Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.442
Filter
Add filters

Document Type
Year range
3.
Front Cardiovasc Med ; 7: 593061, 2020.
Article in English | MEDLINE | ID: covidwho-1485041

ABSTRACT

Since December 2019, coronavirus disease 2019 (COVID-19) caused by a novel coronavirus has spread all over the world affecting tens of millions of people. Another pandemic affecting the modern world, type 2 diabetes mellitus is among the major risk factors for mortality from COVID-19. Current evidence, while limited, suggests that proper blood glucose control may help prevent exacerbation of COVID-19 even in patients with type 2 diabetes mellitus. Under current circumstances where the magic bullet for the disease remains unavailable, it appears that the role of blood glucose control cannot be stressed too much. In this review the profile of each anti-diabetic agent is discussed in relation to COVID-19.

4.
Front Cardiovasc Med ; 7: 590688, 2020.
Article in English | MEDLINE | ID: covidwho-1485040

ABSTRACT

Background: There are growing evidence demonstrating that coronavirus disease 2019 (COVID-19) is companied by acute myocardial injury. However, the associations of SARS-CoV-2-induced myocardial injury with the risk of death and prognosis after discharge in COVID-19 patients are unclear. Methods: This prospective cohort study analyzed 355 COVID-19 patients from two hospitals in different regions. Clinical and demographic information were collected and prognosis was followed up. Results: Of 355 hospitalized patients with COVID-19, 213 were mild, 90 severe, and 52 critically ill patients. On admission, 59 (16.7%) patients were with myocardial injury. Myocardial injury was more popular in critically ill patients. Univariate and multivariate logistic regression revealed that male, older age and comorbidity with hypertension were three crucial independent risk factors predicting myocardial injury of COVID-19 patients. Among 59 COVID-19 patients with myocardial injury, 25 (42.4%) died on average 10.9 days after hospitalization. Mortality was increased among COVID-19 patients with myocardial injury (42.4 vs. 3.38%, RR = 12.542, P < 0.001). Follow-up study observed that 4.67% COVID-19 patients with myocardial injury were not fully recovered in 14 days after discharge. Conclusion: Myocardial injury at early stage elevates mortality of COVID-19 patients. Male elderly patients with hypertension are more vulnerable to myocardial injury. SARS-CoV-2-induced myocardial injury has not completely recovered in 14 days after discharge.

5.
BMJ Open ; 10(12): e042035, 2020 12 22.
Article in English | MEDLINE | ID: covidwho-1455708

ABSTRACT

INTRODUCTION: Acute kidney injury (AKI) is common and is associated with negative long-term outcomes. Given the heterogeneity of the syndrome, the ability to predict outcomes of AKI may be beneficial towards effectively using resources and personalising AKI care. This systematic review will identify, describe and assess current models in the literature for the prediction of outcomes in hospitalised patients with AKI. METHODS AND ANALYSIS: Relevant literature from a comprehensive search across six databases will be imported into Covidence. Abstract screening and full-text review will be conducted independently by two team members, and any conflicts will be resolved by a third member. Studies to be included are cohort studies and randomised controlled trials with at least 100 subjects, adult hospitalised patients, with AKI. Only those studies evaluating multivariable predictive models reporting a statistical measure of accuracy (area under the receiver operating curve or C-statistic) and predicting resolution of AKI, progression of AKI, subsequent dialysis and mortality will be included. Data extraction will be performed independently by two team members, with a third reviewer available to resolve conflicts. Results will be reported using Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Risk of bias will be assessed using Prediction model Risk Of Bias ASsessment Tool. ETHICS AND DISSEMINATION: We are committed to open dissemination of our results through the registration of our systematic review on PROSPERO and future publication. We hope that our review provides a platform for future work in realm of using artificial intelligence to predict outcomes of common diseases. PROSPERO REGISTRATION NUMBER: CRD42019137274.


Subject(s)
Acute Kidney Injury , Artificial Intelligence , Acute Kidney Injury/diagnosis , Acute Kidney Injury/therapy , Adult , Humans , Meta-Analysis as Topic , Renal Dialysis , Systematic Reviews as Topic
7.
Sleep Breath ; 24(3): 791-799, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1453831

ABSTRACT

OBJECTIVES: The purpose of this systematic review was to summarize and qualitatively analyze published evidence elucidating the prevalence of dysphagia and detail alterations in swallowing function in patients with OSAS. METHODS: Computerized literature searches were performed from four search engines. The studies were selected based on the inclusion and exclusion criteria. The studies were screened using Covidence (Cochrane tool) and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement standards (PRISMA-2009). A total 2645 studies were initially retrieved, of which a total of 17 studies met inclusion criteria. Two reviewers, blinded to each other, evaluated level and strength of evidence using the Oxford Centre for Evidence-based Medicine Levels of Evidence and QualSyst, respectively. RESULTS: Dysphagia prevalence ranged from 16 to 78% among the eligible studies. Studies varied in operational definitions defining swallowing dysfunction (dysphagia) and method used to assess swallowing function. Approximately 70% of eligible studies demonstrated strong methodological quality. The majority of studies (n = 11; 65%) reported pharyngeal swallowing impairments in patients with OSAS, including delayed initiation of pharyngeal swallow and penetration/aspiration. CONCLUSION: This systematic review describes swallowing function in patients with OSAS. However, due to the variability in defining OSAS and dysphagia, in the assessment method used to determine dysphagia, and heterogeneity of study designs, true prevalence is difficult to determine. Clinicians involved in the management of OSAS patients should employ validated assessment measures to determine if swallow dysfunction is present.


Subject(s)
Deglutition Disorders/etiology , Deglutition/physiology , Oropharynx/physiopathology , Severity of Illness Index , Sleep Apnea, Obstructive/complications , Deglutition Disorders/diagnosis , Humans , Sleep Apnea, Obstructive/physiopathology
8.
JAMA ; 323(16): 1582-1589, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-1453469

ABSTRACT

Importance: Coronavirus disease 2019 (COVID-19) is a pandemic with no specific therapeutic agents and substantial mortality. It is critical to find new treatments. Objective: To determine whether convalescent plasma transfusion may be beneficial in the treatment of critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Design, Setting, and Participants: Case series of 5 critically ill patients with laboratory-confirmed COVID-19 and acute respiratory distress syndrome (ARDS) who met the following criteria: severe pneumonia with rapid progression and continuously high viral load despite antiviral treatment; Pao2/Fio2 <300; and mechanical ventilation. All 5 were treated with convalescent plasma transfusion. The study was conducted at the infectious disease department, Shenzhen Third People's Hospital in Shenzhen, China, from January 20, 2020, to March 25, 2020; final date of follow-up was March 25, 2020. Clinical outcomes were compared before and after convalescent plasma transfusion. Exposures: Patients received transfusion with convalescent plasma with a SARS-CoV-2-specific antibody (IgG) binding titer greater than 1:1000 (end point dilution titer, by enzyme-linked immunosorbent assay [ELISA]) and a neutralization titer greater than 40 (end point dilution titer) that had been obtained from 5 patients who recovered from COVID-19. Convalescent plasma was administered between 10 and 22 days after admission. Main Outcomes and Measures: Changes of body temperature, Sequential Organ Failure Assessment (SOFA) score (range 0-24, with higher scores indicating more severe illness), Pao2/Fio2, viral load, serum antibody titer, routine blood biochemical index, ARDS, and ventilatory and extracorporeal membrane oxygenation (ECMO) supports before and after convalescent plasma transfusion. Results: All 5 patients (age range, 36-65 years; 2 women) were receiving mechanical ventilation at the time of treatment and all had received antiviral agents and methylprednisolone. Following plasma transfusion, body temperature normalized within 3 days in 4 of 5 patients, the SOFA score decreased, and Pao2/Fio2 increased within 12 days (range, 172-276 before and 284-366 after). Viral loads also decreased and became negative within 12 days after the transfusion, and SARS-CoV-2-specific ELISA and neutralizing antibody titers increased following the transfusion (range, 40-60 before and 80-320 on day 7). ARDS resolved in 4 patients at 12 days after transfusion, and 3 patients were weaned from mechanical ventilation within 2 weeks of treatment. Of the 5 patients, 3 have been discharged from the hospital (length of stay: 53, 51, and 55 days), and 2 are in stable condition at 37 days after transfusion. Conclusions and Relevance: In this preliminary uncontrolled case series of 5 critically ill patients with COVID-19 and ARDS, administration of convalescent plasma containing neutralizing antibody was followed by improvement in their clinical status. The limited sample size and study design preclude a definitive statement about the potential effectiveness of this treatment, and these observations require evaluation in clinical trials.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/therapy , Adult , Aged , Antibodies, Viral/blood , Antiviral Agents/therapeutic use , Blood Donors , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Critical Illness , Female , Glucocorticoids/therapeutic use , Humans , Immunization, Passive , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Methylprednisolone/therapeutic use , Middle Aged , Organ Dysfunction Scores , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/physiopathology , SARS-CoV-2
9.
Ann Intensive Care ; 10(1): 24, 2020 Feb 13.
Article in English | MEDLINE | ID: covidwho-1453061

ABSTRACT

BACKGROUND: Right ventricular (RV) function evaluation by echocardiography is key in the management of ICU patients with acute respiratory distress syndrome (ARDS), however, it remains challenging. Quantification of RV deformation by speckle-tracking echocardiography (STE) is a recently available and reproducible technique that provides an integrated analysis of the RV. However, data are scarce regarding its use in critically ill patients. The aim of this study was to assess its feasibility and clinical usefulness in moderate-severe ARDS patients. RESULTS: Forty-eight ARDS patients under invasive mechanical ventilation (MV) were consecutively enrolled in a prospective observational study. A full transthoracic echocardiography was performed within 36 h of MV initiation. STE-derived and conventional parameters were recorded. Strain imaging of the RV lateral, inferior and septal walls was highly feasible (47/48 (98%) patients). Interobserver reproducibility of RV strain values displayed good reliability (intraclass correlation coefficients (ICC) > 0.75 for all STE-derived parameters) in ARDS patients. ROC curve analysis showed that lateral, inferior, global (average of the 3 RV walls) longitudinal systolic strain (LSS) and global strain rate demonstrated significant diagnostic values when compared to several conventional indices (TAPSE, S', RV FAC). A RV global LSS value > - 13.7% differentiated patients with a TAPSE < vs > 12 mm with a sensitivity of 88% and a specificity of 83%. Regarding clinical outcomes, mortality and cumulative incidence of weaning from MV at day 28 were not different in patients with normal versus abnormal STE-derived parameters. CONCLUSIONS: Global STE assessment of the RV was highly achievable and reproducible in moderate-severe ARDS patients under MV and additionally correlated with several conventional parameters of RV function. In our cohort, STE-derived parameters did not provide any incremental value in terms of survival or weaning from MV prediction. Further investigations are needed to evaluate their theranostic usefulness. Trial registration NCT02638844: NCT.

10.
Am J Respir Crit Care Med ; 2020 Sep 02.
Article in English | MEDLINE | ID: covidwho-1452989

ABSTRACT

Rationale: Obesity is characterized by elevated pleural pressure (PPL) and worsening atelectasis during mechanical ventilation in patients with acute respiratory distress syndrome (ARDS). Objectives: To determine the effects of lung recruitment maneuver (LRM) in the presence of elevated PPL on hemodynamics, left and right ventricular pressures and pulmonary vascular resistance. We hypothesized that elevated PPL protects the cardiovascular system against high airway pressures and prevents lung overdistension. Methods: First, an interventional crossover trial in adult subjects with ARDS and BMI ≥35 kg/m2 (n=21) was performed to explore the hemodynamic consequences of LRM. Second, cardiovascular function was studied during low/high PEEPs in a model of swine with ARDS and high PPL (n=9) versus healthy swine with normal PPL (n=6). Measurements and Main Results: Subjects with ARDS and obesity (BMI=57±12 kg/m2), following LRM, required an increase in PEEP of 8[7, 10] cmH2O above traditional ARDSnet settings to improve lung function, oxygenation and ventilation/perfusion matching, without impairment of hemodynamics or right heart function. ARDS swine with high PPL demonstrated unchanged transmural left ventricle pressure and systemic blood pressure after LRM protocol. Pulmonary artery hypertension decreased 8[13, 4] mmHg, as did vascular resistance 1.5[2.2, 0.9] WU, and transmural right ventricle pressure 10[15, 6] mmHg during exhalation. LRM and PEEP decreased pulmonary vascular resistance and normalized ventilation/perfusion ratio. Conclusions: High airway pressure is required to recruit lung atelectasis in patients with ARDS and class III obesity but causes minimal overdistension. Additionally, patients with ARDS and class III obesity tolerate hemodynamically LRM with high airway pressure.

11.
Ghana Med J ; 54(4 Suppl): 117-120, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1436205

ABSTRACT

This is a case report of a 55-year-old man with Type 2 Diabetes Mellitus who presented with progressive breathlessness, chest pain and hyperglycaemia. An initial impression of a chest infection was made. Management was initiated with antibiotics, but this was unsuccessful, and he continued to desaturate. A screen for Coronavirus Disease of 2019 (COVID-19) returned positive. There was no prodrome of fever or flu-like illness or known contact with a patient known to have COVID-19. This case is instructive as he didn't fit the typical case definition for suspected COVID-19. There is significant community spread in Ghana, therefore COVID-19 should be a differential diagnosis in patients who present with hyperglycaemia and respiratory symptoms in the absence of a febrile illness. Primary care doctors must have a high index of suspicion in cases of significant hyperglycaemia and inability to maintain oxygen saturation. Patients known to have diabetes and those not known to have diabetes may develop hyperglycaemia subsequent to COVID-19. A high index of suspicion is crucial for early identification, notification for testing, isolation, treatment, contact tracing and possible referral or coordination of care with other specialists. Early identification will protect healthcare workers and patients alike from cross-infection.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Diabetes Mellitus, Type 2/virology , SARS-CoV-2 , COVID-19/virology , Chest Pain/diagnosis , Chest Pain/virology , Diagnosis, Differential , Dyspnea/diagnosis , Dyspnea/virology , Ghana , Humans , Hyperglycemia/diagnosis , Hyperglycemia/virology , Male , Middle Aged , Primary Health Care , Urban Health Services
12.
Ghana Med J ; 54(4 Suppl): 52-61, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1436195

ABSTRACT

Introduction: Since the declaration of COVID-19 by the World Health Organisation (WHO) as a global pandemic on 11th March 2020, the number of deaths continue to increase worldwide. Reports on its pathologic manifestations have been published with very few from the Sub-Saharan African region. This article reports autopsies on COVID-19 patients from the Ga-East and the 37 Military Hospitals to provide pathological evidence for better understanding of COVID-19 in Ghana. Methods: Under conditions required for carrying out autopsies on bodies infected with category three infectious agents, with few modifications, complete autopsies were performed on twenty patients with ante-mortem and/or postmortem RT -PCR confirmed positive COVID-19 results, between April and June, 2020. Results: There were equal proportion of males and females. Thirteen (65%) of the patients were 55years or older with the same percentage (65%) having Type II diabetes and/or hypertension. The most significant pathological feature found at autopsy was diffuse alveolar damage. Seventy per cent (14/20) had associated thromboemboli in the lungs, kidneys and the heart. Forty per cent (6/15) of the patients that had negative results for COVID-19 by the nasopharyngeal swab test before death had positive results during postmortem using bronchopulmonary specimen. At autopsy all patients were identified to have pre-existing medical conditions. Conclusion: Diffuse alveolar damage was a key pathological feature of deaths caused by COVID-19 in all cases studied with hypertension and diabetes mellitus being major risk factors. Individuals without co-morbidities were less likely to die or suffer severe disease from SARS-CoV-2. Funding: None declared.


Subject(s)
Autopsy/statistics & numerical data , COVID-19/pathology , Hospitals, Military/statistics & numerical data , Hospitals, Municipal/statistics & numerical data , SARS-CoV-2 , COVID-19/mortality , COVID-19 Testing/methods , COVID-19 Testing/statistics & numerical data , Comorbidity , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/virology , Female , Ghana/epidemiology , Humans , Hypertension/mortality , Hypertension/virology , Lung/pathology , Lung/virology , Male , Middle Aged , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , Risk Factors
13.
BMJ Open Respir Res ; 7(1)2020 11.
Article in English | MEDLINE | ID: covidwho-1388517

ABSTRACT

INTRODUCTION: Acute respiratory distress syndrome (ARDS) is the major cause of mortality in patients with SARS-CoV-2 pneumonia. It appears that development of 'cytokine storm' in patients with SARS-CoV-2 pneumonia precipitates progression to ARDS. However, severity scores on admission do not predict severity or mortality in patients with SARS-CoV-2 pneumonia. Our objective was to determine whether patients with SARS-CoV-2 ARDS are clinically distinct, therefore requiring alternative management strategies, compared with other patients with ARDS. We report a single-centre retrospective study comparing the characteristics and outcomes of patients with ARDS with and without SARS-CoV-2. METHODS: Two intensive care unit (ICU) cohorts of patients at the Queen Elizabeth Hospital Birmingham were analysed: SARS-CoV-2 patients admitted between 11 March and 21 April 2020 and all patients with community-acquired pneumonia (CAP) from bacterial or viral infection who developed ARDS between 1 January 2017 and 1 November 2019. All data were routinely collected on the hospital's electronic patient records. RESULTS: A greater proportion of SARS-CoV-2 patients were from an Asian ethnic group (p=0.002). SARS-CoV-2 patients had lower circulating leucocytes, neutrophils and monocytes (p<0.0001), but higher CRP (p=0.016) on ICU admission. SARS-CoV-2 patients required a longer duration of mechanical ventilation (p=0.01), but had lower vasopressor requirements (p=0.016). DISCUSSION: The clinical syndromes and respiratory mechanics of SARS-CoV-2 and CAP-ARDS are broadly similar. However, SARS-CoV-2 patients initially have a lower requirement for vasopressor support, fewer circulating leukocytes and require prolonged ventilation support. Further studies are required to determine whether the dysregulated inflammation observed in SARS-CoV-2 ARDS may contribute to the increased duration of respiratory failure.


Subject(s)
COVID-19/complications , Critical Care/methods , Patient Outcome Assessment , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/etiology , C-Reactive Protein/metabolism , Cohort Studies , Female , Humans , Leukocytes/metabolism , Male , Middle Aged , Monocytes/metabolism , Neutrophils/metabolism , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/therapy , Respiratory Mechanics , Retrospective Studies , SARS-CoV-2 , Time , United Kingdom , Vasoconstrictor Agents/therapeutic use
15.
Front Med (Lausanne) ; 7: 589553, 2020.
Article in English | MEDLINE | ID: covidwho-1383857

ABSTRACT

Acute respiratory distress syndrome (ARDS) is associated with increased morbidity and mortality in the elderly population (≥65 years of age). Additionally, age is widely reported as a risk factor for the development of ARDS. However, the underlying pathophysiological mechanisms behind the increased risk of developing, and increased severity of, ARDS in the elderly population are not fully understood. This is compounded by the significant heterogeneity observed in patients with ARDS. With an aging population worldwide, a better understanding of these mechanisms could facilitate the development of therapies to improve outcomes in this population. In this review, the current clinical evidence of age as a risk factor and prognostic indicator in ARDS and the potential underlying mechanisms that may contribute to these factors are outlined. In addition, research on age-dependent treatment options and biomarkers, as well as future prospects for targeting these underlying mechanisms, are discussed.

16.
J Clin Med ; 9(9)2020 Sep 05.
Article in English | MEDLINE | ID: covidwho-1389406

ABSTRACT

There are considerable psychological and psychiatric consequences of the pandemic. Researchers have started to take into account the real or perceived sense of social threats that may be expressed, such as anxiety, depression, and sleep disorders. However, analyses on pandemic-related anxiety, depression, and sleep disorders mostly rarely addresses the situation of people with autoimmune diseases. Therefore, the aim of this study was to assess the mental health factors among people with systemic lupus erythematosus by quantifying the severity of anxiety, depression, and sleep disorders during the SARS-CoV-2 pandemic. In total, 723 people took part in the study. The study group consisted of 134 individuals with a systemic lupus erythematosus. The control group consisted of 589 people without systemic lupus erythematosus. The regression adjusted by age, gender, and diagnosis of other chronic diseases showed individuals with systemic lupus erythematosus were at a much higher risk of elevated symptoms of anxiety on the GAD-7 scale (OR = 3.683; p < 0.001), depression on the PHQ-9 scale (OR = 4.183; p < 0.001), and sleep disorders on the Insomnia Severity Index (ISI) scale (OR = 6.781; p < 0.001). Therefore, the mental health of patients with systemic lupus erythematosus in the times of the SARS-CoV-2 pandemic is not only an extremely important medical problem but also a social one and must require special attention.

17.
Trials ; 21(1): 828, 2020 Oct 06.
Article in English | MEDLINE | ID: covidwho-1388814

ABSTRACT

OBJECTIVES: Primary objectives • To assess the time from randomisation until an improvement within 84 days defined as two points on a seven point ordinal scale or live discharge from the hospital in high-risk patients (group 1 to group 4) with SARS-CoV-2 infection requiring hospital admission by infusion of plasma from subjects after convalescence of SARS-CoV-2 infection or standard of care. Secondary objectives • To assess overall survival, and the overall survival rate at 28 56 and 84 days. • To assess SARS-CoV-2 viral clearance and load as well as antibody titres. • To assess the percentage of patients that required mechanical ventilation. • To assess time from randomisation until discharge. TRIAL DESIGN: Randomised, open-label, multicenter phase II trial, designed to assess the clinical outcome of SARS-CoV-2 disease in high-risk patients (group 1 to group 4) following treatment with anti-SARS-CoV-2 convalescent plasma or standard of care. PARTICIPANTS: High-risk patients >18 years of age hospitalized with SARS-CoV-2 infection in 10-15 university medical centres will be included. High-risk is defined as SARS-CoV-2 positive infection with Oxygen saturation at ≤ 94% at ambient air with additional risk features as categorised in 4 groups: • Group 1, pre-existing or concurrent hematological malignancy and/or active cancer therapy (incl. chemotherapy, radiotherapy, surgery) within the last 24 months or less. • Group 2, chronic immunosuppression not meeting the criteria of group 1. • Group 3, age ≥ 50 - 75 years meeting neither the criteria of group 1 nor group 2 and at least one of these criteria: Lymphopenia < 0.8 x G/l and/or D-dimer > 1µg/mL. • Group 4, age ≥ 75 years meeting neither the criteria of group 1 nor group 2. Observation time for all patients is expected to be at least 3 months after entry into the study. Patients receive convalescent plasma for two days (day 1 and day 2) or standard of care. For patients in the standard arm, cross over is allowed from day 10 in case of not improving or worsening clinical condition. Nose/throat swabs for determination of viral load are collected at day 0 and day 1 (before first CP administration) and subsequently at day 2, 3, 5, 7, 10, 14, 28 or until discharge. Serum for SARS-Cov-2 diagnostic is collected at baseline and subsequently at day 3, 7, 14 and once during the follow-up period (between day 35 and day 84). There is a regular follow-up of 3 months. All discharged patients are followed by regular phone calls. All visits, time points and study assessments are summarized in the Trial Schedule (see full protocol Table 1). All participating trial sites will be supplied with study specific visit worksheets that list all assessments and procedures to be completed at each visit. All findings including clinical and laboratory data are documented by the investigator or an authorized member of the study team in the patient's medical record and in the electronic case report forms (eCRFs). INTERVENTION AND COMPARATOR: This trial will analyze the effects of convalescent plasma from recovered subjects with SARS-CoV-2 antibodies in high-risk patients with SARS-CoV-2 infection. Patients at high risk for a poor outcome due to underlying disease, age or condition as listed above are eligible for enrollment. In addition, eligible patients have a confirmed SARS-CoV-2 infection and O2 saturation ≤ 94% while breathing ambient air. Patients are randomised to receive (experimental arm) or not receive (standard arm) convalescent plasma in two bags (238 - 337 ml plasma each) from different donors (day 1, day 2). A cross over from the standard arm into the experimental arm is possible after day 10 in case of not improving or worsening clinical condition. MAIN OUTCOMES: Primary endpoints: The main purpose of the study is to assess the time from randomisation until an improvement within 84 days defined as two points on a seven-point ordinal scale or live discharge from the hospital in high-risk patients (group 1 to group 4) with SARS-CoV-2 infection requiring hospital admission by infusion of plasma from subjects after convalescence of a SARS-CoV-2 infection or standard of care. Secondary endpoints: • Overall survival, defined as the time from randomisation until death from any cause 28-day, 56-day and 84-day overall survival rates. • SARS-CoV-2 viral clearance and load as well as antibody titres. • Requirement mechanical ventilation at any time during hospital stay (yes/no). • Time until discharge from randomisation. • Viral load, changes in antibody titers and cytokine profiles are analysed in an exploratory manner using paired non-parametric tests (before - after treatment). RANDOMISATION: Upon confirmation of eligibility (patients must meet all inclusion criteria and must not meet exclusion criteria described in section 5.3 and 5.4 of the full protocol), the clinical site must contact a centralized internet randomization system ( https://randomizer.at/ ). Patients are randomized using block randomisation to one of the two arms, experimental arm or standard arm, in a 1:1 ratio considering a stratification according to the 4 risk groups (see Participants). BLINDING (MASKING): The study is open-label, no blinding will be performed. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total number of 174 patients is required for the entire trial, n=87 per group. TRIAL STATUS: Protocol version 1.2 dated 09/07/2020. A recruitment period of approximately 9 months and an overall study duration of approximately 12 months is anticipated. Recruitment of patients starts in the third quarter of 2020. The study duration of an individual patient is planned to be 3 months. After finishing all study-relevant procedures, therapy, and follow-up period, the patient is followed in terms of routine care and treated if necessary. Total trial duration: 18 months Duration of the clinical phase: 12 months First patient first visit (FPFV): 3rd Quarter 2020 Last patient first visit (LPFV): 2nd Quarter 2021 Last patient last visit (LPLV): 3rd Quarter 2021 Trial Report completed: 4th Quarter 2021 TRIAL REGISTRATION: EudraCT Number: 2020-001632-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001632-10/DE , registered on 04/04/2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2). The eCRF is attached (Additional file 3).


Subject(s)
Antibodies, Viral/blood , Betacoronavirus , Coronavirus Infections , Pandemics , Plasma/immunology , Pneumonia, Viral , Aged , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , COVID-19 , Clinical Trials, Phase II as Topic , Convalescence , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , Monitoring, Physiologic/methods , Multicenter Studies as Topic , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Randomized Controlled Trials as Topic , Risk Adjustment , SARS-CoV-2 , Severity of Illness Index
18.
Crit Care ; 24(1): 675, 2020 Dec 04.
Article in English | MEDLINE | ID: covidwho-1388807

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

19.
J Acquir Immune Defic Syndr ; 85(1): 6-10, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-1373693

ABSTRACT

BACKGROUND: SARS-CoV-2 infection continues to cause significant morbidity and mortality worldwide. Preliminary data on SARS-CoV-2 infection suggest that some immunocompromised hosts experience worse outcomes. We performed a retrospective matched cohort study to characterize outcomes in HIV-positive patients with SARS-CoV-2 infection. METHODS: Leveraging data collected from electronic medical records for all patients hospitalized at NYU Langone Health with COVID-19 between March 2, 2020, and April 23, 2020, we matched 21 HIV-positive patients with 42 non-HIV patients using a greedy nearest-neighbor algorithm. Admission characteristics, laboratory test results, and hospital outcomes were recorded and compared between the 2 groups. RESULTS: Although there was a trend toward increased rates of intensive care unit admission, mechanical ventilation, and mortality in HIV-positive patients, these differences were not statistically significant. Rates for these outcomes in our cohort are similar to those previously published for all patients hospitalized with COVID-19. HIV-positive patients had significantly higher admission and peak C-reactive protein values. Other inflammatory markers did not differ significantly between groups, although HIV-positive patients tended to have higher peak values during their clinical course. Three HIV-positive patients had superimposed bacterial pneumonia with positive sputum cultures, and all 3 patients died during hospitalization. There was no difference in frequency of thrombotic events or myocardial infarction between these groups. CONCLUSIONS: This study provides evidence that HIV coinfection does not significantly impact presentation, hospital course, or outcomes of patients infected with SARS-CoV-2, when compared with matched non-HIV patients. A larger study is required to determine whether the trends we observed apply to all HIV-positive patients.


Subject(s)
Betacoronavirus , Coinfection/virology , Coronavirus Infections/complications , HIV Infections/complications , Pneumonia, Viral/complications , Adult , Aged , Aged, 80 and over , COVID-19 , Case-Control Studies , Cohort Studies , Coinfection/mortality , Coronavirus Infections/mortality , Critical Care , Female , HIV Infections/mortality , Hospitalization , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...