Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Med (Lond) ; 21(3): e263-e268, 2021 05.
Article in English | MEDLINE | ID: covidwho-1518788

ABSTRACT

BACKGROUND: A qualitative fit test using bitter-tasting aerosols is the commonest way to determine filtering face-piece (FFP) mask leakage. This taste test is subjective and biased by placebo. We propose a cheap, quantitative modification of the taste test by measuring the amount of fluorescein stained filter paper behind the mask using image analysis. METHODS: A bitter-tasting fluorescein solution was aerosolised during mask fit tests, with filter paper placed on masks' inner surfaces. Participants reported whether they could taste bitterness to determine taste test 'pass' or 'fail' results. Filter paper photographs were digitally analysed to quantify total fluorescence (TF). RESULTS: Fifty-six healthcare professionals were fit tested; 32 (57%) 'passed' the taste test. TF between the taste test 'pass' and 'fail' groups was significantly different (p<0.001). A cut-off (TF = 5.0 × 106 units) was determined at precision (78%) and recall (84%), resulting in 5/56 participants (9%) reclassified from 'pass' to 'fail' by the fluorescein test. Seven out of 56 (12%) reclassified from 'fail' to 'pass'. CONCLUSION: Fluorescein is detectable and sensitive at identifying FFP mask leaks. These low-cost adaptations can enhance exiting fit testing to determine 'pass' and 'fail' groups, protecting those who 'passed' the taste test but have high fluorescein leak, and reassuring those who 'failed' the taste test despite having little fluorescein leak.


Subject(s)
Occupational Exposure , Respiratory Protective Devices , Cost-Benefit Analysis , Fluorescein , Humans , Point-of-Care Systems
2.
Mater Sci Eng C Mater Biol Appl ; 116: 111260, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1452344

ABSTRACT

Polymeric nanoparticulate systems allow the encapsulation of bio-active substances, giving them protection against external agents and increasing the drug's bioavailability. The use of biocompatible and biodegradable polymers usually guarantees the harmless character of the formulation, and a controlled drug release is also assured. A relatively easy procedure to obtain polymeric formulations of bioactive agents is ionotropic gelation, which allows the synthesis of chitosan (CS) - sodium tri-polyphosphate nanoparticles (NPs) loading encapsulated proteins. In this work, Bovine serum albumin (BSA) model protein and a recombinant porcine alpha interferon variant were used to obtain nanoparticulate formulations. The internalization of the encapsulated material by cells was studied using a BSA-fluorescein system; the fluorescent conjugate was observable inside the cells after 20 h of incubation. The therapeutic CS-alpha interferon formulation showed a maximum of protein released in vitro at around 90 h. This system was found to be safe in a cytotoxicity assay, while biological activity experiments in vitro showed antiviral protection of cells in the presence of encapsulated porcine alpha interferon. In vivo experiments in pigs revealed a significant and sustained antiviral response through overexpression of the antiviral markers OAS2 and PKR. This proves the preservation of porcine alpha interferon biological activity, and also that a lasting response was obtained. This procedure is an effective and safe method to formulate drugs in nanoparticulate systems, representing a significant contribution to the search for more effective drug delivery strategies.


Subject(s)
Chitosan , Nanoparticles , Pharmaceutical Preparations , Animals , Antiviral Agents/pharmacology , Biological Availability , Cattle , Drug Carriers , Drug Delivery Systems , Interferon-alpha , Particle Size , Polymers , Swine
3.
Medicina (Kaunas) ; 57(5)2021 Apr 24.
Article in English | MEDLINE | ID: covidwho-1201634

ABSTRACT

Herpes simplex virus type 1 (HSV-1) is a leading cause of infectious blindness worldwide. Most of the initial infection cases manifest as acute epithelial keratitis. Reactivation of herpesviruses is common in critically ill patients, including patients with severe Coronavirus disease (COVID-19). However, the data on COVID-19-related ocular infections is sparse, despite recent observations that more than 30% of COVID-19-infected patients had ocular manifestations. We report five cases of HSV-1 keratitis in COVID-19 patients. In total, five COVID-19 patients underwent ophthalmic examination, showing similar symptoms, including photophobia, tearing, decreased vision, eye redness, and pain. After initial assessment, tests of visual acuity and corneal sensitivity, a fluorescein staining test, and complete anterior and posterior segment examinations were performed. A diagnosis of HSV-1 keratitis was confirmed in all cases. Therapy was initiated using a local and systemic antiviral approach together with local antibiotic and mydriatic therapy. The complete reduction of keratitis symptoms and a clear cornea was achieved in all patients within 2 weeks. SARS-CoV-2 infection may be a risk factor for developing HSV-1 keratitis, or it may act as a potential activator of this ocular disease.


Subject(s)
COVID-19 , Herpesvirus 1, Human , Keratitis, Herpetic , Antiviral Agents/therapeutic use , Humans , Keratitis, Herpetic/diagnosis , Keratitis, Herpetic/drug therapy , SARS-CoV-2
4.
Am J Otolaryngol ; 42(4): 102970, 2021.
Article in English | MEDLINE | ID: covidwho-1103683

ABSTRACT

INTRODUCTION: The highly contagious COVID-19 has resulted in millions of deaths worldwide. Physicians performing orbital procedures may be at increased risk of occupational exposure to the virus due to exposure to secretions. The goal of this study is to measure the droplet and aerosol production during repair of the inferior orbital rim and trial a smoke-evacuating electrocautery handpiece as a mitigation device. MATERIAL AND METHODS: The inferior rim of 6 cadaveric orbits was approached transconjunctivally using either standard or smoke-evacuator electrocautery and plated using a high-speed drill. Following fluorescein inoculation, droplet generation was measured by counting under ultraviolet-A (UV-A) light against a blue background. Aerosol generation from 0.300-10.000 µm was measured using an optical particle sizer. Droplet and aerosol generation was compared against retraction of the orbital soft tissue as a negative control. RESULTS: No droplets were observed following the orbital approach using electrocautery. Visible droplets were observed after plating with a high-speed drill for 3 of 6 orbits. Total aerosol generation was significantly higher than negative control following the use of standard electrocautery. Use of smoke-evacuator electrocautery was associated with significantly lower aerosol generation in 2 of 3 size groups and in total. There was no significant increase in total aerosols associated with high-speed drilling. DISCUSSION AND CONCLUSIONS: Droplet generation for orbital repair was present only following plating with high-speed drill. Aerosol generation during standard electrocautery was significantly reduced using a smoke-evacuating electrocautery handpiece. Aerosols were not significantly increased by high-speed drilling.


Subject(s)
COVID-19/transmission , Electrocoagulation/adverse effects , Infectious Disease Transmission, Patient-to-Professional , Occupational Exposure/adverse effects , Orbit/surgery , SARS-CoV-2/pathogenicity , Aerosols , COVID-19/prevention & control , Cadaver , Humans , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL