Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Photochem Photobiol ; 97(3): 549-551, 2021 05.
Article in English | MEDLINE | ID: covidwho-1388389

ABSTRACT

Although the environmental control measure of ultraviolet germicidal irradiation (UVGI) for disinfection has not been widely used in the United States and some parts of the world in the past few decades, this technology has been well applied in Russia. UVGI technology has been particularly useful with regard to limiting TB transmission in medical facilities. There is good evidence that UV-C (180-280 nm) air disinfection can be a helpful intervention in reducing transmission of the SARS-CoV-2 virus.


Subject(s)
COVID-19/prevention & control , Disinfection/methods , Hospitals/standards , SARS-CoV-2/radiation effects , Ultraviolet Rays , Virus Inactivation/radiation effects , Air Microbiology , Air Pollution, Indoor/prevention & control , COVID-19/epidemiology , Disinfection/instrumentation , Humans , Infection Control , Russia
2.
Jpn J Infect Dis ; 74(4): 285-292, 2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1323436

ABSTRACT

Isolation of seasonal coronaviruses, which include human coronavirus (HCoV) OC43, HCoV-HKU1, and HCoV-NL63, from primary cultures is difficult because it requires experienced handling, an exception being HCoV-229E, which can be isolated using cell lines such as RD-18S and HeLa-ACE2-TMPRSS2. We aimed to isolate seasonal CoVs in Yamagata, Japan to obtain infective virions useful for further research and to accelerate fundamental studies on HCoVs and SARS-CoV-2. Using modified air-liquid interface (ALI) culture of the normal human airway epithelium from earlier studies, we isolated 29 HCoVs (80.6%: 16, 6, 6, and 1 isolates of HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E, respectively) from 36 cryopreserved nasopharyngeal specimens. In ALI cultures of HCoV-OC43 and HCoV-NL63, the harvested medium contained more than 1 × 104 genome copies/µL at every tested time point during the more than 100 days of culture. Four isolates of HCoV-NL63 were further subcultured and successfully propagated in an LLC-MK2 cell line. Our results suggest that ALI culture is useful for isolating seasonal CoVs and sustainably obtaining HCoV-OC43 and HCoV-NL63 virions. Furthermore, the LLC-MK2 cell line in combination with ALI cultures can be used for the large-scale culturing of HCoV-NL63. Further investigations are necessary to develop methods for culturing difficult-to-culture seasonal CoVs in cell lines.


Subject(s)
Coronavirus/isolation & purification , Epithelium/virology , Respiratory System/virology , Respiratory Tract Infections/virology , Coronavirus/genetics , Genome, Viral/genetics , Humans , Japan
3.
Anesthesiology ; 135(2): 292-303, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1307560

ABSTRACT

BACKGROUND: Tracheal intubation for patients with COVID-19 is required for invasive mechanical ventilation. The authors sought to describe practice for emergency intubation, estimate success rates and complications, and determine variation in practice and outcomes between high-income and low- and middle-income countries. The authors hypothesized that successful emergency airway management in patients with COVID-19 is associated with geographical and procedural factors. METHODS: The authors performed a prospective observational cohort study between March 23, 2020, and October 24, 2020, which included 4,476 episodes of emergency tracheal intubation performed by 1,722 clinicians from 607 institutions across 32 countries in patients with suspected or confirmed COVID-19 requiring mechanical ventilation. The authors investigated associations between intubation and operator characteristics, and the primary outcome of first-attempt success. RESULTS: Successful first-attempt tracheal intubation was achieved in 4,017/4,476 (89.7%) episodes, while 23 of 4,476 (0.5%) episodes required four or more attempts. Ten emergency surgical airways were reported-an approximate incidence of 1 in 450 (10 of 4,476). Failed intubation (defined as emergency surgical airway, four or more attempts, or a supraglottic airway as the final device) occurred in approximately 1 of 120 episodes (36 of 4,476). Successful first attempt was more likely during rapid sequence induction versus non-rapid sequence induction (adjusted odds ratio, 1.89 [95% CI, 1.49 to 2.39]; P < 0.001), when operators used powered air-purifying respirators versus nonpowered respirators (adjusted odds ratio, 1.60 [95% CI, 1.16 to 2.20]; P = 0.006), and when performed by operators with more COVID-19 intubations recorded (adjusted odds ratio, 1.03 for each additional previous intubation [95% CI, 1.01 to 1.06]; P = 0.015). Intubations performed in low- or middle-income countries were less likely to be successful at first attempt than in high-income countries (adjusted odds ratio, 0.57 [95% CI, 0.41 to 0.79]; P = 0.001). CONCLUSIONS: The authors report rates of failed tracheal intubation and emergency surgical airway in patients with COVID-19 requiring emergency airway management, and identified factors associated with increased success. Risks of tracheal intubation failure and success should be considered when managing COVID-19.


Subject(s)
COVID-19 , Airway Management , Cohort Studies , Humans , Intubation, Intratracheal , Prospective Studies , SARS-CoV-2
4.
J Hosp Infect ; 115: 32-43, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1305266

ABSTRACT

BACKGROUND: The concern with environmental security to avoid contamination of individuals was intensified with the crisis established by SARS-CoV-2. The COVID-19 pandemic has shown the necessity to create systems and devices capable of clearing the air in an environment of micro-organisms more efficiently. The development of systems that allow the removal of micro-droplets mainly originating from breathing or talking from the air was the motivation of this study. AIM: This article describes a portable and easy-to-operate system that helps to eliminate the droplets or aerosols present in the environment by circulating air through an ultraviolet-C (UV-C) reactor. METHODS: An air circulation device was developed, and a proof-of-principle study was performed using the device against bacteria in simulated and natural environments. The microbiological analysis was carried out by the simple sedimentation technique. In order to compare the experimental results and the expected results for other micro-organisms, the reduction rate values for bacteria and viruses were calculated and compared with the experimental results based on technical parameters (clean air delivery rate (CADR) and air changes per hour (ACH)). FINDINGS: Results showed that the micro-organisms were eliminated with high efficiency by the air circulation decontamination device, with reductions of 99.9% in the proof-of-principle study, and 84-97% in the hospital environments study, contributing to reducing contamination of individuals in environments considered to present risk. CONCLUSION: This study resulted in a low-cost and relatively simple device, which was shown to be effective and safe, and could be replicated, especially in low-income countries, respecting the standards for air disinfection using UV-C technologies.


Subject(s)
COVID-19 , Ultraviolet Rays , Decontamination , Disinfection , Humans , Pandemics , SARS-CoV-2
6.
Appl Energy ; 292: 116848, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1279532

ABSTRACT

Radiant cooling-assisted natural ventilation is an innovative technical approach that combines new radiant cooling technology with natural ventilation to increase fresh air delivery into buildings year-round with minimal energy cost and improvment of air quality. Currently, the standard paradigm for HVAC (heating, ventilation and air conditioning) is based on central air systems that tie the delivery of heating and cooling to the delivery of fresh air. To prevent heat loss, the delivery of fresh air must be tightly controlled and is often limited through recirculation of already heated or cooled air. Buildings are designed with airtight envelopes, which do not allow for natural ventilation, and depend on energy-intensive central-air systems. As closed environments, buildings have become sites of rapid COVID-19 transmission. In this research, we demonstrate the energy cost of increasing outdoor air supply with standard systems per COVID-19 recommendations and introduce an alternative HVAC paradigm that maximizes the decoupling of ventilation and thermal control. We first consider a novel analysis of the energy costs of increasing the amount of conditioned fresh air using standard HVAC systems to address COVID-19 concerns. We then present an alternative that includes a novel membrane-assisted radiant system we have studied for cooling in humid climates, in place of an air conditioning system. The proposed system can work in conjunction with natural ventilation and thus decreases the risk of indoor spread of infectious diseases and significantly lowers energy consumption in buildings. Our results for modeling HVAC energy in different climates show that increasing outdoor air in standard systems can double cooling costs, while increasing natural ventilation with radiant systems can halve costs. More specifically, it is possible to add up to 100 days' worth of natural ventilation while saving energy when coupling natural ventilation and radiant systems. This combination decreases energy costs by 10-45% in 60 major cities globally, while increasing fresh air intake.

7.
Clin Oral Investig ; 26(1): 523-533, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1274853

ABSTRACT

OBJECTIVES: Decreasing aerosol leaks are of great interest, especially in the recent era of COVID-19. The aim was to investigate intrapulpal heat development, coolant spray patterns, and the preparation efficiency of speed-increasing contra-angle handpieces with the spray air on (mist) or off (water jet) settings during restorative cavity preparations. METHODS: Standard-sized cavities were prepared in 80 extracted intact human molar teeth using diamond cylindrical drills with a 1:5 speed-increasing contra-angle handpiece. A custom-made device maintained the standardized lateral drilling force (3 N) and predetermined depth. Temperatures were measured using intrapulpal thermocouple probes. The four experimental groups were as follows: mist cooling mode at 15 mL/min (AIR15), water jet cooling mode at 15 mL/min (JET15), mist cooling mode at 30 mL/min (AIR30), and water jet cooling mode at 30 mL/min (JET30). The coolant spray pattern was captured using macro-photo imaging. RESULTS: The JET15 group had the highest increase in temperature (ΔT = 6.02 °C), while JET30 (ΔT = 2.24 °C; p < 0.001), AIR15 (ΔT = 3.34 °C; p = 0.042), and AIR30 (ΔT = 2.95 °C; p = 0.003) had significantly lower increases in temperature. Fine mist aerosol was formed in the AIR15 and AIR30 preparations but not in the JET15 and JET30 preparations (p < 0.001). The irrigation mode had no influence on the preparation time (p = 0.672). CONCLUSIONS: Water jet irrigation using coolant at 30 mL/min appeared to be the optimal mode. Considering the safe intrapulpal temperatures and the absence of fine mist aerosols, this mode can be recommended for restorative cavity preparations. CLINICAL SIGNIFICANCE: To increase infection control in dental practices, the water jet irrigation mode of speed-increasing handpieces with coolant flow rates of 30 mL/min should be considered for restorative cavity preparations.


Subject(s)
COVID-19 , Dental High-Speed Equipment , Dental Cavity Preparation , Hot Temperature , Humans , SARS-CoV-2 , Temperature
8.
Mil Med ; 2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-1266125

ABSTRACT

INTRODUCTION: The recent COVID-19 pandemic has underscored the necessity of protecting health care providers (HCPs) against the transmission of infectious agents during dental procedures. To this end, the effectiveness of several air cleaning devices (ACDs) in reducing HCPs exposure to aerosols generated during dental procedures was estimated, separately or in combination with each other. These ACDs were a chairside unit capturing aerosols at the source of generation, and four ambient ACDs: a portable ambient ACD; a negative pressure module; a custom made, fan-operated and wall-mounted air filter (WMAF); and a smaller and passive version of the latter. The last three ACDs were intended for mobile dental clinics (MDCs) only. MATERIALS AND METHODS: This assessment was performed in two different environments: in a dental clinic operatory and in a MDC. Two dental personnel, acting in the roles of dentist and dental assistant, performed on simulated patient aerosol-generating and non-aerosol-generating procedures. For each 5-minute scenario, the cumulative exposure to airborne particulate matter 10 µm in size or smaller (PM10) was determined by calculating the sum of all 1 second readings obtained with personal and ambient air monitors. The effectiveness of the ACDs in capturing PM10 was estimated based on the capability of the ACDs to keep PM10 level at or below the initial background level. RESULTS: In all conditions assessed in the dental clinic operatory, when both the chairside and portable ambient ACDs were functioning, an estimated effectiveness of 100% in capturing PM10 was achieved. In the MDC, in all conditions where the chairside ACD was used without the negative pressure module, an estimated effectiveness of 100% was also achieved. The simultaneous operation of the negative pressure module in the MDC, which led to a room negative pressure of -0.25 inch wc, reduced the chairside ACD's effectiveness in capturing aerosols. Conversely, the use of the WMAF in the MDC in combination with the chairside ACD further reduced exposure to PM10 below the initial background level. Nonetheless, in all conditions assessed in both settings (dental clinic operatory and MDC), larger visible aerosols were produced, often landing on the surrounding environment. A fair portion of these aerosols landed on the inside of the chairside ACD flange. CONCLUSIONS: This assessment suggests that the use of the tested chairside ACD, by capturing aerosols at the source of generation, had the greatest impact on reducing exposure of dental personnel to PM10 produced during dental procedures. This study also indicates that such exposure is further reduced with the addition of an ambient ACD. However, creating a negative pressure room as high as -0.25 inch wc can lead to air turbulence reducing the effectiveness of ACDs in capturing aerosols at the source. Furthermore, the presence of uncaptured droplets and spatter on the surrounding environment supports the need to complement the use of engineering controls with proper administrative controls and personal protective equipment, as recommended by governmental agencies and the scientific community for preventing the transmission of infection in health care settings.

9.
Build Environ ; 202: 108042, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1263231

ABSTRACT

Reducing the transmission of SARS-CoV-2 through indoor air is the key challenge of the COVID-19 pandemic. Crowded indoor environments, such as schools, represent possible hotspots for virus transmission since the basic non-pharmaceutical mitigation measures applied so far (e.g. social distancing) do not eliminate the airborne transmission mode. There is widespread consensus that improved ventilation is needed to minimize the transmission potential of airborne viruses in schools, whether through mechanical systems or ad-hoc manual airing procedures in naturally ventilated buildings. However, there remains significant uncertainty surrounding exactly what ventilation rates are required, and how to best achieve these targets with limited time and resources. This paper uses a mass balance approach to quantify the ability of both mechanical ventilation and ad-hoc airing procedures to mitigate airborne transmission risk in the classroom environment. For naturally-ventilated classrooms, we propose a novel feedback control strategy using CO2 concentrations to continuously monitor and adjust the airing procedure. Our case studies show how such procedures can be applied in the real world to support the reopening of schools during the pandemic. Our results also show the inadequacy of relying on absolute CO2 concentration thresholds as the sole indicator of airborne transmission risk.

10.
Eur J Med Res ; 26(1): 52, 2021 Jun 09.
Article in English | MEDLINE | ID: covidwho-1262517

ABSTRACT

BACKGROUND: We are laryngologists. We observe natural phonatory and swallowing functions in clinical examinations with a trans-nasal laryngeal fiberscope (TNLF). Before each observation, we use epinephrine to enlarge and smooth the common nasal meatus (bottom of nostril) and then insert a wet swab inside the nose, as in taking a swab culture in the nasopharynx. During the current COVID-19 pandemic situation, this careful technique prevents any complications, including nasal bleeding, painfulness, and induced sneezing. Here, we introduce our routine to observe esophageal movement in swallowing in a natural (sitting) position without anesthesia. CASE PRESENTATION: The case was a 70-year-old female who complained that something was stuck in her esophagus; there was a strange sensation below the larynx and pharynx. After enlarging and smoothing the common nasal meatus, we inserted the TNLF (slim type ⌀2.9 mm fiberscope, VNL8-J10, PENTAX Medical, Tokyo, Japan.) in the normal way. We then observed the phonatory and swallowing movements of the vocal folds. As usual, to not interfere with natural movements, we used no anesthesia. We found no pathological condition in the pyriform sinus. We asked the patient to swallow the fiberscope. During the swallow, we pushed the TNLF and inserted the tip a bit deeper, which made the fiberscope easily enter the esophagus, like in the insertion of a nasogastric tube. We then asked the patient to swallow a sip of water or saliva to clear and enlarge the lumen of the esophagus. This made it possible to observe the esophagus easily without any air supply. With tone enhancement scan, the esophagus was found to be completely normal except for glycogenic acanthosis. CONCLUSIONS: The advantage of this examination is that it is easily able to perform without anesthesia and with the patient in sitting position. It is quick and minimally invasive, enabling observation the physiologically natural swallowing. It is also possible to observe without anesthesia down to the level of the esophagogastric junction using with a thin type flexible bronchoscope. In the future, gastric fiberscopes might be thinner, even with narrow band imaging (NBI) function. Before that time, physicians should remember to just insert along the bottom of the nose.


Subject(s)
COVID-19/prevention & control , Esophagus/metabolism , Glycogen/metabolism , Intubation, Intratracheal/methods , Aged , Anesthesia , COVID-19/epidemiology , COVID-19/virology , Epithelium/metabolism , Female , Humans , Intubation, Intratracheal/instrumentation , Mucous Membrane/metabolism , Nasal Cavity , Pandemics , Reproducibility of Results , SARS-CoV-2/physiology , Sneezing
11.
Environ Sci Pollut Res Int ; 28(38): 53478-53492, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1242814

ABSTRACT

The COVID-19 pandemic has plunged the world into uncharted territory, leaving people feeling helpless in the face of an invisible threat of unknown duration that could adversely impact the national economic growths. According to the World Health Organization (WHO), the SARS-CoV-2 spreads primarily through droplets of saliva or discharge from the mouth or nose when an infected person coughs or sneezes. However, the transmission of the SARS-CoV-2 through aerosols remains unclear. In this study, computational fluid dynamic (CFD) is used to complement the investigation of the SARS-CoV-2 transmission through aerosol. The Lagrangian particle tracking method was used to analyze the dispersion of the exhaled particles from a SARS-CoV-2-positive patient under different exhale activities and different flow rates of chilled (cooling) air supply. Air sampling of the SARS-CoV-2 patient ward was conducted for 48-h measurement intervals to collect the indoor air sample for particulate with diameter less than 2.5 µm. Then, the reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was conducted to analyze the collected air sample. The simulation demonstrated that the aerosol transmission of the SARS-CoV-2 virus in an enclosed room (such as a hospital ward) is highly possible.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Hospitals , Humans , Pandemics
12.
Environ Res ; 199: 111280, 2021 08.
Article in English | MEDLINE | ID: covidwho-1240348

ABSTRACT

The SARS CoV-2 (COVID-19) pandemic and the enforced lockdown have reduced the use of surface and air transportation. This study investigates the impact of the lockdown restrictions in India on atmospheric composition, using Sentinel-5Ps retrievals of tropospheric NO2 concentration and ground-station measurements of NO2 and PM2.5 between March-May in 2019 and 2020. Detailed analysis of the changes to atmospheric composition are carried out over six major urban areas (i.e. Delhi, Mumbai, Kolkata, Chennai, Bangalore, and Hyderabad) by comparing Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) and land surface temperature (LST) measurements in the lockdown year 2020 and pre-lockdown (2015-2019). Satellite-based data showed that NO2 concentration reduced by 18% (Kolkata), 29% (Hyderabad), 32-34% (Chennai, Mumbai, and Bangalore), and 43% (Delhi). Surface-based concentrations of NO2, PM2.5, and AOD also substantially dropped by 32-74%, 10-42%, and 8-34%, respectively over these major cities during the lockdown period and co-located with the intensity of anthropogenic activity. Only a smaller fraction of the reduction of pollutants was associated with meteorological variability. A substantial negative anomaly was found for LST both in the day (-0.16 °C to -1 °C) and night (-0.63 °C to -2.1 °C) across select all cities, which was also consistent with air temperature measurements. The decreases in LST could be associated with a reduction in pollutants, greenhouse gases and water vapor content. Improvement in air quality with lower urban temperatures due to lockdown may be a temporary effect, but it provides a crucial connection among human activities, air pollution, aerosols, radiative flux, and temperature. The lockdown for a shorter-period showed a significant improvement in environmental quality and provides a strong evidence base for larger scale policy implementation to improve air quality.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Humans , India , Pandemics , Particulate Matter/analysis , SARS-CoV-2 , Temperature
13.
Phys Fluids (1994) ; 33(5): 057107, 2021 May.
Article in English | MEDLINE | ID: covidwho-1238056

ABSTRACT

Many indoor places, including aged classrooms and offices, prisons, homeless shelters, etc., are poorly ventilated but resource-limited to afford expensive ventilation upgrades or commercial air purification systems, raising concerns on the safety of opening activities in these places in the era of the COVID-19 pandemic. To address this challenge, using computational fluid dynamics, we conducted a systematic investigation of airborne transmission in a classroom equipped with a single horizontal unit ventilator (HUV) and evaluate the performance of a low-cost box fan air cleaner for risk mitigation. Our study shows that placing box fan air cleaners in the classroom results in a substantial reduction of airborne transmission risk across the entire space. The air cleaner can achieve optimal performance when placed near the asymptomatic patient. However, without knowing the location of the patient, the performance of the cleaner is optimal near the HUV with the air flowing downwards. In addition, we find that it is more efficient in reducing aerosol concentration and spread in the classroom by adding air cleaners in comparison with raising the flow rate of HUV alone. The number and placement of air cleaners need to be adjusted to maintain their efficacy for larger classrooms and to account for the thermal gradient associated with a human thermal plume and hot ventilation air during cold seasons. Overall, our study shows that box fan air cleaners can serve as an effective low-cost alternative for mitigating airborne transmission risks in poorly ventilated spaces.

14.
Sci Rep ; 11(1): 10678, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1238016

ABSTRACT

With an urgent need for bedside imaging of coronavirus disease 2019 (COVID-19), this study's main goal was to assess inter- and intraobserver agreement in lung ultrasound (LUS) of COVID-19 patients. In this single-center study we prospectively acquired and evaluated 100 recorded ten-second cine-loops in confirmed COVID-19 intensive care unit (ICU) patients. All loops were rated by ten observers with different subspeciality backgrounds for four times by each observer (400 loops overall) in a random sequence using a web-based rating tool. We analyzed inter- and intraobserver variability for specific pathologies and a semiquantitative LUS score. Interobserver agreement for both, identification of specific pathologies and assignment of LUS scores was fair to moderate (e.g., LUS score 1 Fleiss' κ = 0.27; subpleural consolidations Fleiss' κ = 0.59). Intraobserver agreement was mostly moderate to substantial with generally higher agreement for more distinct findings (e.g., lowest LUS score 0 vs. highest LUS score 3 (median Fleiss' κ = 0.71 vs. 0.79) or air bronchograms (median Fleiss' κ = 0.72)). Intraobserver consistency was relatively low for intermediate LUS scores (e.g. LUS Score 1 median Fleiss' κ = 0.52). We therefore conclude that more distinct LUS findings (e.g., air bronchograms, subpleural consolidations) may be more suitable for disease monitoring, especially with more than one investigator and that training material used for LUS in point-of-care ultrasound (POCUS) should pay refined attention to areas such as B-line quantification and differentiation of intermediate LUS scores.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Point-of-Care Systems , SARS-CoV-2 , COVID-19/therapy , Female , Humans , Male , Middle Aged , Monitoring, Physiologic , Observer Variation , Prospective Studies , Ultrasonography
15.
Am J Infect Control ; 49(10): 1322-1323, 2021 10.
Article in English | MEDLINE | ID: covidwho-1233344

ABSTRACT

Early in the pandemic, infection prevention (IP), in collaboration with our local anesthesia leadership, took the approach of ensuring all members of the Anesthesia Department understood the importance of universal masking, were individually trained on the use of the Controlled Air Purifier Respirator, as well the appropriate method for donning/doffing N95 respirators. Multiple providers in the department tested positive for COVID, resulting in the IP Department to conduct the routine contact tracing investigation. During the investigation, it was determined that all persons who met the CDC (Centers for Disease Control & Prevention) contact exposure guidelines would undergo COVID testing, which consequently was 109 team members due to the exposure risk identified in the break room space. IP worked with the Anesthesia Preoperative Clinic to test all team members identified over a 3-day period (approximately 5-7 days postexposure). Out of the 109 team members who were tested postexposure, there were 0 conversions. The department attributes this to the consistency in personal protective equipment training, support and collaboration between anesthesia and IP which led to successful care for COVID patients with a limited provider infection rate.


Subject(s)
Anesthesia , COVID-19 , COVID-19 Testing , Health Personnel , Humans , Personal Protective Equipment , SARS-CoV-2
16.
Int J Environ Res Public Health ; 18(10)2021 05 19.
Article in English | MEDLINE | ID: covidwho-1234735

ABSTRACT

Due to airborne transmission of the coronavirus, the question arose as to how high the risk of spreading infectious particles can be while playing a wind instrument. To examine this question and to help clarify the possible risk, we analyzed 14 wind instruments, first qualitatively by making airflows visible while playing, and second quantitatively by measuring air velocity at three distances (1, 1.5, 2 m) in the direction of the instruments' bells. Measurements took place with wind instrumentalists of the Bamberg Symphony in their concert hall. Our findings highlight that while playing, no airflows escaping from any of the wind instruments-from the bell with brass instruments or from the mouthpiece, keyholes or bell with woodwinds-were measurable beyond a distance of 1.5 m, regardless of volume, pitch or what was played. With that, air velocity while playing corresponded to the usual value of 1 m/s in hall-like rooms. For air-jet woodwinds, alto flute and piccolo, significant air movements were seen close to the mouthpiece, which escaped directly into the room.


Subject(s)
COVID-19 , Air Movements , Humans , Risk Assessment , SARS-CoV-2
17.
Sci Total Environ ; 785: 147300, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1211140

ABSTRACT

The transmission of SARS-CoV-2 virus through aerosols has become an outstanding issue, where plenty of spread aspects are being analyzed. Portable Air Cleaners (PAC) with high-efficiency particulate air (HEPA) filters have been discussed as an adjunctive means for indoor environments coronavirus decontamination. This study evaluates, first, the air and surfaces SARS-COV-2 RNA contamination due to positive patients in households, and second, the efficiency of a PAC with HEPA filter to eliminate virus. A total of 29 air and surface samples were collected inside 9 households, by using an air portable collector with gelatin filters and swabs. SARS-CoV-2 RNA detection was performed using real-time reverse transcription polymerase chain reaction (RT-PCR). Overall, all the air samples collected before using PAC and 75% of swab samples were positive for SARS-CoV-2. After the PAC usage, all samples except one were negative, displaying a 80% device effectiveness. Portable HEPA cleaners usage allowed the removal of SARS CoV-2 and, therefore, they could be recommended for places with inadequate ventilation, considering the limitations and functionality of the device.


Subject(s)
Air Filters , COVID-19 , Air Conditioning , Humans , RNA, Viral , SARS-CoV-2
18.
PLoS One ; 16(4): e0250213, 2021.
Article in English | MEDLINE | ID: covidwho-1197385

ABSTRACT

PURPOSE: To investigate the effectiveness of aerosol clearance using an aerosol box, aerosol bag, wall suction, and a high-efficiency particulate air (HEPA) filter evacuator to prevent aerosol transmission. METHODS: The flow field was visualized using three protective device settings (an aerosol box, and an aerosol bag with and without sealed working channels) and four suction settings (no suction, wall suction, and a HEPA filter evacuator at flow rates of 415 liters per minute [LPM] and 530 LPM). All 12 subgroups were compared with a no intervention group. The primary outcome, aerosol concentration, was measured at the head, trunk, and foot of a mannequin. RESULTS: The mean aerosol concentration was reduced at the head (p < 0.001) but increased at the feet (p = 0.005) with an aerosol box compared with no intervention. Non-sealed aerosol bags increased exposure at the head and trunk (both, p < 0.001). Sealed aerosol bags reduced aerosol concentration at the head, trunk, and foot of the mannequin (p < 0.001). A sealed aerosol bag alone, with wall suction, or with a HEPA filter evacuator reduced the aerosol concentration at the head by 7.15%, 36.61%, and 84.70%, respectively (99.9% confidence interval [CI]: -4.51-18.81, 27.48-45.73, and 78.99-90.40); trunk by 70.95%, 73.99%, and 91.59%, respectively (99.9% CI: 59.83-82.07, 52.64-95.33, and 87.51-95.66); and feet by 69.16%, 75.57%, and 92.30%, respectively (99.9% CI: 63.18-75.15, 69.76-81.37, and 88.18-96.42), compared with an aerosol box alone. CONCLUSIONS: As aerosols spread, an airtight container with sealed working channels is effective when combined with suction devices.


Subject(s)
Aerosols/chemistry , Dust/prevention & control , Suction/methods , Air Filters , Ventilators, Negative-Pressure
19.
Sci Rep ; 11(1): 7752, 2021 04 08.
Article in English | MEDLINE | ID: covidwho-1174703

ABSTRACT

To explore the clinical application value of chest CT quantitative pulmonary inflammation index (PII) in the evaluation of the course and treatment outcome of COVID-19 pneumonia. One hundred and eighteen patients with COVID-19 pneumonia diagnosed by RT-PCR were analyzed retrospectively. The correlation between chest CT PII, clinical symptoms and laboratory examinations during the entire hospitalization period was compared. The average age of the patients was 46.0 ± 15 (range: 1-74) years. Of the 118 patients, 62 are male (52.5%) and 56 are female (47.5%). Among them, 116 patients recovered and were discharged, 2 patients died, and the median length of hospital stay was 22 (range: 9-41) days. On admission, 76.3% of the patients presented with fever, and the laboratory studies showed a decrease in lymphocyte (LYM) count and an increase in lactate dehydrogenase (LDH) levels, C-reactive protein (CRP) levels, and erythrocyte sedimentation rate (ESR). Within the studies' chest CTs, the median number of involved lung lobes was 4 (range: 0-5) and the median number of involved lung segments was 9 (range 0-20). The left lower lobe and the right lower lobe were the most likely areas to be involved (89.0% and 83.9%), and 84.7% of the patients had inflammatory changes in both lungs. The main manifestations on chest CT were ground glass opacities (31.4%), ground glass opacities and consolidation (20.3%), ground glass opacities and reticular patterns (32.2%), mixed type (13.6%), and white lungs (1.7%); common accompanying signs included linear opacities (55.9%), air bronchograms (46.6%), thick small vessel shadows (36.4%), and pleural hypertrophy (13.6%). The chest CT at discharge showed complete absorption of lesions in 19 cases (16.1%), but not in the remaining 99 cases. Lesions remained in a median of 3 lung lobes (range: 0-5). Residual lesions remained in a median of 5 lung segments (range: 0-20). The residual lesions mainly presented as ground glass opacities (61.0%), and the main accompanying sign was linear opacities (59.3%). Based on chest CT, the median maximum PII of lungs was 30.0% (range: 0-97.5%), and the median PII after discharge in the patients excluding the two deaths was 12.5% (range: 0-53.0%). PII was significantly negatively correlated with the LYM count and significantly positively correlated with body temperature, LDH, CRP, and ESR. There was no significant correlation between the PII and the white blood cell count, but the grade of PII correlated well with the clinical classification. PII can be used to monitor the severity and the treatment outcome of COVID-19 pneumonia, provide help for clinical classification, assist in treatment plan adjustments and aid assessments for discharge.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Thorax/diagnostic imaging , Adolescent , Adult , Aged , COVID-19/therapy , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/isolation & purification , Tomography, X-Ray Computed , Treatment Outcome , Young Adult
20.
Ghana Med J ; 54(4): 253-263, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1167955

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has since December 2019 become a problem of global concern. Due to the virus' novelty and high infectivity, early diagnosis is key to curtailing spread. The knowledge and identification of chest Computerized Tomography (CT) features in Patients Under Investigation (PUI) for the disease would help in its management and containment. OBJECTIVES: To describe the chest CT findings of PUI for COVID-19 pneumonia referred to the Department of Radiology of the Korle Bu Teaching Hospital; as well as to determine the relationship between symptom onset and severity of the chest CT findings. METHODS: The study was retrospective and included 63 PUI for COVID-19 referred to the Department between 11th April, 2020 and 10th June, 2020, for non-enhanced chest CT imaging. Clinical data were obtained from patients' records and Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) results were acquired after the CT evaluation. RESULTS: The mean age in years was 51.1±19.9 SD. More males (52.8%) than females (47.2%) tested positive for COVID-19 and the age range for positive cases was 7 months to 86 years, with a mean of 53.2±21 SD years. Common features of COVID-19 pneumonia were bilateral posterior basal consolidations, Ground Glass Opacities (GGO) and air bronchograms. Findings were worse in patients scanned 5-9 days after onset of symptoms. CONCLUSION: Adequate knowledge of chest CT features of COVID-19 pneumonia, proves a valuable resource in triaging of symptomatic patients and consequent containment of the disease in the hospital setting. FUNDING: None declared.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Aged , COVID-19/complications , Female , Ghana , Humans , Male , Middle Aged , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Radiography, Thoracic , Retrospective Studies , Tertiary Care Centers , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL