Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Allergy ; 76(2): 510-532, 2021 02.
Article in English | MEDLINE | ID: covidwho-1140081

ABSTRACT

BACKGROUND: The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has made widespread impact recently. We aim to investigate the clinical characteristics of COVID-19 children with different severities and allergic status. METHODS: Data extracted from the electronic medical records, including demographics, clinical manifestations, comorbidities, laboratory and immunological results, and radiological images of 182 hospitalized COVID-19 children, were summarized and analyzed. RESULTS: The median age was 6 years, ranging from 3 days to 15 years, and there were more boys (male-female ratio about 2:1) within the studied 182 patients. Most of the children were infected by family members. Fever (43.4%) and dry cough (44.5%) were common symptoms, and gastrointestinal manifestations accounted for 11.0%, including diarrhea, abdominal discomfort, and vomiting. 71.4% had abnormal chest computed tomography (CT) scan images, and typical signs of pneumonia were ground-glass opacity and local patchy shadowing on admission. Laboratory results were mostly within normal ranges, and only a small ratio of lymphopenia (3.9%) and eosinopenia (29.5%) were observed. The majority (97.8%) of infected children were not severe, and 24 (13.2%) of them had asymptomatic infections. Compared to children without pneumonia (manifested as asymptomatic and acute upper respiratory infection), children with pneumonia were associated with higher percentages of the comorbidity history, symptoms of fever and cough, and increased levels of serum procalcitonin, alkaline phosphatase, and serum interleukins (IL)-2, IL-4, IL-6, IL-10, and TNF-α. There were no differences in treatments, duration of hospitalization, time from first positive to first negative nucleic acid testing, and outcomes between children with mild pneumonia and without pneumonia. All the hospitalized COVID-19 children had recovered except one death due to intussusception and sepsis. In 43 allergic children with COVID-19, allergic rhinitis (83.7%) was the major disease, followed by drug allergy, atopic dermatitis, food allergy, and asthma. Demographics and clinical features were not significantly different between allergic and nonallergic groups. Allergic patients showed less increase in acute phase reactants, procalcitonin, D-dimer, and aspartate aminotransferase levels compared with all patients. Immunological profiles including circulating T, B, and NK lymphocyte subsets, total immunoglobulin and complement levels, and serum cytokines did not show any difference in allergic and pneumonia groups. Neither eosinophil counts nor serum total immunoglobulin E (IgE) levels showed a significant correlation with other immunological measures, such as other immunoglobulins, complements, lymphocyte subset numbers, and serum cytokine levels. CONCLUSION: Pediatric COVID-19 patients tended to have a mild clinical course. Patients with pneumonia had higher proportion of fever and cough and increased inflammatory biomarkers than those without pneumonia. There was no difference between allergic and nonallergic COVID-19 children in disease incidence, clinical features, and laboratory and immunological findings. Allergy was not a risk factor for developing and severity of SARS-CoV-2 infection and hardly influenced the disease course of COVID-19 in children.


Subject(s)
COVID-19/complications , COVID-19/immunology , COVID-19/pathology , Hypersensitivity/epidemiology , Adolescent , Child , Child, Preschool , Female , Humans , Incidence , Infant , Infant, Newborn , Male , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2
2.
J Leukoc Biol ; 109(1): 13-22, 2021 01.
Article in English | MEDLINE | ID: covidwho-1095316

ABSTRACT

Excessive monocyte/macrophage activation with the development of a cytokine storm and subsequent acute lung injury, leading to acute respiratory distress syndrome (ARDS), is a feared consequence of infection with COVID-19. The ability to recognize and potentially intervene early in those patients at greatest risk of developing this complication could be of great clinical utility. In this study, we performed flow cytometric analysis of peripheral blood samples from 34 COVID-19 patients in early 2020 in an attempt to identify factors that could help predict the severity of disease and patient outcome. Although we did not detect significant differences in the number of monocytes between patients with COVID-19 and normal healthy individuals, we did identify significant morphologic and functional differences, which are more pronounced in patients requiring prolonged hospitalization and intensive care unit (ICU) admission. Patients with COVID-19 have larger than normal monocytes, easily identified on forward scatter (FSC), side scatter analysis by routine flow cytometry, with the presence of a distinct population of monocytes with high FSC (FSC-high). On more detailed analysis, these CD14+ CD16+ , FSC-high monocytes show features of mixed M1/M2 macrophage polarization with higher expression of CD80+ and CD206+ compared with the residual FSC-low monocytes and secretion of higher levels of IL-6, IL-10, and TNF-α, when compared with the normal controls. In conclusion, the detection and serial monitoring of this subset of inflammatory monocytes using flow cytometry could be of great help in guiding the prognostication and treatment of patients with COVID-19 and merits further evaluation.


Subject(s)
COVID-19 , Macrophages , Monocytes , SARS-CoV-2/metabolism , Adult , Antigens, CD/blood , COVID-19/blood , COVID-19/pathology , Cytokines/blood , Female , Flow Cytometry , Humans , Inflammation/blood , Inflammation/pathology , Macrophages/metabolism , Macrophages/pathology , Male , Middle Aged , Monocytes/metabolism , Monocytes/pathology , Young Adult
3.
Biochem Res Int ; 2021: 6685921, 2021.
Article in English | MEDLINE | ID: covidwho-1083474

ABSTRACT

Background: At the present time, COVID-19 vaccines are at the testing stage, and an effective treatment for COVID-19 incorporating appropriate safety measures remains the most significant obstacle to be overcome. A strategic countermeasure is, therefore, urgently required. Aim: This study aims to evaluate the efficacy and safety of a combination of lopinavir/ritonavir-azithromycin, lopinavir/ritonavir-doxycycline, and azithromycin-hydroxychloroquine used to treat patients with mild to moderate COVID-19 infections. Setting and Design. This study was conducted at four different clinical study sites in Indonesia. The subjects gave informed consent for their participation and were confirmed as being COVID-19-positive by means of an RT-PCR test. The present study constituted a randomized, double-blind, and multicenter clinical study of patients diagnosed with mild to moderate COVID-19 infection. Materials and Methods: Six treatment groups participated in this study: a Control group administered with a 500 mg dose of azithromycin; Group A which received a 200/50 mg dose of lopinavir/ritonavir and 500 mg of azithromycin; Group B treated with a 200/50 mg dose of lopinavir/ritonavir and 200 mg of doxycycline; Group C administered with 200 mg of hydroxychloroquine and 500 mg of azithromycin; Group D which received a 400/100 mg dose of lopinavir/ritonavir and 500 mg of azithromycin; and Group E treated with a 400/100 mg dose of lopinavir/ritonavir and 200 mg of doxycycline. Results: 754 subjects participated in this study: 694 patients (92.4%) who presented mild symptoms and 57 patients (7.6%) classified as suffering from a moderate case of COVID-19. On the third day after treatment, 91.7%-99.2% of the subjects in Groups A-E were confirmed negative by a PCR swab test compared to 26.9% in the Control group. Observation of all groups which experienced a significant decrease in virus load between day 1 and day 7 was undertaken. Other markers, such as CRP and IL-6, were significantly lower in all treatment groups (p < 0.05 and p < 0.0001) than in the Control group. Furthermore, IL-10 and TNF-α levels were significantly elevated in all treatment groups (p < 0.0001). The administration of azithromycin to the Control group increased CRP and IL-6 levels, while reduced IL-10 and TNF-α on day 7 (p < 0.0001) compared with day 1. Decreases in ALT and AST levels were observed in all groups (p < 0.0001). There was an increase in creatinine in the serum level of the Control, C, D, and E groups (p < 0.05), whereas the BUN level was elevated in all groups (p < 0.0001). Conclusions: The study findings suggest that the administration of lopinavir/ritonavir-doxycycline, lopinavir/ritonavir-azithromycin, and azithromycin-hydroxychloroquine as a dual drug combination produced a significantly rapid PCR conversion rate to negative in three-day treatment of mild to moderate COVID-19 cases. Further studies should involve observation of older patients with severe clinical symptoms in order to collate significant amounts of demographic data.

4.
J Immunol ; 206(7): 1597-1608, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1082059

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with immune dysregulation and cytokine storm. Exploring the immune-inflammatory characteristics of COVID-19 patients is essential to reveal pathogenesis and predict progression. In this study, COVID-19 patients showed decreased CD3+, CD4+, and CD8+ T cells but increased neutrophils in circulation, exhibiting upregulated neutrophil-to-lymphocyte and neutrophil-to-CD8+ T cell ratio. IL-6, TNF-α, IL-1ß, IL-18, IL-12/IL-23p40, IL-10, Tim-3, IL-8, neutrophil extracellular trap-related proteinase 3, and S100A8/A9 were elevated, whereas IFN-γ and C-type lectin domain family 9 member A (clec9A) were decreased in COVID-19 patients compared with healthy controls. When compared with influenza patients, the expressions of TNF-α, IL-18, IL-12/IL-23p40, IL-8, S100A8/A9 and Tim-3 were significantly increased in critical COVID-19 patients, and carcinoembryonic Ag, IL-8, and S100A8/A9 could serve as clinically available hematologic indexes for identifying COVID-19 from influenza. Moreover, IL-6, IL-8, IL-1ß, TNF-α, proteinase 3, and S100A8/A9 were increased in bronchoalveolar lavage fluid of severe/critical patients compared with moderate patients, despite decreased CD4+ T cells, CD8+ T cells, B cells, and NK cells. Interestingly, bronchoalveolar IL-6, carcinoembryonic Ag, IL-8, S100A8/A9, and proteinase 3 were found to be predictive of COVID-19 severity and may serve as potential biomarkers for predicting COVID-19 progression and potential targets in therapeutic intervention of COVID-19.


Subject(s)
COVID-19 , Inflammation Mediators , SARS-CoV-2 , Severity of Illness Index , Aged , COVID-19/blood , COVID-19/immunology , Calgranulin A/blood , Calgranulin A/immunology , Calgranulin B/blood , Calgranulin B/immunology , Cytokines/blood , Cytokines/immunology , Disease Progression , Female , Hepatitis A Virus Cellular Receptor 2/blood , Hepatitis A Virus Cellular Receptor 2/immunology , Humans , Inflammation Mediators/blood , Inflammation Mediators/immunology , Leukocyte Count , Male , Middle Aged , Myeloblastin/blood , Myeloblastin/immunology , Retrospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
5.
Stem Cell Res Ther ; 12(1): 72, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-1035054

ABSTRACT

BACKGROUND: One of the most severe complications of the current COVID-19 pandemic is acute respiratory distress syndrome (ARDS). ARDS is caused by increased amounts of pro-inflammatory cytokines, leading to lung damage and loss of lung function. There are currently no effective therapies for combatting ARDS. Mesenchymal stem cells (MSCs) have been suggested as a potential treatment for ARDS due to their significant immunomodulatory properties. MSC small extracellular vesicles (sEVs), including exosomes, modulate the immune response as effectively as MSCs themselves, with the added advantages of increased safety and tissue penetration. METHODS: We isolated sEVs from MSCs induced to secrete increased levels of neurotrophic and immunomodulatory factors, termed Exo MSC-NTF, and compared their ability to treat ARDS, in a lung injury LPS mouse model, to sEVs isolated from naïve MSCs (Exo MSC). Measurments of lung histopathological changes and neutrophil infiltration, blood oxygen saturation, and bronchoalveolar lavge fluid (BALF) proinflammatory cytokines and coagulation related factors were performed. RESULTS: We found that Exo MSC-NTF was superior to Exo MSC in reducing LPS-induced ARDS markers, including physiological lung damage such as alveolar wall thickness, fibrin presence, and neutrophil accumulation, as well as increasing oxygenation levels. Furthermore, Exo MSC-NTF reversed the imbalance in the host immune response, seen as decreased IFN-γ, IL-6, TNF-α, and RANTES levels in the bronchoalveolar lavage fluid. CONCLUSIONS: These positive preclinical results suggest that Exo MSC-NTF may be suitable as a therapy for COVID-19-induced ARDS and are more effective at combatting ARDS physiological, pathological, and biochemical symptoms than sEVs isolated from non-induced MSCs.


Subject(s)
Exosomes/immunology , Mesenchymal Stem Cell Transplantation/methods , Respiratory Distress Syndrome/therapy , Animals , Disease Models, Animal , Female , Humans , Immunomodulation , Lipopolysaccharides/administration & dosage , Mesenchymal Stem Cells/immunology , Mice , Respiratory Distress Syndrome/immunology
6.
bioRxiv ; 2020 Jul 29.
Article in English | MEDLINE | ID: covidwho-825433

ABSTRACT

Activated M2 polarized macrophages are drivers of pulmonary fibrosis in several clinical scenarios such as Acute Respiratory Disease Syndrome (ARDS) and Idiopathic Pulmonary Fibrosis (IPF), through the production of inflammatory and fibrosis-inducing cytokines. In this study, we investigated the effect of targeting the CD206 receptor with a novel fragment of a Host Defense Peptide (HDP), RP-832c to decrease cytokines that cause fibrosis. RP-832c selectively binds to CD206 on M2 polarized bone marrow derived macrophages (BMDM) in vitro , resulting in a time-dependent decrease in CD206 expression, and a transient increase in M1 marker TNFα, which resolves over a 24hr period. To elucidate the antifibrotic effect of RP-832c, we used a murine model of bleomycin (BLM) -induced early-stage pulmonary fibrosis. RP-832c significantly reduced bleomycin-induced fibrosis in a dosage dependent manner, as well as decreased CD206, TGF-ß1 and α-SMA expression in mouse lungs. Interestingly we did not observe any changes in the resident alveolar macrophage marker CD170 expression. Similarly, in an established model of lung fibrosis, RP-832c significantly decreased fibrosis in the lung, as well as significantly decreased inflammatory cytokines TNFα, IL-6, IL-10, INF-γ, CXCL1/2, and fibrosis markers TGF-ß1 and MMP-13. In comparison with FDA approved drugs, Nintedanib and Pirfenidone, RP-832c exhibited a similar reduction in fibrosis compared to Pirfenidone, and to a greater extent than Nintedanib, with no apparent toxicities observed on body weight or blood chemistry. In summary, RP-832c is a potential agent to mitigate the overactivity of M2 macrophages in pathogenesis several pulmonary fibrotic diseases, including SARS-CoV-2 induced lung fibrosis.

7.
Lancet ; 395(10223): 497-506, 2020 02 15.
Article in English | MEDLINE | ID: covidwho-34

ABSTRACT

BACKGROUND: A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. METHODS: All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. FINDINGS: By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0-58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0-13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. INTERPRETATION: The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. FUNDING: Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Adult , Age Distribution , Aged , COVID-19 , China/epidemiology , Comorbidity , Coronavirus Infections/complications , Coronavirus Infections/transmission , Cough/epidemiology , Cough/virology , Female , Fever/epidemiology , Fever/virology , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Myalgia/epidemiology , Myalgia/virology , Pneumonia, Viral/complications , Pneumonia, Viral/transmission , Prognosis , Radiography, Thoracic , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/virology , Time Factors , Tomography, X-Ray Computed , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...