Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.511
Filter
1.
J Pharm Drug Res ; 3(2): 341-361, 2020.
Article in English | MEDLINE | ID: covidwho-1989782

ABSTRACT

A novel coronavirus designated as SARS-CoV-2 in February 2020 by World Health organization (WHO) was identified as main cause of SARS like pneumonia cases in Wuhan city in Hubei Province of China at the end of 2019. This been recently declared as Global Pandemic by WHO. There is a global emergency to identify potential drugs to treat the SARS-CoV-2. Currently, there is no specific treatment against the new virus. There is a urgency to identifying potential antiviral agents to combat the disease is urgently needed. An effective and quick approach is to test existing antiviral drugs against. Whole genome analysis and alignment carried out using BLASTn, SMART BLAST and WebDSV 2.0 had shown more than 238 ORF's coding for proteins mostly origin from Bat SARS coronavirus and root genomic origin from Archaea. Molecular docking results against protein targets Furin, papain like proteases, RdRp and Spike glycoprotein had shown paritaprevir, ritonavir, entecavir and chloroquine derivatives are the best drugs to inhibit multi targets of coronavirus infection including natural compounds corosolic acid, baicalin and glycyrrhizic acid with minimal inhibitory concentrations. Thus we propose use of paritaprevir, entecavir, ritonavir and chloroquine derivatives as best drug combination along with niacinamide, folic acid and zinc supplements to treat novel coronavirus infection. We also propose use of plant protease inhibitors (PI's) and Anti-IL8, IL-6, IL-2 as future drug models against coronavirus.

2.
Minerva Cardiol Angiol ; 70(4): 468-475, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1975634

ABSTRACT

BACKGROUND: Northern Italy has been one of the most affected area in the world by the novel severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). The healthcare system has been overwhelmed by the huge number of patients in need of mechanical ventilation or intensive care, resulting in a delay of treatment of patients with acute coronary syndrome (ACS), due to a crash in STEMI networks and closure of a certain number of hub centers, and to a delay in patients' seeking for medical evaluation for chest pain or angina-equivalent symptoms. METHODS: In the Trentino region, a mountainous area with about 500,000 inhabitants, very close to Lombardy that was the epicenter of the pandemic in Italy, to avoid these dramatic consequences, we developed a new protocol tailored to our specificity to keep our institution, and above all the cath-lab, clean from the SARS-CoV-2 infection, to ensure full operativity for cardiologic emergencies. RESULTS: Applying this protocol during the two months of the peak of the infection in Italy no one of the staff members of the cath-lab, the ICCU or the cardiology ward tested positive to nasal swab for SARS-CoV-2 and the same result was obtained for all the patients admitted to our units. CONCLUSIONS: Our real-world experience shows that during the COVID-19 pandemic, quick activation of an appropriate protocol defining specific pathways for patients with a medical urgency is effective in minimizing healthcare personnel exposure and to preserve full operativity of the hub centers. This issue will be of a crucial importance, now that we are facing the second wave of the pandemic.


Subject(s)
COVID-19 , Cardiology , ST Elevation Myocardial Infarction , COVID-19/epidemiology , Humans , Pandemics/prevention & control , SARS-CoV-2 , ST Elevation Myocardial Infarction/diagnosis , ST Elevation Myocardial Infarction/epidemiology , ST Elevation Myocardial Infarction/therapy
3.
Lancet Respir Med ; 9(5): 533-544, 2021 05.
Article in English | MEDLINE | ID: covidwho-1931217

ABSTRACT

Cough is one of the most common presenting symptoms of COVID-19, along with fever and loss of taste and smell. Cough can persist for weeks or months after SARS-CoV-2 infection, often accompanied by chronic fatigue, cognitive impairment, dyspnoea, or pain-a collection of long-term effects referred to as the post-COVID syndrome or long COVID. We hypothesise that the pathways of neurotropism, neuroinflammation, and neuroimmunomodulation through the vagal sensory nerves, which are implicated in SARS-CoV-2 infection, lead to a cough hypersensitivity state. The post-COVID syndrome might also result from neuroinflammatory events in the brain. We highlight gaps in understanding of the mechanisms of acute and chronic COVID-19-associated cough and post-COVID syndrome, consider potential ways to reduce the effect of COVID-19 by controlling cough, and suggest future directions for research and clinical practice. Although neuromodulators such as gabapentin or opioids might be considered for acute and chronic COVID-19 cough, we discuss the possible mechanisms of COVID-19-associated cough and the promise of new anti-inflammatories or neuromodulators that might successfully target both the cough of COVID-19 and the post-COVID syndrome.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Cough/etiology , Inflammation/etiology , Nervous System Diseases/etiology , Neuroimmunomodulation , Cough/physiopathology , Humans , Inflammation/physiopathology , Nervous System Diseases/physiopathology , SARS-CoV-2 , Syndrome
5.
Minerva Med ; 113(2): 281-290, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1847990

ABSTRACT

BACKGROUND: The efficacy and safety of continuous positive airway pressure and respiratory physiotherapy outside the Intensive Care Unit during a pandemic. METHODS: In this cohort study performed in February-May 2020 in a large teaching hospital in Milan, COVID-19 patients with adult respiratory distress syndrome receiving continuous positive airway pressure (positive end-expiratory pressure =10 cm H2O, FiO2=0.6, daily treatment duration: 4×3h-cycles) and respiratory physiotherapy including pronation outside the Intensive Care Unit were followed-up. RESULTS: Of 90 acute respiratory distress syndrome (ARDS) patients treated with continuous positive airway pressure (45/90, 50% pronated at least once) outside the Intensive Care Unit and with a median (interquartile) follow-up of 37 (11-46) days, 45 (50%) were discharged at home, 28 (31%) were still hospitalized, and 17 (19%) died. Continuous positive airway pressure failure was recorded for 35 (39%) patients. Patient mobilization was associated with reduced failure rates (P=0.033). No safety issues were observed. CONCLUSIONS: Continuous positive airway pressure with patient mobilization (including pronation) was effective and safe in patients with ARDS due to COVID-19 managed outside the Intensive Care Unit setting during the pandemic.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Adult , COVID-19/complications , COVID-19/therapy , Cohort Studies , Continuous Positive Airway Pressure , Humans , Intensive Care Units , Pronation , Respiratory Distress Syndrome/therapy
6.
Crit Care Explor ; 2(6): e0139, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1795099

ABSTRACT

OBJECTIVES: The severe acute respiratory syndrome coronavirus 2 pandemic has stretched ICU resources in an unprecedented fashion and outstripped personal protective equipment supplies. The combination of a novel disease, resource limitations, and risks to medical personnel health have created new barriers to implementing the ICU Liberation ("A" for Assessment, Prevention, and Manage pain; "B" for Both Spontaneous Awakening Trials and Spontaneous Breathing Trials; "C" for Choice of Analgesia and Sedation; "D" for Delirium Assess, Prevent, and Manage; "E" for Early Mobility and Exercise; and "F" for Family Engagement and Empowerment [ABCDEF]) Bundle, a proven ICU care approach that reduces delirium, shortens mechanical ventilation duration, prevents post-ICU syndrome, and reduces healthcare costs. This narrative review acknowledges barriers and offers strategies to optimize Bundle performance in coronavirus disease 2019 patients requiring mechanical ventilation. DATA SOURCES STUDY SELECTION AND DATA EXTRACTION: The most relevant literature, media reports, and author experiences were assessed for inclusion in this narrative review including PubMed, national newspapers, and critical care/pharmacology textbooks. DATA SYNTHESIS: Uncertainty regarding coronavirus disease 2019 clinical course, shifts in attitude, and changes in routine behavior have hindered Bundle use. A domino effect results from: 1) changes to critical care hierarchy, priorities, and ICU team composition; 2) significant personal protective equipment shortages cause; 3) reduced/restricted physical bedside presence favoring; 4) increased depth of sedation and use of neuromuscular blockade; 5) which exacerbate drug shortages; and 6) which require prolonged use of limited ventilator resources. Other identified barriers include manageable knowledge deficits among non-ICU clinicians unfamiliar with the Bundle or among PICU specialists deploying pediatric-based Bundle approaches who are unfamiliar with adult medicine. Both groups have been enlisted to augment the adult ICU work force to meet demand. Strategies were identified to facilitate Bundle performance to liberate patients from the ICU. CONCLUSIONS: We acknowledge current challenges that interfere with comprehensive management of critically ill patients during the coronavirus disease 2019 pandemic. Rapid response to new circumstances precisely requires established safety mechanisms and protocols like the ABCDEF Bundle to increase ICU and ventilator capacity and help survivors maximize recovery from coronavirus disease 2019 as early as possible.

7.
Crit Care Explor ; 2(9): e0202, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1795075

ABSTRACT

OBJECTIVES: Patients with coronavirus disease 2019 acute respiratory distress syndrome appear to present with at least two distinct phenotypes: severe hypoxemia with relatively well-preserved lung compliance and lung gas volumes (type 1) and a more conventional acute respiratory distress syndrome phenotype, displaying the typical characteristics of the "baby lung" (type 2). We aimed to test plausible hypotheses regarding the pathophysiologic mechanisms underlying coronavirus disease 2019 acute respiratory distress syndrome and to evaluate the resulting implications for ventilatory management. DESIGN: We adapted a high-fidelity computational simulator, previously validated in several studies of acute respiratory distress syndrome, to: 1) develop quantitative insights into the key pathophysiologic differences between the coronavirus disease 2019 acute respiratory distress syndrome and the conventional acute respiratory distress syndrome and 2) assess the impact of different positive end-expiratory pressure, Fio2, and tidal volume settings. SETTING: Interdisciplinary Collaboration in Systems Medicine Research Network. SUBJECTS: The simulator was calibrated to represent coronavirus disease 2019 acute respiratory distress syndrome patients with both normal and elevated body mass indices undergoing invasive mechanical ventilation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: An acute respiratory distress syndrome model implementing disruption of hypoxic pulmonary vasoconstriction and vasodilation leading to hyperperfusion of collapsed lung regions failed to replicate clinical data on type 1 coronavirus disease 2019 acute respiratory distress syndrome patients. Adding mechanisms to reflect disruption of alveolar gas-exchange due to the effects of pneumonitis and heightened vascular resistance due to the emergence of microthrombi produced levels of ventilation perfusion mismatch and hypoxemia consistent with data from type 1 coronavirus disease 2019 acute respiratory distress syndrome patients, while preserving close-to-normal lung compliance and gas volumes. Atypical responses to positive end-expiratory pressure increments between 5 and 15 cm H2O were observed for this type 1 coronavirus disease 2019 acute respiratory distress syndrome model across a range of measures: increasing positive end-expiratory pressure resulted in reduced lung compliance and no improvement in oxygenation, whereas mechanical power, driving pressure, and plateau pressure all increased. Fio2 settings based on acute respiratory distress syndrome network protocols at different positive end-expiratory pressure levels were insufficient to achieve adequate oxygenation. Incrementing tidal volumes from 5 to 10 mL/kg produced similar increases in multiple indicators of ventilator-induced lung injury in the type 1 coronavirus disease 2019 acute respiratory distress syndrome model to those seen in a conventional acute respiratory distress syndrome model. CONCLUSIONS: Our model suggests that use of standard positive end-expiratory pressure/Fio2 tables, higher positive end-expiratory pressure strategies, and higher tidal volumes may all be potentially deleterious in type 1 coronavirus disease 2019 acute respiratory distress syndrome patients, and that a highly personalized approach to treatment is advisable.

8.
Crit Care Explor ; 2(9): e0207, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1795073

ABSTRACT

OBJECTIVES: To determine whether placental cell therapy PLacental eXpanded (PLX)-PAD (Pluristem Therapeutics, Haifa, Israel) may be beneficial to treating critically ill patients suffering from acute respiratory distress syndrome due to coronavirus disease 2019. DESIGN: Retrospective case report of critically ill coronavirus disease 2019 patients treated with PLacental eXpanded (PLX)-PAD from March 26, 2020, to April 4, 2020, with follow-up through May 2, 2020. SETTING: Four hospitals in Israel (Rambam Health Care Campus, Bnai Zion Medical Center, and Samson Assuta Ashdod University Hospital), and Holy Name Medical Center in New Jersey. PATIENTS: Eight critically ill patients on invasive mechanical ventilation, suffering from acute respiratory distress syndrome due to coronavirus disease 2019. INTERVENTIONS: Intramuscular injection of PLacental eXpanded (PLX)-PAD (300 × 106 cells) given as one to two treatments. MEASUREMENTS AND MAIN RESULTS: Mortality, time to discharge, and changes in blood and respiratory variables were monitored during hospitalization to day 17 posttreatment. Of the eight patients treated (median age 55 yr, seven males and one female), five were discharged, two remained hospitalized, and one died. By day 3 postinjection, mean C-reactive protein fell 45% (240.3-131.3 mg/L; p = 0.0019) and fell to 77% by day 5 (56.0 mg/L; p < 0.0001). Pao2/Fio2 improved in 5:8 patients after 24-hour posttreatment, with similar effects 48-hour posttreatment. A decrease in positive end-expiratory pressure and increase in pH were statistically significant between days 0 and 14 (p = 0.0032 and p = 0.00072, respectively). A decrease in hemoglobin was statistically significant for days 0-5 and 0-14 (p = 0.015 and p = 0.0028, respectively), whereas for creatinine, it was statistically significant between days 0 and 14 (p = 0.032). CONCLUSIONS: Improvement in several variables such as C-reactive protein, positive end-expiratory pressure, and Pao2/Fio2 was observed following PLacental eXpanded (PLX)-PAD treatment, suggesting possible therapeutic effect. However, interpretation of the data is limited due to the small sample size, use of concomitant investigational therapies, and the uncontrolled study design. The efficacy of PLacental eXpanded (PLX)-PAD in coronavirus disease 2019 should be further evaluated in a controlled clinical trial.

9.
Crit Care Explor ; 2(9): e0218, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1795068

ABSTRACT

OBJECTIVES: To describe three coronavirus disease 2019 patients suffering from acute respiratory distress syndrome under venovenous extracorporeal membrane oxygenation therapy and tight anticoagulation monitoring presenting a novel pattern of multifocal brain hemorrhage in various degrees in all cerebral and cerebellar lobes. DESIGN: Clinical observation of three patients. Post mortem examinations. SETTING: Two ICUs at the University Hospital Erlangen. PATIENTS: Three patients (medium age 56.6 yr, two male with hypertension and diabetes, one female with no medical history) developed severe acute respiratory distress syndrome on the basis of a severe acute respiratory syndrome coronavirus 2 infection. All required mechanical ventilation and venovenous extracorporeal membrane oxygenation support. INTERVENTIONS: Clinical observation, CT, data extraction from electronic medical records, and post mortem examinations. MAIN RESULTS: We report on an unusual multifocal bleeding pattern in the white matter in three cases with severe acute respiratory distress syndrome due to coronavirus disease 2019 undergoing venovenous extracorporeal membrane oxygenation therapy. Bleeding pattern with consecutive herniation was found in CT scans as well as in neuropathologic post mortem examinations. Frequency for this unusual brain hemorrhage in coronavirus disease 2019 patients with extracorporeal membrane oxygenation therapy at our hospital is currently 50%, whereas bleeding events in extracorporeal membrane oxygenation patients generally occur at 10-15%. CONCLUSIONS: Multifocality and high frequency of the unusual white matter hemorrhage pattern suggest a coherence to coronavirus disease 2019. Neuropathological analyses showed circumscribed thrombotic cerebrovascular occlusions, which eventually led to microvascular and later on macrovascular disseminated bleeding events. However, signs of cerebrovascular inflammation could not be detected. Polymerase chain reaction analyses of brain tissue or cerebrospinal fluid remained negative. Increased susceptibility for fatal bleeding events should be taken into consideration in terms of systemic anticoagulation strategies in coronavirus disease 2019.

10.
Thromb J ; 18: 22, 2020.
Article in English | MEDLINE | ID: covidwho-1793931

ABSTRACT

BACKGROUND: Hospitals in the Middle East Gulf region have experienced an influx of COVID-19 patients to their medical wards and intensive care units. The hypercoagulability of these patients has been widely reported on a global scale. However, many of the experimental treatments used to manage the various complications of COVID-19 have not been widely studied in this context. The effect of the current treatment protocols on patients' diagnostic and prognostic biomarkers may thus impact the validity of the algorithms adopted. CASE PRESENTATION: In this case series, we report four cases of venous thromboembolism and 1 case of arterial thrombotic event, in patients treated with standard or intensified prophylactic doses of unfractionated heparin or low molecular weight heparin at our institution. Tocilizumab has been utilized as an add-on therapy to the standard of care to treat patients with SARS-CoV-2 associated acute respiratory distress syndrome, in order to dampen the hyperinflammatory response. It is imperative to be aware that this drug may be masking the inflammatory markers (e.g. IL6, CRP, fibrinogen, and ferritin), without reducing the risk of thrombotic events in this population, creating instead a façade of an improved prognostic outcome. However, the D-dimer levels remained prognostically reliable in these cases, as they were not affected by the drug and continued to be at the highest level until event occurrence. CONCLUSIONS: In the setting of tocilizumab therapy, traditional prognostic markers of worsening infection and inflammation, and thus potential risk of acute thrombosis, should be weighed carefully as they may not be reliable for prognosis and may create a façade of an improved prognostic outcome insteasd. Additionally, the fact that thrombotic events continued to be observed despite decrease in inflammatory markers and the proactive anticoagulative approach adopted, raises more questions about the coagulative mechanisms at play in COVID-19, and the appropriate management strategy.

11.
Indian J Palliat Care ; 26(Suppl 1): S76-S80, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1792220

ABSTRACT

INTRODUCTION: COVID-19, the new pandemic faced by the world, is a novel betacoronavirus causing severe respiratory coronavirus syndrome. Elderly patients, people with underlying chronic illnesses, cancer patients, and those who are immunocompromised are at higher risk and account for higher mortality rate. Unfortunately, there is no approved medication for treatment, till date, thereby supporting triage management and difficult decision-making. Thus, there should be a substantial increase in the palliative care in times of pandemic. There should be an increase in the availability of palliative care services in different care settings. Due to a surge in the number of cases of COVID-19, it has been reported on how palliative care is being delayed, discontinued, or deprioritized. AIM: The aim of this study is to evaluate the barriers occurring in providing the palliative care to the patients with nonmalignant illness. METHODOLOGY: A questionnaire was designed after studying previous work over palliative care and pandemic crisis and was distributed among the physicians, surgeons, and the residents; a total of 95 health-care workers were involved. The survey was done through mails. The response then was evaluated and analyzed. RESULTS: As seen by the responses we got from the health-care workers, the main issue is the nonavailability of the personal protective equipment during this pandemic. Keeping the current scenario in mind, regarding COVID-19, the patients are at fear of coming to the hospital at first place, and even if they come then the fear of being alone haunts them. One of the biggest fears of the patient is dying alone, without being in contact with their loved ones. CONCLUSION: Palliative care should be an essential part of any health-care service in any humanitarian crisis, including the COVID-19 pandemic. Thus, effort should be made to remove the barriers and provide palliative care to the patient.

12.
Viruses ; 12(5)2020 04 26.
Article in English | MEDLINE | ID: covidwho-1726007

ABSTRACT

In January 2020, Chinese health agencies reported an outbreak of a novel coronavirus-2 (CoV-2) which can lead to severe acute respiratory syndrome (SARS). The virus, which belongs to the coronavirus family (SARS-CoV-2), was named coronavirus disease 2019 (COVID-19) and declared a pandemic by the World Health Organization (WHO). Full-length genome sequences of SARS-CoV-2 showed 79.6% sequence identity to SARS-CoV, with 96% identity to a bat coronavirus at the whole-genome level. COVID-19 has caused over 133,000 deaths and there are over 2 million total confirmed cases as of April 15th, 2020. Current treatment plans are still under investigation due to a lack of understanding of COVID-19. One potential mechanism to slow disease progression is the use of antiviral drugs to either block the entry of the virus or interfere with viral replication and maturation. Currently, antiviral drugs, including chloroquine/hydroxychloroquine, remdesivir, and lopinavir/ritonavir, have shown effective inhibition of SARS-CoV-2 in vitro. Due to the high dose needed and narrow therapeutic window, many patients are experiencing severe side effects with the above drugs. Hence, repurposing these drugs with a proper formulation is needed to improve the safety and efficacy for COVID-19 treatment. Extracellular vesicles (EVs) are a family of natural carriers in the human body. They play a critical role in cell-to-cell communications. EVs can be used as unique drug carriers to deliver protease inhibitors to treat COVID-19. EVs may provide targeted delivery of protease inhibitors, with fewer systemic side effects. More importantly, EVs are eligible for major aseptic processing and can be upscaled for mass production. Currently, the FDA is facilitating applications to treat COVID-19, which provides a very good chance to use EVs to contribute in this combat.


Subject(s)
Coronavirus Infections/drug therapy , Drug Repositioning , Extracellular Vesicles/chemistry , HIV Protease Inhibitors/administration & dosage , Pneumonia, Viral/drug therapy , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Drug Approval , Drug Delivery Systems , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2
13.
J Clin Rheumatol ; 28(2): e623-e625, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1703382

ABSTRACT

BACKGROUND: SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection produces a wide variety of inflammatory responses in children, including multisystem inflammatory syndrome in children, which has similar clinical manifestations as Kawasaki disease (KD). METHODS: We performed a chart review of all patients with KD-like illnesses from January 1, 2016, to May 31, 2020, at a tertiary care children's hospital within a larger health system. Relevant symptoms, comorbid illnesses, laboratory results, imaging studies, treatment, and outcomes were reviewed. Descriptive analyses to compare features over time were performed. RESULTS: We identified 81 cases of KD-like illnesses from January 1, 2016, to May 31, 2020. Few clinical features, such as gallbladder involvement, were more prevalent in 2020 than in previous years. A few patients in 2020 required more intensive treatment with interleukin 1 receptor antagonist therapy. There were no other clear differences in incidence, laboratory parameters, number of doses of intravenous immunoglobulin, or outcomes over the years of the study. CONCLUSIONS: There was no difference in incidence, laboratory parameters, or number of doses of intravenous immunoglobulin required for treatment of KD-like illnesses during the COVID-19 pandemic when compared with previous years at our institution. Kawasaki disease-like illnesses, including multisystem inflammatory syndrome in children, may not have changed substantially during the COVID-19 pandemic.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , COVID-19/complications , Child , Humans , Medical Records , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/epidemiology , Pandemics , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
14.
SN Compr Clin Med ; 2(9): 1436-1443, 2020.
Article in English | MEDLINE | ID: covidwho-1700862

ABSTRACT

The outbreak of a large plaque, novel coronavirus pneumonia (NCP), which also named Coronavirus Disease 2019 (COVID-19) by the WHO, has detrimentally affected the livelihood and health of people in China. During the spread of COVID-19, colleagues who have been working at the frontline have had to face many new challenges in the treatment and prevention of NCP. Therefore, we have provided suggestions for the diagnosis, treatment, and prevention of the novel coronavirus pneumonia in the current epidemic situation based on the latest reports and the experience of doctors treating COVID-19 in our hospital. We recommend lopinavir/ritonavir as the effective drugs for antiviral treatment according to our experience in administering lopinavir/ritonavir to COVID-19 patients and the successful cases of these drugs in treating MERS and SARS, but need more clinical data to prove their efficacy in treating COVID-19.

15.
Pediatr Infect Dis J ; 40(7): e274-e276, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1700567

ABSTRACT

Underlying mechanisms on the association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and neurologic complications are still poorly understood. Cases of Guillain-Barré Syndrome (GBS) have been linked to the SARS-CoV-2 infection as the result of dysregulated immune response with damage in neuronal tissues. In the current report, we present the first pediatric case of GBS with detection of SARS-CoV-2 in the cerebrospinal fluid (CFS). This unique case of COVID-19-associated GBS with detection of SARS-CoV-2 RNA in the CSF indicates direct viral involvement inducing peripheral nerve inflammation.


Subject(s)
COVID-19/cerebrospinal fluid , COVID-19/diagnosis , Guillain-Barre Syndrome/complications , RNA, Viral/cerebrospinal fluid , Adolescent , COVID-19/complications , Cauda Equina/diagnostic imaging , Cauda Equina/pathology , Cauda Equina/virology , Female , Guillain-Barre Syndrome/virology , Humans , Inflammation/virology , Magnetic Resonance Imaging , SARS-CoV-2/isolation & purification
17.
Curr Pharmacol Rep ; 6(5): 228-240, 2020.
Article in English | MEDLINE | ID: covidwho-1682288

ABSTRACT

The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for causing coronavirus disease 2019 (COVID-19), marked the third time in the twenty-first century when a new, highly pathogenic human coronavirus outbreak has led to an epidemic. The COVID-19 epidemic has emerged in late December 2019 in Wuhan city of China and spread rapidly to other parts of the world. This quick spread of SARS-CoV-2 infection to many states across the globe affecting many people has led WHO to declare it a pandemic on March 12, 2020. As of July 4, 2020, more than 523,011 people lost their lives worldwide because of this deadly SARS-CoV-2. The current situation becomes more frightening as no FDA-approved drugs or vaccines are available to treat or prevent SARS-CoV-2 infection. The current therapeutic options for COVID-19 are limited only to supportive measures and non-specific interventions. So, the need of the hour is to search for SARS-CoV-2-specific antiviral treatments and to develop vaccines for SARS-CoV-2. Also, it is equally important to maintain our immunity, and natural products and Ayurvedic medicines are indispensable in this regard. In this review, we discuss recent updates regarding various therapeutic approaches to combat COVID-19 pandemic and enlist the major pipeline drugs and traditional medicines that are under trial for COVID-19. Also, possible mechanisms involved in viral pathogenesis are discussed, which further allow us to understand various drug targets and helps in discovering novel therapeutic approaches for COVID-19. Altogether, the information provided in this review will work as an intellectual groundwork and provides an insight into the ongoing development of various therapeutic agents.

18.
Br J Nutr ; 127(6): 896-903, 2022 03 28.
Article in English | MEDLINE | ID: covidwho-1651089

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused mild illness in children, until the emergence of the novel hyperinflammatory condition paediatric inflammatory multisystem syndrome temporally associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PIMS-TS). PIMS-TS is thought to be a post-SARS-CoV-2 immune dysregulation with excessive inflammatory cytokine release. We studied 25 hydroxyvitamin D (25OHD) concentrations in children with PIMS-TS, admitted to a tertiary paediatric hospital in the UK, due to its postulated role in cytokine regulation and immune response. Eighteen children (median (range) age 8·9 (0·3-14·6) years, male = 10) met the case definition. The majority were of Black, Asian and Minority Ethnic (BAME) origin (89 %, 16/18). Positive SARS-CoV-2 IgG antibodies were present in 94 % (17/18) and RNA by PCR in 6 % (1/18). Seventy-eight percentage of the cohort were vitamin D deficient (< 30 nmol/l). The mean 25OHD concentration was significantly lower when compared with the population mean from the 2015/16 National Diet and Nutrition Survey (children aged 4-10 years) (24 v. 54 nmol/l (95 % CI -38·6, -19·7); P < 0·001). The paediatric intensive care unit (PICU) group had lower mean 25OHD concentrations compared with the non-PICU group, but this was not statistically significant (19·5 v. 31·9 nmol/l; P = 0·11). The higher susceptibility of BAME children to PIMS-TS and also vitamin D deficiency merits contemplation. Whilst any link between vitamin D deficiency and the severity of COVID-19 and related conditions including PIMS-TS requires further evidence, public health measures to improve vitamin D status of the UK BAME population have been long overdue.


Subject(s)
COVID-19 , COVID-19/complications , Child , Child, Preschool , Humans , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Vitamin D
19.
Computation (Basel) ; 8(2)2020 Jun.
Article in English | MEDLINE | ID: covidwho-1648681

ABSTRACT

Since the outbreak of the 2019 novel coronavirus disease (COVID-19), the medical research community is vigorously seeking a treatment to control the infection and save the lives of severely infected patients. The main potential candidates for the control of viruses are virally targeted agents. In this short letter, we report our calculations on the inhibitors for the SARS-CoV-2 3CL protease and the spike protein for the potential treatment of COVID-19. The results show that the most potent inhibitors of the SARS-CoV-2 3CL protease include saquinavir, tadalafil, rivaroxaban, sildenafil, dasatinib, etc. Ergotamine, amphotericin b, and vancomycin are most promising to block the interaction of the SARS-CoV-2 S-protein with human ACE-2.

20.
Trials ; 22(1): 172, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-1622253

ABSTRACT

OBJECTIVES: The primary objective of this study is to test the hypothesis that administration of dexamethasone 20 mg is superior to a 6 mg dose in adult patients with moderate or severe ARDS due to confirmed COVID-19. The secondary objective is to investigate the efficacy and safety of dexamethasone 20 mg versus dexamethasone 6 mg. The exploratory objective of this study is to assess long-term consequences on mortality and quality of life at 180 and 360 days. TRIAL DESIGN: REMED is a prospective, phase II, open-label, randomised controlled trial testing superiority of dexamethasone 20 mg vs 6 mg. The trial aims to be pragmatic, i.e. designed to evaluate the effectiveness of the intervention in conditions that are close to real-life routine clinical practice. PARTICIPANTS: The study is multi-centre and will be conducted in the intensive care units (ICUs) of ten university hospitals in the Czech Republic. INCLUSION CRITERIA: Subjects will be eligible for the trial if they meet all of the following criteria: 1. Adult (≥18 years of age) at time of enrolment; 2. Present COVID-19 (infection confirmed by RT-PCR or antigen testing); 3. Intubation/mechanical ventilation or ongoing high-flow nasal cannula (HFNC) oxygen therapy; 4. Moderate or severe ARDS according to Berlin criteria: • Moderate - PaO2/FiO2 100-200 mmHg; • Severe - PaO2/FiO2 < 100 mmHg; 5. Admission to ICU in the last 24 hours. EXCLUSION CRITERIA: Subjects will not be eligible for the trial if they meet any of the following criteria: 1. Known allergy/hypersensitivity to dexamethasone or excipients of the investigational medicinal product (e.g. parabens, benzyl alcohol); 2. Fulfilled criteria for ARDS for ≥14 days at enrolment; 3. Pregnancy or breastfeeding; 4. Unwillingness to comply with contraception measurements from enrolment until at least 1 week after the last dose of dexamethasone (sexual abstinence is considered an adequate contraception method); 5. End-of-life decision or patient is expected to die within next 24 hours; 6. Decision not to intubate or ceilings of care in place; 7. Immunosuppression and/or immunosuppressive drugs in medical history: a) Systemic immunosuppressive drugs or chemotherapy in the past 30 days; b) Systemic corticosteroid use before hospitalization; c) Any dose of dexamethasone during the present hospital stay for COVID-19 for ≥5 days before enrolment; d) Systemic corticosteroids during present hospital stay for conditions other than COVID-19 (e.g. septic shock); 8. Current haematological or generalized solid malignancy; 9. Any contraindication for corticosteroid administration, e.g. • intractable hyperglycaemia; • active gastrointestinal bleeding; • adrenal gland disorders; • presence of superinfection diagnosed with locally established clinical and laboratory criteria without adequate antimicrobial treatment; 10. Cardiac arrest before ICU admission; 11. Participation in another interventional trial in the last 30 days. INTERVENTION AND COMPARATOR: Dexamethasone solution for injection/infusion is the investigational medicinal product as well as the comparator. The trial will assess two doses, 20 mg (investigational) vs 6 mg (comparator). Patients in the intervention group will receive dexamethasone 20 mg intravenously once daily on day 1-5, followed by dexamethasone 10 mg intravenously once daily on day 6-10. Patients in the control group will receive dexamethasone 6 mg day 1-10. All authorized medicinal products containing dexamethasone in the form of solution for i.v. injection/infusion can be used. MAIN OUTCOMES: Primary endpoint: Number of ventilator-free days (VFDs) at 28 days after randomisation, defined as being alive and free from mechanical ventilation. SECONDARY ENDPOINTS: a) Mortality from any cause at 60 days after randomisation; b) Dynamics of inflammatory marker (C-Reactive Protein, CRP) change from Day 1 to Day 14; c) WHO Clinical Progression Scale at Day 14; d) Adverse events related to corticosteroids (new infections, new thrombotic complications) until Day 28 or hospital discharge; e) Independence at 90 days after randomisation assessed by Barthel Index. The long-term outcomes of this study are to assess long-term consequences on mortality and quality of life at 180 and 360 days through telephone structured interviews using the Barthel Index. RANDOMISATION: Randomisation will be carried out within the electronic case report form (eCRF) by the stratified permuted block randomisation method. Allocation sequences will be prepared by a statistician independent of the study team. Allocation to the treatment arm of an individual patient will not be available to the investigators before completion of the whole randomisation process. The following stratification factors will be applied: • Age <65 and ≥ 65; • Charlson Comorbidity index (CCI) <3 and ≥3; • CRP <150 mg/L and ≥150 mg/L • Trial centre. Patients will be randomised in a 1 : 1 ratio into one of the two treatment arms. Randomisation through the eCRF will be available 24 hours every day. BLINDING (MASKING): This is an open-label trial in which the participants and the study staff will be aware of the allocated intervention. Blinded pre-planned statistical analysis will be performed. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The sample size is calculated to detect the difference of 3 VFDs at 28 days (primary efficacy endpoint) between the two treatment arms with a two-sided type I error of 0.05 and power of 80%. Based on data from a multi-centre randomised controlled trial in COVID-19 ARDS patients in Brazil and a multi-centre observational study from French and Belgian ICUs regarding moderate to severe ARDS related to COVID-19, investigators assumed a standard deviation of VFD at 28 days as 9. Using these assumptions, a total of 142 patients per treatment arm would be needed. After adjustment for a drop-out rate, 150 per treatment arm (300 patients per study) will be enrolled. TRIAL STATUS: This is protocol version 1.1, 15.01.2021. The trial is due to start on 2 February 2021 and recruitment is expected to be completed by December 2021. TRIAL REGISTRATION: The study protocol was registered on EudraCT No.:2020-005887-70, and on December 11, 2020 on ClinicalTrials.gov (Title: Effect of Two Different Doses of Dexamethasone in Patients With ARDS and COVID-19 (REMED)) Identifier: NCT04663555 with a last update posted on February 1, 2021. FULL PROTOCOL: The full protocol (version 1.1) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the standard formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19/therapy , Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Respiration, Artificial , Respiratory Distress Syndrome/therapy , COVID-19/complications , Clinical Trials, Phase II as Topic , Disease Progression , Dose-Response Relationship, Drug , Equivalence Trials as Topic , Humans , Length of Stay , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/etiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL