ABSTRACT
BACKGROUND: At the end of 2019, the new Coronavirus disease 2019 (COVID-19) strain causing severe acute respiratory syndrome swept the world. From November 2019 till February 2021, this virus infected nearly 104 million, with more than two million deaths and about 25 million active cases. This has prompted scientists to discover effective drugs to combat this pandemic. AREA COVERED: Drug repurposing is the magic bullet for treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). Therefore, several drugs have been investigated in silico, in vitro, as well as through human trials such as anti-SARS-CoV2 agents, or to prevent the complications resulting from the virus. In this review, the mechanisms of action of different therapeutic strategies are summarized. According to the WHO, different classes of drugs can be used, including anti-malarial, antiviral, anti-inflammatory, and anti-coagulant drugs, as well as angiotensin-converting enzyme inhibitors, antibiotics, vitamins, zinc, neutralizing antibodies, and convalescent plasma therapy. Recently, there are some vaccines which are approved against SARS-CoV2. EXPERT OPINION: A complete understanding of the structure and function of all viral proteins that play a fundamental role in viral infection, which contribute to the therapeutic intervention and the development of vaccine in order to reduce the mortality rate. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40005-021-00520-4.
ABSTRACT
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus strain and the causative agent of COVID-19 was emerged in Wuhan, China, in December 2019 [1]. This pandemic situation and magnitude of suffering have led to global effort to find out effective measures for discovery of new specific drugs and vaccines to combat this deadly disease. In addition to many initiatives to develop vaccines for protective immunity against SARS-CoV-2, some of which are at various stages of clinical trials, researchers worldwide are currently using available conventional therapeutic drugs with the potential to combat the disease effectively in other viral infections and it is believed that these antiviral drugs could act as a promising immediate alternative. Remdesivir (RDV), a broad-spectrum anti-viral agent, initially developed for the treatment of Ebola virus (EBOV) and known to showed promising efficiency in in vitro and in vivo studies against SARS and MERS coronaviruses, is now being investigated against SARS-CoV-2. On May 1, 2020, The U.S. Food and Drug Administration (FDA) granted Emergency Use Authorization (EUA) for RDV to treat COVID- 19 patients [2]. A number of multicentre clinical trials are on-going to check the safety and efficacy of RDV for the treatment of COVID-19. Results of published double blind, and placebo-controlled trial on RDV against SARS-CoV-2, showed that RDV administration led to faster clinical improvement in severe COVID-19 patients compared to placebo. This review highlights the available knowledge about RDV as a therapeutic drug for coronaviruses and its preclinical and clinical trials against COVID-19.
Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/adverse effects , Alanine/pharmacology , Alanine/therapeutic use , Animals , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Humans , Randomized Controlled Trials as TopicABSTRACT
BACKGROUND: The presence of neutralizing antibodies (NAbs) is an indicator of protective immunity for most viral infections. A newly developed surrogate viral neutralization assay (sVNT) offers the ability to detect total receptor binding domain-targeting NAbs in an isotype-independent manner, increasing the test sensitivity. Thus, specimens with low IgM/ IgG antibody levels showed strong neutralization activity in sVNT. METHODS: This study aimed to measure the %inhibition of NAbs measured by sVNT in PCR-confirmed COVID-19 patients. The sensitivity of sVNT for the diagnosis of SARS-CoV-2 infection and its kinetics were determined. RESULTS: Ninety-seven patients with PCR-confirmed SARS-CoV-2 infection were included in this study. Majority of the patients were 21-40 years old (67%) and 63% had mild symptoms. The sensitivity of sVNT for the diagnosis of SARS-CoV-2 infection was 99% (95% confidence interval (CI) 94.4-100%) and the specificity was 100% (95% CI 98.3-100%). The negative predictive value of sVNT from the samples collected before and after 7 days of symptom onset was 99.5% (95% CI 97.4-100%) and 100% (95% CI 93.8-100%), respectively. The level of inhibition at days 8-14 were significantly higher than days 0-7 (p<0.001). The median %inhibition values by severity of COVID-19 symptoms were 79.9% (interquartile range (IQR) 49.7-91.8%); 89.0% (IQR 71.2-92.4%); and 86.6% (IQR 69.5-92.8%), for mild, moderate and severe/critical symptoms respectively. The median level of sVNT %inhibition of severe was significantly higher than the mild group (p = 0.05). CONCLUSION: The sVNT is a practical and robust serological test for SARS-CoV-2 infection and does not require specialized biosafety containment. It can be used clinically to aid diagnosis in both early and late infection especially in cases when the real-time RT-PCR results in weakly negative or weakly positive, and to determine the protective immune response from SARS-CoV-2 infection in patients.
Subject(s)
Antibodies, Neutralizing/isolation & purification , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Neutralization Tests/methods , SARS-CoV-2/physiology , Adult , Antibodies, Neutralizing/analysis , Antibodies, Viral/isolation & purification , COVID-19/immunology , COVID-19 Nucleic Acid Testing , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Serologic Tests , Spike Glycoprotein, Coronavirus/chemistry , Thailand , Young AdultABSTRACT
The emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant global morbidity, mortality, and societal disruption. A better understanding of virus-host interactions may potentiate therapeutic insights toward limiting this infection. Here we investigated the dynamics of the systemic response to SARS-CoV-2 in hamsters by histological analysis and transcriptional profiling. Infection resulted in consistently high levels of virus in the upper and lower respiratory tracts and sporadic occurrence in other distal tissues. A longitudinal cohort revealed a wave of inflammation, including a type I interferon (IFN-I) response, that was evident in all tissues regardless of viral presence but was insufficient to prevent disease progression. Bolstering the antiviral response with intranasal administration of recombinant IFN-I reduced viral disease, prevented transmission, and lowered inflammation in vivo. This study defines the systemic host response to SARS-CoV-2 infection and supports use of intranasal IFN-I as an effective means of early treatment.
Subject(s)
COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Interferon Type I/metabolism , SARS-CoV-2/physiology , Animals , Biopsy , COVID-19/genetics , COVID-19/immunology , Cricetinae , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Profiling , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Type I/genetics , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Organ Specificity/immunology , Virulence , Virus Replication/immunologyABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused corona virus disease 2019 (COVID-19) pandemic and led to mass casualty. Even though much effort has been put into development of vaccine and treatment methods to combat COVID-19, no safe and efficient cure has been discovered. Drug repurposing or drug repositioning which is a process of investigating pre-existing drug candidates for novel applications outside their original medical indication can speed up the drug development process. Raloxifene is a selective estrogen receptor modulator (SERM) that has been approved by FDA in 1997 for treatment and prevention of postmenopausal osteoporosis and cancer. Recently, raloxifene demonstrates efficacy in treating viral infections by Ebola, influenza A, and hepatitis C viruses and shows potential for drug repurposing for the treatment of SARS-CoV-2 infection. This review will provide an overview of raloxifene's mechanism of action as a SERM and present proposed mechanisms of action in treatment of viral infections.
Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Repositioning , Raloxifene Hydrochloride/therapeutic use , SARS-CoV-2/drug effects , Estrogen Antagonists/therapeutic use , Estrogens/agonists , Humans , Molecular Docking Simulation , Osteoporosis, Postmenopausal/drug therapy , Selective Estrogen Receptor Modulators/therapeutic useABSTRACT
Human infection by the SARS-CoV-2 is causing the current COVID-19 pandemic. With the growing numbers of cases and deaths, there is an urgent need to explore pathophysiological hypotheses in an attempt to better understand the factors determining the course of the disease. Here, we hypothesize that COVID-19 severity and its symptoms could be related to transmembrane and soluble Angiotensin-converting enzyme 2 (tACE2 and sACE2); Angiotensin II (ANG II); Angiotensin 1-7 (ANG 1-7) and angiotensin receptor 1 (AT1R) activation levels. Additionally, we hypothesize that an early peak in ANG II and ADAM-17 might represent a physiological attempt to reduce viral infection via tACE2. This viewpoint presents: (1) a brief introduction regarding the renin-angiotensin-aldosterone system (RAAS), detailing its receptors, molecular synthesis, and degradation routes; (2) a description of the proposed early changes in the RAAS in response to SARS-CoV-2 infection, including biological scenarios for the best and worst prognoses; and (3) the physiological pathways and reasoning for changes in the RAAS following SARS-CoV-2 infection.
Subject(s)
Angiotensin II/metabolism , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/physiology , COVID-19/immunology , Host-Pathogen Interactions/immunology , Humans , Immunity , Renin-Angiotensin SystemABSTRACT
Coronavirus disease 2019 (COVID-19) is a recently emerged pandemic caused by a novel virus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This disease is communicable and mainly affects the respiratory tract. The outbreak of this disease has greatly influenced human health and economic activities worldwide. The absence of any medication for this infection highlights the urgent need for the development of alternative methods for managing the spread of the disease. Our immune system operates based on a complex array of cells, processes, and chemicals that continuously protect our body from invading pathogens, including viruses, toxins, and bacteria. The present study was conducted to perform a comprehensive review of all dietary treatments for boosting immunity against viral infections. No study was found to explicitly support the use of any healthy foods or supplements to protect against COVID-19. However, this study offers details on well-researched functional foods and supplements that typically improve the immune response, which could be helpful against this newly emerged pandemic.
Subject(s)
COVID-19 , SARS-CoV-2 , Disease Outbreaks/prevention & control , Functional Food , Humans , PandemicsABSTRACT
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor that maintains the cell's redox balance state and reduces inflammation in different adverse stresses. Under the oxidative stress, Nrf2 is separated from Kelch-like ECH-associated protein 1 (Keap1), which is a key sensor of oxidative stress, translocated to the nucleus, interacts with the antioxidant response element (ARE) in the target gene, and then activates the transcriptional pathway to ameliorate the cellular redox condition. Curcumin is a yellow polyphenolic curcuminoid from Curcuma longa (turmeric) that has revealed a broad spectrum of bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Curcumin significantly increases the nuclear expression levels and promotes the biological effects of Nrf2 via the interaction with Cys151 in Keap1, which makes it a marvelous therapeutic candidate against a broad range of oxidative stress-related diseases, including type 2 diabetes (T2D), neurodegenerative diseases (NDs), cardiovascular diseases (CVDs), cancers, viral infections, and more recently SARS-CoV-2. Currently, the multifactorial property of the diseases and lack of adequate medical treatment, especially in viral diseases, result in developing new strategies to finding potential drugs. Curcumin potentially opens up new views as possible Nrf2 activator. However, its low bioavailability that is due to low solubility and low stability in the physiological conditions is a significant challenge in the field of its efficient and effective utilization in medicinal purposes. In this review, we summarized recent studies on the potential effect of curcumin to activate Nrf2 as the design of potential drugs for a viral infection like SARS-Cov2 and acute and chronic inflammation diseases in order to improve the cells' protection.
ABSTRACT
BACKGROUND: During the Covid-19 outbreak, a recurrent subject in scientific literature has been brought back into discussion: whether surgical masks provide a sufficient protection against airborne SARS-CoV-2 infections. OBJECTIVES: The objective of this review is to summarize the available studies which have compared the respective effectiveness of surgical masks and filtering facepiece respirators for the prevention of infections caused by viruses that are transmitted by the respiratory tract. METHODS: The relevant scientific literature was identified by querying the PubMed database with a combination of search strings. The narrower search string "(surgical mask *) AND (respirator OR respirators)" included all the relevant articles retrieved using broader search strategies. Of all the relevant articles found, seven systematic reviews were selected and examined. RESULTS: The currently available scientific evidence seems to suggest that surgical masks and N95 respirators/FFP2 confer an equivalent degree of protection against airborne viral infections. DISCUSSION: Since surgical masks are less expensive than N95 respirators but seem to be as effective in protecting against airborne infection and they are also more comfortable for the user, requiring less respiratory work, they should be the standard protective device for health care workers and especially for workers who carry out non-medical jobs. Filtering facepiece respirators, whose extended use is less comfortable for the wearer, may be preferred for procedures which require greater protection for a shorter time.
Subject(s)
Coronavirus Infections/prevention & control , Masks , Occupational Exposure/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Protective Devices , Betacoronavirus , COVID-19 , Humans , SARS-CoV-2ABSTRACT
Carbohydrate-receptor interactions are often involved in the docking of viruses to host cells, and this docking is a necessary step in the virus life cycle that precedes infection and, ultimately, replication. Despite the conserved structures of the glycans involved in docking, they are still considered "undruggable", meaning these glycans are beyond the scope of conventional pharmacological strategies. Recent advances in the development of synthetic carbohydrate receptors (SCRs), small molecules that bind carbohydrates, could bring carbohydrate-receptor interactions within the purview of druggable targets. Here we discuss the role of carbohydrate-receptor interactions in viral infection, the evolution of SCRs, and recent results demonstrating their ability to prevent viral infections in vitro. Common SCR design strategies based on boronic ester formation, metal chelation, and noncovalent interactions are discussed. The benefits of incorporating the idiosyncrasies of natural glycan-binding proteins-including flexibility, cooperativity, and multivalency-into SCR design to achieve nonglucosidic specificity are shown. These studies into SCR design and binding could lead to new strategies for mitigating the grave threat to human health posed by enveloped viruses, which are heavily glycosylated viroids that are the cause of some of the most pressing and untreatable diseases, including HIV, Dengue, Zika, influenza, and SARS-CoV-2.
Subject(s)
Antiviral Agents/chemistry , Drug Design , Receptors, Artificial/chemistry , Receptors, Virus/metabolism , Small Molecule Libraries/chemistry , Virus Attachment/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , COVID-19/metabolism , Carbohydrate Metabolism/drug effects , Chlorocebus aethiops , Humans , Molecular Docking Simulation , Receptors, Artificial/chemical synthesis , Receptors, Virus/antagonists & inhibitors , SARS-CoV-2/drug effects , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Vero Cells , Virus Diseases/drug therapy , Virus Diseases/metabolism , Zika Virus/drug effects , Zika Virus Infection/drug therapy , Zika Virus Infection/metabolism , COVID-19 Drug TreatmentABSTRACT
Novel coronavirus SARS-CoV-2, designated as COVID-19 by the World Health Organization (WHO) on the February 11, 2020, is one of the highly pathogenic ß-coronaviruses which infects human. Early diagnosis of COVID-19 is the most critical step to treat infection. The diagnostic tools are generally molecular methods, serology and viral culture. Recently CRISPR-based method has been investigated to diagnose and treat coronavirus infection. The emergence of 2019-nCoV during the influenza season, has led to the extensive use of antibiotics and neuraminidase enzyme inhibitors, taken orally and intravenously. Currently, antiviral inhibitors of SARS and MERS spike proteins, neuraminidase inhibitors, anti-inflammatory drugs and EK1 peptide are the available therapeutic options for SARS-CoV-2 infected individuals. In addition, Chloroquine, which was previously used for malarial and autoimmune disease, has shown efficacy in the 2019-nCoV infection treatment. In severe hypoxaemia, a combination of antibiotics, α-interferon, lopinavir and mechanical ventilation can effectively mitigate the symptoms. Comprehensive knowledge on the innate and adaptive immune responses, will make it possible to propose potent antiviral drugs with their effective therapeutic measures for the prevention of viral infection. This therapeutic strategy will help patients worldwide to protect themselves against severe and fatal viral infections, that potentially can evolve and develop drug resistance, and to reduce mortality rates.
Subject(s)
COVID-19 Drug Treatment , COVID-19/diagnosis , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/virology , COVID-19 Testing , CRISPR-Cas Systems , Host-Pathogen Interactions , Humans , Immunity , Phylogeny , SARS-CoV-2/ultrastructureABSTRACT
Sphingosine has been shown to prevent and eliminate bacterial infections of the respiratory tract, but it is unknown whether sphingosine can be also employed to prevent viral infections. To test this hypothesis, we analyzed whether sphingosine regulates the infection of cultured and freshly isolated ex vivo human epithelial cells with pseudoviral particles expressing SARS-CoV-2 spike (pp-VSV-SARS-CoV-2 spike) that served as a bona fide system mimicking SARS-CoV-2 infection. We demonstrate that exogenously applied sphingosine suspended in 0.9% NaCl prevents cellular infection with pp-SARS-CoV-2 spike. Pretreatment of cultured Vero epithelial cells or freshly isolated human nasal epithelial cells with low concentrations of sphingosine prevented adhesion of and infection with pp-VSV-SARS-CoV-2 spike. Mechanistically, we demonstrate that sphingosine binds to ACE2, the cellular receptor of SARS-CoV-2, and prevents the interaction of the receptor-binding domain of the viral spike protein with ACE2. These data indicate that sphingosine prevents at least some viral infections by interfering with the interaction of the virus with its receptor. Our data also suggest that further preclinical and finally clinical examination of sphingosine is warranted for potential use as a prophylactic or early treatment for coronavirus disease-19.
Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Sphingosine/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Cells, Cultured , Chlorocebus aethiops , HEK293 Cells , Humans , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Protein Binding , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effectsABSTRACT
The interest on the role of angiogenesis in the pathogenesis and progression of human interstitial lung diseases is growing, with conventional sprouting (SA) and non-sprouting intussusceptive angiogenesis (IA) being differently represented in specific pulmonary injury patterns. The role of viruses as key regulators of angiogenesis is known for several years. A significantly enhanced amount of new vessel growth, through a mechanism of IA, has been reported in lungs of patients who died from Covid-19; among the angiogenesis-related genes, fibroblast growth factor 2 (FGF2) was found to be upregulated. These findings are intriguing. FGF2 plays a role in some viral infections: the upregulation is involved in the MERS-CoV-induced strong apoptotic response crucial for its highly lytic replication cycle in lung cells, whereas FGF2 is protective against the acute lung injury induced by H1N1 influenza virus, improving the lung wet-to-dry weight ratio. FGF2 plays a role also in regulating IA, acting on pericytes (crucial for the formation of intraluminal pillars), and endothelium, and FGF2-induced angiogenesis may be promoted by inflammation and hypoxia. IA is a faster and probably more efficient process than SA, able to modulate vascular remodeling through pruning of redundant or inefficient blood vessels. We can speculate that IA might have the function of restoring a functional vascular plexus consequently to extensive endothelialitis and alveolar capillary micro-thrombosis observed in Covid-19. Anti-Vascular endothelial growth factor (anti-VEGF) strategies are currently investigated for treatment of severe and critically ill Covid-19 patients, but also FGF2, and its expression and/or signaling, might represent a promising target.
Subject(s)
Coronavirus Infections/pathology , Fibroblast Growth Factor 2/metabolism , Neovascularization, Pathologic/virology , Pneumonia, Viral/pathology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/etiology , Drug Delivery Systems , Fibroblast Growth Factor 2/antagonists & inhibitors , Humans , Intussusception/virology , Neovascularization, Pathologic/genetics , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/etiologyABSTRACT
Despite continued advances and developments in neonatal medicine, neonatal sepsis is the third leading cause of neonatal mortality and a major public health problem, especially in developing countries. Sepsis accounts for mortality for almost 50% of global children under 5 years of age.Over the past 50 years, there have been many advances in the diagnosis, prevention, and treatment of neonatal infections. The diagnostic advances include better culture techniques that permit more rapid confirmation of the diagnosis, advent of polymerase chain reaction (PCR) to rapidly diagnose viral infections, use of biologic markers indicating evidence of infection, and a better understanding of immunoglobulin markers of infection. From a therapeutic stand point, there have been a variety of antibiotics, antifungals, and antiviral agents, better approaches to prevent sepsis, specific immunotherapy, for example, respiratory syncytial virus (RSV); bundled approach to prevention of deep-line infection and better antibiotic stewardship, leading to earlier discontinuation of antibiotic therapy.Hand hygiene remains the benchmark and gold standard for late-onset sepsis prevention. The challenge has been that each decade, newer resistant bacteria dominate as the cause of sepsis and newer viruses emerge, for example, human immunodeficiency virus, zika virus, and novel coronavirus disease 2019.Future treatment options might include stem cell therapy, other antimicrobial protein and peptides, and targeting of pattern recognition receptors in an effort to prevent and/or treat sepsis in this vulnerable population. Also, the microbiome of premature infants has a smaller proportion of beneficial bacteria and higher numbers of pathogenic bacteria compared with term infants, likely owing to higher frequencies of cesarean sections, antibiotic use, exposure to the hospital environment, and feeding nonhuman milk products. Modifying the microbiome with more mother's milk and shorter duration of antibiotics in noninfected babies should be a goal. KEY POINTS: · Neonatal sepsis remains a leading cause of mortality.. · Challenges include bacterial resistance and newer viruses.. · Future treatments may include newer antibiotics/antivirals and stem cell therapy..
Subject(s)
Anti-Bacterial Agents/therapeutic use , Intensive Care Units, Neonatal , Neonatal Sepsis/mortality , Neonatal Sepsis/prevention & control , Antiviral Agents/therapeutic use , Drug Resistance, Bacterial , Female , Humans , Infant , Infant Mortality , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/mortality , Infant, Premature, Diseases/prevention & control , Neonatal Sepsis/drug therapyABSTRACT
The outbreak of coronavirus disease 2019 (COVID-19) requires urgent need for effective treatment. Severe COVID-19 is characterized by a cytokine storm syndrome with subsequent multiple organ failure (MOF) and acute respiratory distress syndrome (ARDS), which may lead to intensive care unit and increased risk of death. While awaiting a vaccine, targeting COVID-19-induced cytokine storm syndrome appears currently as the efficient strategy to reduce the mortality of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The stress-responsive enzyme, heme oxygenase-1 (HO-1) is largely known to protect against inflammatory response in animal models. HO-1 is induced by hemin, a well-tolerated molecule, used for decades in the treatment of acute intermittent porphyria. Experimental studies showed that hemin-induced HO-1 mitigates cytokine storm and lung injury in mouse models of sepsis and renal ischemia-reperfusion injury. Furthermore, HO-1 may also control numerous viral infections by inhibiting virus replication. In this context, we suggest the hypothesis that HO-1 cytoprotective pathway might be a promising target to control SARS-CoV-2 infection and mitigate COVID-19-induced cytokine storm and subsequent ARDS.
Subject(s)
COVID-19 Drug Treatment , COVID-19/metabolism , Cytokine Release Syndrome/drug therapy , Heme Oxygenase-1/metabolism , Respiratory Distress Syndrome/physiopathology , Animals , Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Vaccines , Critical Care , Cytokine Release Syndrome/prevention & control , Cytokines/metabolism , Hemin/metabolism , Humans , Inflammation , Interleukin-6/metabolism , Models, Theoretical , Polymorphism, Genetic , Respiratory Distress Syndrome/virologyABSTRACT
The world is facing the rising emergency of SARS-CoV-2. The outbreak of COVID-19 has caused a global public health and economic crisis.Recent epidemiological studies have shown that a possible association of BCG vaccination program with decreased COVID-19-related risks, suggesting that BCG may provide protection against COVID-19. Non-specific protection against viral infections is considered as a main mechanism of BCG and clinical trials to determine whether BCG vaccine can protect healthcare workers from the COVID-19 are currently underway. We hypothesized that BCG may carry similar T cell epitopes with SARS-CoV-2 and evaluated the hypothesis by utilizing publicly available database and computer algorithms predicting human leukocyte antigen (HLA) class I-binding peptides. We foundthatBCG contains similar 9-amino acid sequences with SARS-CoV-2. These closely-related peptides had moderate to high binding affinity for multiple common HLA class I molecules, suggesting that cross-reactive T cells against SARS-CoV-2 could be generated by BCG vaccination.
Subject(s)
BCG Vaccine/immunology , Betacoronavirus/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Amino Acid Sequence/genetics , Betacoronavirus/genetics , COVID-19 , Cross Reactions/immunology , Epitopes, T-Lymphocyte/genetics , Histocompatibility Antigens Class I/immunology , Humans , Mycobacterium bovis/genetics , Mycobacterium bovis/immunology , SARS-CoV-2 , Viral Vaccines/immunologyABSTRACT
There are worldwide urgency, efforts, and uncertainties for the discovery of a vaccine against SARS CoV2. If successful, it will take its own time till useful for the humans. Till the specific vaccine is available, there are evidences for repurposing existing other vaccines. It is observed that countries having a routine BCG vaccination programme, have shown to have lower incidence of COVID-19, suggesting some protective mechanisms of BCG against COVID-19 in such countries. In countries like India despite vast population density and other adversities, and growing numbers of COVID19 infections, the mortality rate and severity of COVID has been low in comparison to some TB non-endemic countries (like Europe and USA). In addition, there are evidences that BCG vaccination offers partial protection and survival in low-income countries where tuberculosis is prevalent. The nonspecific effects (NSEs) of immune responses induced by BCG vaccination protect against other infections seem to be due to its immunological memory eliciting lymphocytes response and trained immunity. The protective effect on other viral infection in humans are believed to be mediated by heterologous lymphocyte activation and the initiation of innate immune memory may be applicable to SARS CoV2. The BCG vaccination at birth does not have a protective effect beyond childhood against COVID-19. In adults, there might be other factors dampening the virulence and pathogenicity of COVID-19. In the TB endemic countries like India, with high population density, similar to BCG vaccination, the environmental Mycobacteria might be imparting some immune-protection from severity and deaths of COVID-19.
Subject(s)
BCG Vaccine/therapeutic use , COVID-19/prevention & control , Humans , Immunity, Innate , Immunologic Memory , Virus Diseases/prevention & controlABSTRACT
OBJECTIVES: Stage 1: To evaluate the safety and efficacy of candidate agents as add-on therapies to standard of care (SoC) in patients hospitalised with COVID-19 in a screening stage. Stage 2: To confirm the efficacy of candidate agents selected on the basis of evidence from Stage 1 in patients hospitalised with COVID-19 in an expansion stage. TRIAL DESIGN: ACCORD is a seamless, Phase 2, adaptive, randomised controlled platform study, designed to rapidly test candidate agents in the treatment of COVID-19. Designed as a master protocol with each candidate agent being included via its own sub-protocol, initially randomising equally between each candidate and a single contemporaneous SoC arm (which can adapt into 2:1). Candidate agents currently include bemcentinib, MEDI3506, acalabrutinib, zilucoplan and nebulised heparin. For each candidate a total of 60 patients will be recruited in Stage 1. If Stage 1 provides evidence of efficacy and acceptable safety the candidate will enter Stage 2 where a total of approximately 126 patients will be recruited into each study arm sub-protocol. Enrollees and outcomes will not be shared across the Stages; the endpoint, analysis and sample size for Stage 2 may be adjusted based on evidence from Stage 1. Additional arms may be added as new potential candidate agents are identified via candidate agent specific sub-protocols. PARTICIPANTS: The study will include hospitalised adult patients (≥18 years) with confirmed SARS-CoV-2 infection, the virus that causes COVID-19, that clinically meet Grades 3 (hospitalised - mild disease, no oxygen therapy), Grades 4 (hospitalised, oxygen by mask or nasal prongs) and 5 (hospitalised, non-invasive ventilation or high flow oxygen) of the WHO Working Group on the Clinical Characteristics of COVID-19 9-point category ordinal scale. Participants will be recruited from England, Northern Ireland, Wales and Scotland. INTERVENTION AND COMPARATOR: Comparator is current standard of care (SoC) for the treatment of COVID-19. Current candidate experimental arms include bemcentinib, MEDI3506, acalabrutinib, zilucoplan and nebulised heparin with others to be added over time. Bemcentinib could potentially reduce viral infection and blocks SARS-CoV-2 spike protein; MEDI3506 is a clinic-ready anti-IL-33 monoclonal antibody with the potential to treat respiratory failure caused by COVID; acalabrutinib is a BTK inhibitor which is anti-viral and anti-inflammatory; zilucoplan is a complement C5 inhibitor which may block the severe inflammatory response in COVID-19 and; nebulised heparin has been shown to bind with the spike protein. ACCORD is linked with the UK national COVID therapeutics task force to help prioritise candidate agents. MAIN OUTCOMES: Time to sustained clinical improvement of at least 2 points (from randomisation) on the WHO 9-point category ordinal scale, live discharge from the hospital, or considered fit for discharge (a score of 0, 1, or 2 on the ordinal scale), whichever comes first, by Day 29 (this will also define the "responder" for the response rate analyses). RANDOMISATION: An electronic randomization will be performed by Cenduit using Interactive Response Technology (IRT). Randomisation will be stratified by baseline severity grade. Randomisation will proceed with an equal allocation to each arm and a contemporaneous SoC arm (e.g. 1:1 if control and 1 experimental arm; 1:1:1 if two experimental candidate arms etc) but will be reviewed as the trial progresses and may be changed to 2:1 in favour of the candidate agents. BLINDING (MASKING): The trial is open label and no blinding is currently planned in the study. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): This will be in the order of 60 patients per candidate agent for Stage 1, and 126 patients for Stage 2. However, sample size re-estimation may be considered after Stage 1. It is estimated that up to 1800 patients will participate in the overall study. TRIAL STATUS: Master protocol version ACCORD-2-001 - Master Protocol (Amendment 1) 22nd April 2020, the trial has full regulatory approval and recruitment is ongoing in the bemcentinib (first patient recruited 6/5/2020), MEDI3506 (first patient recruited 19/5/2020), acalabrutinib (first patient recruited 20/5/2020) and zilucoplan (first patient recruited 19/5/2020) candidates (and SoC). The recruitment dates of each arm will vary between candidate agents as they are added or dropped from the trial, but will have recruited and reported within a year. TRIAL REGISTRATION: EudraCT 2020-001736-95 , registered 28th April 2020. FULL PROTOCOL: The full protocol (Master Protocol with each of the candidate sub-protocols) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.
Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Antiviral Agents/adverse effects , Benzamides/therapeutic use , COVID-19 , Hospitalization , Humans , Pandemics , Pyrazines/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Standard of Care , COVID-19 Drug TreatmentABSTRACT
Estrogen hormone acts as a potential key player in providing immunity against certain viral infection. It is found to be associated in providing immunity against acute lungs inflammation and influenza virus by modulating cytokines storm and mediating adaptive immune alterations respectively. Women are less affected by SARS-CoV-2 infection because of the possible influence of estrogen hormone as compared to men. We hypothesized that SARS-CoV-2 causes stress in endoplasmic reticulum (ER) which in turn aggravates the infection, estrogen hormone might play key role in decreasing ER stress by activating estrogen mediated signaling pathways, results in unfolded protein response (UPR). Estrogen governs degradation of phosphotidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol triphosphate (IP3) with the help of phospholipase C. IP3 start in-fluxing Ca+2 ions that helps in UPR activation. To support our hypothesis, we analyzed the data of 162,392 COVID-19 patients to determine the relation of this disease with gender. We observed that 26% of women and 74% of men were affected by SARS-CoV-2. It indicated that women are less affected because of the possible influence of estrogen hormone in women.
Subject(s)
Betacoronavirus , Coronavirus Infections/physiopathology , Endoplasmic Reticulum Stress/physiology , Estrogens/physiology , Models, Biological , Pandemics , Pneumonia, Viral/physiopathology , Adult , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Datasets as Topic/statistics & numerical data , Diglycerides/metabolism , Disease Resistance , Female , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Male , Middle Aged , Pakistan/epidemiology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , SARS-CoV-2 , Sex Characteristics , Sex Distribution , Signal Transduction , Type C Phospholipases/metabolism , Unfolded Protein Response , Viral Proteins/biosynthesis , Viral Proteins/geneticsABSTRACT
The pandemic outbreak of COVID-19, caused by coronavirus SARS-CoV-2, created an unprecedented challenge to global public health system and biomedical community. Vaccination is an effective way to prevent viral infection, stop its transmission, and develop herd immunity. Rapid progress and advances have been made to date in the development of COVID-19 vaccines. Currently, more than 115 vaccine candidates have been developed from different technology platforms with several of them in clinical trials. Most of those vaccine candidates are developed based on the experience with other coronaviruses with an aim to induce neutralizing antibodies against the viral spike protein or its different receptor binding domains. Here, we discuss the promise, potential scientific challenges, and future directions for the development of a safe and effective COVID-19 vaccine. We also emphasize the importance of a better understanding of the infection pathogenesis and host defense mechanisms against SARS-CoV-2 infection.