX-HP and it was associated with median endotoxin activity assay (EAA) decrease from 0.78 [0.70-0.92] at T0 to 0.60 [0.44-0.72] at T120 (P = .245). A direct correlation was observed between SOFA score and EAA. Lung Injury Score decreased and was associated with hemodynamic improvement over the same period. No statistically significant difference was observed for RIFLE score at each time point. Nine out of 12 patients (75%) required continuous renal replacement therapy because of acute kidney injury. In a series of consecutive COVID-19 patients with endotoxic shock, PMX-HP was associated with organ function recovery, hemodynamic improvement, and contemporary EAA level reduction. No PMX-HP-related complications were observed.


Subject(s)
Anti-Bacterial Agents/therapeutic use , COVID-19/complications , Endotoxemia/drug therapy , Endotoxemia/microbiology , Polymyxin B/therapeutic use , Shock, Septic/drug therapy , Shock, Septic/microbiology , Anti-Bacterial Agents/administration & dosage , Biomarkers/blood , COVID-19/mortality , Critical Illness , Endotoxemia/mortality , Female , Hospital Mortality , Humans , Male , Middle Aged , Organ Dysfunction Scores , Prospective Studies , Registries , SARS-CoV-2 , Shock, Septic/mortality
15.
Build Environ ; 193: 107659, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1077807

ABSTRACT

SARS-CoV-2 can spread by close contact through large droplet spray and indirect contact via contaminated objects. There is mounting evidence that it can also be transmitted by inhalation of infected saliva aerosol particles. These particles are generated when breathing, talking, laughing, coughing or sneezing. It can be assumed that aerosol particle concentrations should be kept low in order to minimize the potential risk of airborne virus transmission. This paper presents measurements of aerosol particle concentrations in a gym, where saliva aerosol production is pronounced. 35 test persons performed physical exercise and aerosol particle concentrations, CO2 concentrations, air temperature and relative humidity were obtained in the room of 886 m³. A separate test was used to discriminate between human endogenous and exogenous aerosol particles. Aerosol particle removal by mechanical ventilation and mobile air cleaning units was measured. The gym test showed that ventilation with air-change rate ACH = 2.2 h-1, i.e. 4.5 times the minimum of the Dutch Building Code, was insufficient to stop the significant aerosol concentration rise over 30 min. Air cleaning alone with ACH = 1.39 h-1 had a similar effect as ventilation alone. Simplified mathematical models were engaged to provide further insight into ventilation, air cleaning and deposition. It was shown that combining the above-mentioned ventilation and air cleaning can reduce aerosol particle concentrations with 80 to 90% , depending on aerosol size. This combination of existing ventilation supplemented with air cleaning is energy efficient and can also be applied for other indoor environments.

16.
Environ Sci Technol ; 55(4): 2674-2683, 2021 02 16.
Article in English | MEDLINE | ID: covidwho-1060741

ABSTRACT

It is imperative to understand the behavior of enveloped viruses during water treatment to better protect public health, especially in the light of evidence of detection of coronaviruses in wastewater. We report bench-scale experiments evaluating the extent and mechanisms of removal and/or inactivation of a coronavirus surrogate (ϕ6 bacteriophage) in water by conventional FeCl3 coagulation and Fe(0) electrocoagulation. Both coagulation methods achieved ∼5-log removal/inactivation of ϕ6 in 20 min. Enhanced removal was attributed to the high hydrophobicity of ϕ6 imparted by its characteristic phospholipid envelope. ϕ6 adhesion to freshly precipitated iron (hydr)oxide also led to envelope damage causing inactivation in both coagulation techniques. Fourier transform infrared spectroscopy revealed oxidative damages to ϕ6 lipids only for electrocoagulation consistent with electro-Fenton reactions. Monitoring ϕ6 dsRNA by a novel reverse transcription quantitative polymerase chain reaction (RT-qPCR) method quantified significantly lower viral removal/inactivation in water compared with the plaque assay demonstrating that relying solely on RT-qPCR assays may overstate human health risks arising from viruses. Transmission electron microscopy and computationally generated electron density maps of ϕ6 showed severe morphological damages to virus' envelope and loss of capsid volume accompanying coagulation. Both conventional and electro- coagulation appear to be highly effective in controlling enveloped viruses during surface water treatment.


Subject(s)
Iron , Water Purification , Electrocoagulation , Humans , Virus Inactivation , Waste Water
17.
Int J Infect Dis ; 102: 332-334, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1060485

ABSTRACT

The pathophysiology of severe coronavirus disease 2019 (COVID-19) is primarily a host immune interplay to virus invasion. The therapeutic options have been explored either against hyperinflammation from dysregulated adaptive immunity or direct virus neutralization using antibodies from convalescent plasma (CP) of a recovered patient. The therapeutic plasma exchange (TPE) for removal of excessive inflammatory cytokines has been tried with success in COVID-19. We undertook this exploratory study to evaluate safety and efficacy of TPE followed by CP transfusion in 14 patients with critical COVID-19 requiring invasive mechanical ventilation (IMV). All patients showed improvement in symptoms and decrease of inflammatory markers especially CRP (p = 0.03). 10 patients were liberated from IMV after a median of 5.5 (3-36) days, post sequential therapy. Day 7 and Day 28 mortality was 21.4% and 28.6% respectively. The median duration ICU and hospital LOS were 12 (5-42) days and 18 (12-47) days respectively. No patient developed transfusion-associated complications, but three patients developed secondary bacterial sepsis within 14 days of therapy, and one died. This case series demonstrated the sequential use of TPE followed by CP transfusion as a therapeutic option in critical COVID-19.


Subject(s)
Blood Component Transfusion , COVID-19/therapy , Plasma Exchange , Adult , Aged , COVID-19/immunology , COVID-19/mortality , Female , Humans , Immunization, Passive , Male , Middle Aged , Plasma/immunology , SARS-CoV-2/immunology
18.
Int J Pediatr Otorhinolaryngol ; 143: 110611, 2021 04.
Article in English | MEDLINE | ID: covidwho-1009585
19.
J Dent ; 105: 103576, 2021 02.
Article in English | MEDLINE | ID: covidwho-1002743

ABSTRACT

OBJECTIVES: To evaluate the mechanical ventilation rates of dental treatment rooms and assess the effectiveness of aerosol removal by mechanical ventilation and a portable air cleaner (PAC) with a high-efficiency particulate air (HEPA) filter. METHODS: Volumetric airflow were measured to assess air change rate per hour by ventilation (ACHvent). Equivalent ventilation provided by the PAC (ACHpac) was calculated based on its clean air delivery rate. Concentrations of 0.3, 0.5 and 1.0 µm aerosol particles were measured in 10 dental treatment rooms with various ventilation rates at baseline, after 5-min of incense burn, and after 30-min of observation with and without the PAC or ventilation system in operation. Velocities of aerosol removal were assessed by concentration decay constants for the 0.3 µm particles with ventilation alone (Kn) and with ventilation and PAC (Kn+pac), and by times needed to reach 95 % and 100 % removal of accumulated aerosol particles. RESULTS: ACHvent varied from 3 to 45. Kn and Kn+pac were correlated with ACHvent (r = 0.90) and combined ACHtotal (r = 0.81), respectively. Accumulated aerosol particles could not be removed by ventilation alone within 30-min in rooms with ACHvent<15. PAC reduced aerosol accumulation and accelerated aerosol removal, and accumulated aerosols could be completely removed in 4 to 12-min by ventilation combined with PAC. Effectiveness of the PAC was especially prominent in rooms with poor ventilation. Added benefit of PAC in aerosol removal was inversely correlated with ACHvent. CONCLUSIONS: Aerosol accumulation may occur in dental treatment rooms with poor ventilation. Addition of PAC with a HEPA filter significantly reduced aerosol accumulation and accelerated aerosol removal. CLINICAL SIGNIFICANCE: Addition of PAC with a HEPA filter improves aerosol removal in rooms with low ventilation rates.


Subject(s)
Respiration, Artificial , Ventilation , Aerosols , Dust
20.
J Am Soc Nephrol ; 31(10): 2475-2489, 2020 10.
Article in English | MEDLINE | ID: covidwho-982717

ABSTRACT

BACKGROUND: Although chloroquine, hydroxychloroquine, and quinine are used for a range of medical conditions, recent research suggested a potential role in treating COVID-19. The resultant increase in prescribing was accompanied by an increase in adverse events, including severe toxicity and death. The Extracorporeal Treatments in Poisoning (EXTRIP) workgroup sought to determine the effect of and indications for extracorporeal treatments in cases of poisoning with these drugs. METHODS: We conducted systematic reviews of the literature, screened studies, extracted data, and summarized findings following published EXTRIP methods. RESULTS: A total of 44 studies (three in vitro studies, two animal studies, 28 patient reports or patient series, and 11 pharmacokinetic studies) met inclusion criteria regarding the effect of extracorporeal treatments. Toxicokinetic or pharmacokinetic analysis was available for 61 patients (13 chloroquine, three hydroxychloroquine, and 45 quinine). Clinical data were available for analysis from 38 patients, including 12 with chloroquine toxicity, one with hydroxychloroquine toxicity, and 25 with quinine toxicity. All three drugs were classified as non-dialyzable (not amenable to clinically significant removal by extracorporeal treatments). The available data do not support using extracorporeal treatments in addition to standard care for patients severely poisoned with either chloroquine or quinine (strong recommendation, very low quality of evidence). Although hydroxychloroquine was assessed as being non-dialyzable, the clinical evidence was not sufficient to support a formal recommendation regarding the use of extracorporeal treatments for this drug. CONCLUSIONS: On the basis of our systematic review and analysis, the EXTRIP workgroup recommends against using extracorporeal methods to enhance elimination of these drugs in patients with severe chloroquine or quinine poisoning.


Subject(s)
Chloroquine/poisoning , Coronavirus Infections/drug therapy , Hydroxychloroquine/poisoning , Pneumonia, Viral/drug therapy , Practice Guidelines as Topic , Quinine/poisoning , Renal Dialysis/methods , COVID-19 , Chloroquine/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Female , Humans , Hydroxychloroquine/therapeutic use , Male , Outcome Assessment, Health Care , Pandemics/statistics & numerical data , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Poisoning/therapy , Quinine/therapeutic use , Renal Dialysis/statistics & numerical data , Risk Assessment , United States
SELECTION OF CITATIONS
SEARCH DETAIL