Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 3.564
Filter
Add filters

Document Type
Year range
1.
Eur J Neurol ; 28(10): 3411-3417, 2021 10.
Article in English | MEDLINE | ID: covidwho-1607226

ABSTRACT

BACKGROUND AND PURPOSE: Since the outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, several reports indicated neurological involvement in COVID-19 disease. Muscle involvement has also been reported as evidenced by creatine kinase (CK) elevations and reports of myalgia. METHODS: Creatine kinase, markers of inflammation, pre-existing diseases and statin use were extracted from records of Austrian hospitalised COVID-19 patients. Disease severity was classified as severe in case of intensive care unit (ICU) admission or mortality. COVID-19 patients were additionally compared to an historical group of hospitalised influenza patients. RESULTS: Three hundred fifty-one patients with SARS-CoV-2 and 258 with influenza were included in the final analysis. CK was elevated in 27% of COVID-19 and in 28% of influenza patients. CK was higher in severe COVID-19 as were markers of inflammation. CK correlated significantly with inflammation markers, which had an independent impact on CK when adjusted for demographic variables and disease severity. Compared to influenza patients, COVID-19 patients were older, more frequently male, had more comorbidities, and more frequently had a severe disease course. Nevertheless, influenza patients had higher baseline CK than COVID-19, and 35.7% of intensive care unit (ICU)-admitted patients had CK levels >1,000 U/L compared to only 4.7% of ICU-admitted COVID-19 patients. CONCLUSIONS: HyperCKemia occurs in a similar frequency in COVID-19 and influenza infection. CK levels were lower in COVID-19 than in influenza in mild and severe disease. CK levels strongly correlate with disease severity and markers of inflammation. To date, it remains unclear whether hyperCKemia is due to a virus-triggered inflammatory response or direct muscle toxicity.


Subject(s)
COVID-19 , Influenza, Human , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Male , Muscles , Pandemics , SARS-CoV-2
2.
J Investig Med High Impact Case Rep ; 9: 23247096211013215, 2021.
Article in English | MEDLINE | ID: covidwho-1598539

ABSTRACT

Bronchopleural fistula (BPF) is associated with high morbidity if left untreated. Although rare, the frequency of BPF in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is becoming recognized in medical literature. We present a case of a 64-year-old male with BPF with persistent air leak due to SARS-CoV-2 pneumonia treated with Spiration Valve System endobronchial valve (EBV). An EBV was placed in the right middle lobe with successful cessation of air leak. In conclusion, the use of EBVs for BPF with persistent air leaks in SARS-CoV-2 patients who are poor surgical candidates is effective and safe.


Subject(s)
Bronchial Fistula/surgery , Bronchoscopy , COVID-19/complications , Empyema, Pleural/surgery , Pleural Diseases/surgery , Surgical Instruments , Bronchial Fistula/etiology , Chest Tubes , Empyema, Pleural/etiology , Humans , Male , Middle Aged , Pleural Diseases/etiology , SARS-CoV-2 , Thoracostomy
3.
Signal Transduct Target Ther ; 6(1): 167, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1585891

ABSTRACT

The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , NF-kappa B/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Signal Transduction , A549 Cells , Acrylates/pharmacology , Animals , COVID-19/drug therapy , COVID-19/pathology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Phosphoproteins/metabolism , Vero Cells
4.
J Oral Microbiol ; 13(1): 1848135, 2020 Nov 26.
Article in English | MEDLINE | ID: covidwho-1574293

ABSTRACT

Background: The ability of coronavirus SARS-CoV-2 to spread is one of the determinants of the COVID-19 pandemic status. Until June 2020, global COVID-19 cases surpassed 10 million. Asymptomatic patients, with no respiratory impairment, are believed to be responsible for more than 80% of the transmission. Other viruses have been consistently detected in periodontal tissues. Objective: The aim of this study was to investigate the presence of SARS-CoV-2 in periodontal tissue. Methods: We conducted video-endoscope minimally invasive post-mortem biopsy in seven fatal cases of COVID-19, using a regular endoscope video system associated with a smartphone to locate periodontal tissue. We analyzed the samples using RT-PCR, to identify the SARS-CoV-2 RNA and histopathological analysis. Results: The seven studied autopsies with positive laboratory tests for COVID-19 included 57.14% of female patients at the average age of 47.4 (range 8 to 74). In five cases, periodontal tissue was positive for SARS-CoV-2 (RT-PCR). Histopathologic analyses showed morphologic alterations in the keratinocytes of the junctional epithelium, a vacuolization of the cytoplasm and nucleus and nuclear pleomorphism. Conclusion: We presented a biomolecular analysis obtained from minimally invasive autopsies. This is the first study to demonstrate the presence of SARS-CoV-2 in periodontal tissue in COVID-19 positive patients.

5.
Front Vet Sci ; 7: 586637, 2020.
Article in English | MEDLINE | ID: covidwho-1574270

ABSTRACT

Coronavirus Disease 2019 (COVID-19) ranks third in terms of fatal coronavirus diseases threatening public health, coming after SARS-CoV (severe acute respiratory syndrome coronavirus), and MERS-CoV (Middle East respiratory syndrome coronavirus). SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) causes COVID-19. On January 30, 2020, the World Health Organization (WHO) announced that the current outbreak of COVID-19 is the sixth global health emergency. As of December 3, 2020, 64 million people worldwide have been affected by this malaise, and the global economy has experienced a loss of more than $1 trillion. SARS-CoV-2 is a positive-sense single-stranded RNA virus belonging to the Betacoronavirus genus. The high nucleotide sequence identity of SARS-CoV-2 with the BatCoV RaTG13 genome has indicated that bats could be the possible host of SARS-CoV-2. SARS-CoV-2 penetrates the host cell via binding its spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor, which is similar to the mechanisms of SARS-CoV and MERS-CoV. COVID-19 can spread from person to person via respiratory droplets and airborne and contaminated fomites. Moreover, it poses a significant risk to smokers, the elderly, immunocompromised people, and those with preexisting comorbidities. Two main approaches are used to control viral infections, namely, vaccination, and biosecurity. Studies to analyze the antigenicity and immunogenicity of SARS-CoV-2 vaccine candidates are underway, and few vaccines may be available in the near future. In the current situation, the Human Biosecurity Emergency (HBE) may be the only way to cope effectively with the novel SARS-CoV-2 strain. Here, we summarize current knowledge on the origin of COVID-19 as well as its epidemiological relationship with humans and animals, genomic resemblance, immunopathogenesis, clinical-laboratory signs, diagnosis, control and prevention, and treatment. Moreover, we discuss the interventional effects of various nutrients on COVID-19 in detail. However, multiple possibilities are explored to fight COVID-19, and the greatest efforts targeted toward finding an effective vaccine in the near future. Furthermore, antioxidants, polyphenols, and flavonoids, both synthetic and natural, could play a crucial role in the fight against COVID-19.

6.
Burns ; 47(7): 1547-1555, 2021 11.
Article in English | MEDLINE | ID: covidwho-1575639

ABSTRACT

BACKGROUND: The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to significantly impact burns patients both directly through infective complications of an immunocompromised cohort, and indirectly through disruption of care pathways and resource limitations. The pandemic presents new challenges that must be overcome to maintain patient safety; in particular, the potential increased risks of surgical intervention, anaesthesia and ventilation. This study comprehensively reviews the measures implemented to adapt referral pathways and mitigate the risk posed by COVID-19 during the height of the pandemic, within a large Burns Centre. METHODS: A prospective cohort study was designed to assess patients treated at the Burns Centre during the UK COVID-19 pandemic peak (April-May 2020), following implementation of new safety measures. All patients were analysed for 30-day mortality. In addition, a prospective controlled cohort study was undertaken on all inpatients and a random sample of outpatients with telephone follow-up at 30 days. These patients were divided into three groups (operative inpatients, non-operative inpatients, outpatients). COVID-19 related data collected included test results, contact with proven cases, isolation status and symptoms. The implemented departmental service COVID-19 safety adaptations are described. RESULTS: Of 323 patients treated at the Burns Centre during the study period, no 30-day COVID-19 related deaths occurred (0/323). Of the 80 patients analysed in the prospective controlled cohort section of the study, 51 underwent COVID-19 testing, 3.9% (2/51) were positive. Both cases were in the operative group, however in comparison to the non-operative and outpatient groups, there was no significant increase in COVID-19 incidence in operative patients. CONCLUSIONS: We found no COVID-19 related mortality during the study period. With appropriate precautions, burns patients were not exposed to an increased COVID-19 risk. Similarly, burns patients undergoing operative management were not at a significantly increased risk of contracting COVID-19 in comparison to non-operative groups.


Subject(s)
Burns , COVID-19 , Patient Safety , Reconstructive Surgical Procedures , Burns/epidemiology , Burns/surgery , COVID-19/epidemiology , COVID-19 Testing , Cohort Studies , England , Humans , Pandemics/prevention & control , Patient Satisfaction , Prospective Studies , SARS-CoV-2 , Treatment Outcome
7.
Int J Infect Dis ; 2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1575296

ABSTRACT

OBJECTIVES: The interaction of COVID-19 and tuberculosis (TB) are still poor characterized. Here we evaluated the immune response specific for Micobacterium tuberculosis (Mtb) and SARS-CoV-2 using a whole-blood-based assay-platform in COVID-19 patients either with TB or latent TB infection (LTBI). METHODS: We evaluated IFN-γ level in plasma from whole-blood stimulated with Mtb antigens in the Quantiferon-Plus format or with peptides derived from SARS-CoV-2 spike protein, Wuhan-Hu-1 isolate (CD4-S). RESULTS: We consecutively enrolled 63 COVID-19, 10 TB-COVID-19 and 11 LTBI-COVID-19 patients. IFN-γ response to Mtb-antigens was significantly associated to TB status and therefore it was higher in TB-COVID-19 and LTBI-COVID-19 patients compared to COVID-19 patients (p ≤ 0.0007). Positive responses against CD4-S were found in 35/63 COVID-19 patients, 7/11 LTBI-COVID-19 and only 2/10 TB-COVID-19 patients. Interestingly, the responders in the TB-COVID-19 group were less compared to COVID-19 and LTBI-COVID-19 groups (p = 0.037 and 0.044, respectively). Moreover, TB-COVID-19 patients showed the lowest quantitative IFN-γ response to CD4-S compared to COVID-19-patients (p = 0.0336) and LTBI-COVID-19 patients (p = 0.0178). CONCLUSIONS: Our data demonstrate that COVID-19 patients either TB or LTBI have a low ability to build an immune response to SARS-CoV-2 while retaining the ability to respond to Mtb-specific antigens.

8.
Int J Infect Dis ; 2021 Mar 29.
Article in English | MEDLINE | ID: covidwho-1575136

ABSTRACT

After a century of controversies on its usefulness in protection against TB, underlying mechanisms of action, and benefits in various groups and geographical areas, the BCG vaccine is yet again a focus of global attention- this time due to the global COVID-19 pandemic caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have shown that human CD4+ and CD8+ T-cells primed with a BCG-derived peptide developed high reactivity to its corresponding SARS-CoV-2-derived peptide. Furthermore, BCG vaccine has been shown to substantially increase interferon-gamma (IFN-g) production and its effects on CD4+ T-cells and these non-specific immune responses through adjuvant effect could be harnessed as cross protection against severe forms of COVID-19.The completion of ongoing BGG trials is important as they may shed light on the mechanisms underlying BCG-mediated immunity and could lead to improved efficacy, increased tolerance of treatment, and identification of other ways of combining BCG with other immunotherapies.

9.
Front Vet Sci ; 8: 572012, 2021.
Article in English | MEDLINE | ID: covidwho-1574919

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused great harm to global public health, resulting in a large number of infections among the population. However, the epidemiology of coronavirus has not been fully understood, especially the mechanism of aerosol transmission. Many respiratory viruses can spread via contact and droplet transmission, but increasing epidemiological data have shown that viral aerosol is an essential transmission route of coronavirus and influenza virus due to its ability to spread rapidly and high infectiousness. Aerosols have the characteristics of small particle size, long-time suspension and long-distance transmission, and easy access to the deep respiratory tract, leading to a high infection risk and posing a great threat to public health. In this review, the characteristics of viral aerosol generation, transmission, and infection as well as the current advances in the aerosol transmission of zoonotic coronavirus and influenza virus are summarized. The aim of the review is to strengthen the understanding of viral aerosol transmission and provide a scientific basis for the prevention and control of these diseases.

10.
PLoS One ; 16(3): e0247758, 2021.
Article in English | MEDLINE | ID: covidwho-1574068

ABSTRACT

ß2-microglobulin (ß2-m), a 11.8 kDa protein, pairs non-covalently with the α3 domain of the major histocompatibility class (MHC) I α-chain and is essential for the conformation of the MHC class I protein complex. Shed ß2-m is measurable in circulation, and various disorders are accompanied by increases in ß2-m levels, including several viral infections. Therefore, we explored whether ß2-m levels could also be elevated in Coronavirus disease 2019 (Covid-19) and whether they predict disease severity. Serum ß2-m levels were measured in a cohort of 34 patients infected with SARS-CoV-2 on admission to a tertiary care hospital in Riyadh, Saudi Arabia, as well as in an approximately age-sex matched group of 34 uninfected controls. Mean ß2-m level was 3.25±1.68 mg/l (reference range 0.8-2.2 mg/l) in patients (mean age 48.2±21.6) and 1.98±0.61 mg/l in controls (mean age 48.2±21.6). 17 patients (mean age 36.9± 18.0) with mean ß2-m levels of 2.27±0.64 mg/l had mild disease by WHO severity categorization, 12 patients (mean age 53.3±18.1) with mean ß2-m levels of 3.57±1.39 mg/l had moderate disease, and five patients (of whom 2 died; mean age 74.4±13.8) with mean ß2-m levels of 5.85±1.85 mg/l had severe disease (P < = 0.001, by ANOVA test for linear trend). In multivariate ordinal regression ß2-m levels were the only significant predictor of disease severity. Our findings suggest that higher ß2-m levels could be an early indicator of severity of disease and predict outcome of Covid-19. As the main limitations of the study are a single-center study, sample size and ethnicity, these results need confirmation in larger cohorts outside the Arabian Peninsula in order to delineate the value of ß2-m measurements. The role of ß2-m in the etiology and pathogenesis of severe Covid-19 remains to be elucidated.


Subject(s)
COVID-19/blood , Severity of Illness Index , beta 2-Microglobulin/blood , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/diagnosis , Cohort Studies , Comorbidity , Female , Humans , Male , Middle Aged , Prognosis , Saudi Arabia
11.
Clin Infect Dis ; 73(11): e4329-e4335, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1561262

ABSTRACT

BACKGROUND: The stability of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on human skin remains unknown, considering the hazards of viral exposure to humans. We generated a model that allows the safe reproduction of clinical studies on the application of pathogens to human skin and elucidated the stability of SARS-CoV-2 on human skin. METHODS: We evaluated the stability of SARS-CoV-2 and influenza A virus (IAV), mixed with culture medium or upper respiratory mucus, on human skin surfaces and the dermal disinfection effectiveness of 80% (weight/weight) ethanol against SARS-CoV-2 and IAV. RESULTS: SARS-CoV-2 and IAV were inactivated more rapidly on skin surfaces than on other surfaces (stainless steel/glass/plastic); the survival time was significantly longer for SARS-CoV-2 than for IAV (9.04 hours [95% confidence interval, 7.96- 10.2 hours] vs 1.82 hours [1.65-2.00 hours]). IAV on other surfaces was inactivated faster in mucus versus medium conditions, while SARS-CoV-2 showed similar stability in the mucus and medium; the survival time was significantly longer for SARS-CoV-2 than for IAV (11.09 hours [10.22-12.00 hours] vs 1.69 hours [1.57-1.81 hours]). Moreover, both SARS-CoV-2 and IAV in the mucus/medium on human skin were completely inactivated within 15 seconds by ethanol treatment. CONCLUSIONS: The 9-hour survival of SARS-CoV-2 on human skin may increase the risk of contact transmission in comparison with IAV, thus accelerating the pandemic. Proper hand hygiene is important to prevent the spread of SARS-CoV-2 infections.

12.
Cochrane Database Syst Rev ; 10: CD013717, 2020 10 05.
Article in English | MEDLINE | ID: covidwho-1557155

ABSTRACT

BACKGROUND: In late 2019, first cases of coronavirus disease 2019, or COVID-19, caused by the novel coronavirus SARS-CoV-2, were reported in Wuhan, China. Subsequently COVID-19 spread rapidly around the world. To contain the ensuing pandemic, numerous countries have implemented control measures related to international travel, including border closures, partial travel restrictions, entry or exit screening, and quarantine of travellers. OBJECTIVES: To assess the effectiveness of travel-related control measures during the COVID-19 pandemic on infectious disease and screening-related outcomes. SEARCH METHODS: We searched MEDLINE, Embase and COVID-19-specific databases, including the WHO Global Database on COVID-19 Research, the Cochrane COVID-19 Study Register, and the CDC COVID-19 Research Database on 26 June 2020. We also conducted backward-citation searches with existing reviews. SELECTION CRITERIA: We considered experimental, quasi-experimental, observational and modelling studies assessing the effects of travel-related control measures affecting human travel across national borders during the COVID-19 pandemic. We also included studies concerned with severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) as indirect evidence. Primary outcomes were cases avoided, cases detected and a shift in epidemic development due to the measures. Secondary outcomes were other infectious disease transmission outcomes, healthcare utilisation, resource requirements and adverse effects if identified in studies assessing at least one primary outcome. DATA COLLECTION AND ANALYSIS: One review author screened titles and abstracts; all excluded abstracts were screened in duplicate. Two review authors independently screened full texts. One review author extracted data, assessed risk of bias and appraised study quality. At least one additional review author checked for correctness of all data reported in the 'Risk of bias' assessment, quality appraisal and data synthesis. For assessing the risk of bias and quality of included studies, we used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool for observational studies concerned with screening, ROBINS-I for observational ecological studies and a bespoke tool for modelling studies. We synthesised findings narratively. One review author assessed certainty of evidence with GRADE, and the review author team discussed ratings. MAIN RESULTS: We included 40 records reporting on 36 unique studies. We found 17 modelling studies, 7 observational screening studies and one observational ecological study on COVID-19, four modelling and six observational studies on SARS, and one modelling study on SARS and MERS, covering a variety of settings and epidemic stages. Most studies compared travel-related control measures against a counterfactual scenario in which the intervention measure was not implemented. However, some modelling studies described additional comparator scenarios, such as different levels of travel restrictions, or a combination of measures. There were concerns with the quality of many modelling studies and the risk of bias of observational studies. Many modelling studies used potentially inappropriate assumptions about the structure and input parameters of models, and failed to adequately assess uncertainty. Concerns with observational screening studies commonly related to the reference test and the flow of the screening process. Studies on COVID-19 Travel restrictions reducing cross-border travel Eleven studies employed models to simulate a reduction in travel volume; one observational ecological study assessed travel restrictions in response to the COVID-19 pandemic. Very low-certainty evidence from modelling studies suggests that when implemented at the beginning of the outbreak, cross-border travel restrictions may lead to a reduction in the number of new cases of between 26% to 90% (4 studies), the number of deaths (1 study), the time to outbreak of between 2 and 26 days (2 studies), the risk of outbreak of between 1% to 37% (2 studies), and the effective reproduction number (1 modelling and 1 observational ecological study). Low-certainty evidence from modelling studies suggests a reduction in the number of imported or exported cases of between 70% to 81% (5 studies), and in the growth acceleration of epidemic progression (1 study). Screening at borders with or without quarantine Evidence from three modelling studies of entry and exit symptom screening without quarantine suggests delays in the time to outbreak of between 1 to 183 days (very low-certainty evidence) and a detection rate of infected travellers of between 10% to 53% (low-certainty evidence). Six observational studies of entry and exit screening were conducted in specific settings such as evacuation flights and cruise ship outbreaks. Screening approaches varied but followed a similar structure, involving symptom screening of all individuals at departure or upon arrival, followed by quarantine, and different procedures for observation and PCR testing over a period of at least 14 days. The proportion of cases detected ranged from 0% to 91% (depending on the screening approach), and the positive predictive value ranged from 0% to 100% (very low-certainty evidence). The outcomes, however, should be interpreted in relation to both the screening approach used and the prevalence of infection among the travellers screened; for example, symptom-based screening alone generally performed worse than a combination of symptom-based and PCR screening with subsequent observation during quarantine. Quarantine of travellers Evidence from one modelling study simulating a 14-day quarantine suggests a reduction in the number of cases seeded by imported cases; larger reductions were seen with increasing levels of quarantine compliance ranging from 277 to 19 cases with rates of compliance modelled between 70% to 100% (very low-certainty evidence). AUTHORS' CONCLUSIONS: With much of the evidence deriving from modelling studies, notably for travel restrictions reducing cross-border travel and quarantine of travellers, there is a lack of 'real-life' evidence for many of these measures. The certainty of the evidence for most travel-related control measures is very low and the true effects may be substantially different from those reported here. Nevertheless, some travel-related control measures during the COVID-19 pandemic may have a positive impact on infectious disease outcomes. Broadly, travel restrictions may limit the spread of disease across national borders. Entry and exit symptom screening measures on their own are not likely to be effective in detecting a meaningful proportion of cases to prevent seeding new cases within the protected region; combined with subsequent quarantine, observation and PCR testing, the effectiveness is likely to improve. There was insufficient evidence to draw firm conclusions about the effectiveness of travel-related quarantine on its own. Some of the included studies suggest that effects are likely to depend on factors such as the stage of the epidemic, the interconnectedness of countries, local measures undertaken to contain community transmission, and the extent of implementation and adherence.


Subject(s)
COVID-19/prevention & control , Pandemics/prevention & control , SARS-CoV-2 , Travel-Related Illness , COVID-19/epidemiology , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/prevention & control , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Humans , Models, Theoretical , Observational Studies as Topic , Quarantine , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/prevention & control
13.
Glob Heart ; 16(1): 22, 2021 04 19.
Article in English | MEDLINE | ID: covidwho-1557646

ABSTRACT

Background: The emergence of novel coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), has presented an unprecedented global challenge for the healthcare community. The ability of SARS-CoV-2 to get transmitted during the asymptomatic phase, and its high infectivity have led to the rapid transmission of COVID-19 beyond geographic regions facilitated by international travel, leading to a pandemic. To guide effective control and interventions, primary data is required urgently, globally, including from low- and middle-income countries where documentation of cardiovascular manifestations and risk factors in people hospitalized with COVID-19 is limited. Objectives: This study aims to describe the cardiovascular manifestations and cardiovascular risk factors in patients hospitalized with COVID-19. Methods: We propose to conduct an observational cohort study involving 5000 patients recruited from hospitals in low-, middle- and high-income countries. Eligible adult COVID-19 patients will be recruited from the participating hospitals and followed-up until 30 days post admission. The outcomes will be reported at discharge and includes the need of ICU admission, need of ventilator, death (with cause), major adverse cardiovascular events, neurological outcomes, acute renal failure, and pulmonary outcomes. Conclusion: Given the enormous burden posed by COVID-19 and the associated severe prognostic implication of CVD involvement, this study will provide useful insights on the risk factors for severe disease, clinical presentation, and outcomes of various cardiovascular manifestations in COVID-19 patients particularly from low and middle income countries from where the data remain scant.


Subject(s)
COVID-19/epidemiology , Cardiovascular Diseases/virology , Global Health , Observational Studies as Topic/methods , Cohort Studies , Hospitalization , Humans , Multicenter Studies as Topic , Pandemics , Prognosis , Risk Factors
14.
Pain Rep ; 6(1): e893, 2021.
Article in English | MEDLINE | ID: covidwho-1550636

ABSTRACT

Pain is a common symptom accompanying the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nonspecific discomfort such as sore throat and body ache are frequent. Parainfectious pain such as headache, myalgia, or neuropathic pain has also been reported. The latter seems to be associated with an autoimmune response or an affection of the peripheral neuromuscular system or the central nervous system because of the viral infection. Furthermore, chronic pain can be a complication of intensive care unit treatment due to COVID-19 itself (such as intensive care-acquired weakness) or of secondary diseases associated with the SARS-CoV-2 infection, including Guillain-Barré syndrome, polyneuritis, critical illness polyneuropathy, or central pain following cerebrovascular events. Data on long-lasting painful symptoms after clinically manifest COVID-19 and their consequences are lacking. In addition, preexisting chronic pain may be exacerbated by limited and disrupted health care and the psychological burden of the COVID-19 pandemic. Medical providers should be vigilant on pain during and after COVID-19.

15.
Clin J Am Soc Nephrol ; 16(11): 1755-1765, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526737

ABSTRACT

Despite evidence of multiorgan tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients with coronavirus disease 2019 (COVID-19), direct viral kidney invasion has been difficult to demonstrate. The question of whether SARS-CoV2 can directly infect the kidney is relevant to the understanding of pathogenesis of AKI and collapsing glomerulopathy in patients with COVID-19. Methodologies to document SARS-CoV-2 infection that have been used include immunohistochemistry, immunofluorescence, RT-PCR, in situ hybridization, and electron microscopy. In our review of studies to date, we found that SARS-CoV-2 in the kidneys of patients with COVID-19 was detected in 18 of 94 (19%) by immunohistochemistry, 71 of 144 (49%) by RT-PCR, and 11 of 84 (13%) by in situ hybridization. In a smaller number of patients with COVID-19 examined by immunofluorescence, SARS-CoV-2 was detected in 10 of 13 (77%). In total, in kidneys from 102 of 235 patients (43%), the presence of SARS-CoV-2 was suggested by at least one of the methods used. Despite these positive findings, caution is needed because many other studies have been negative for SARS-CoV-2 and it should be noted that when detected, it was only in kidneys obtained at autopsy. There is a clear need for studies from kidney biopsies, including those performed at early stages of the COVID-19-associated kidney disease. Development of tests to detect kidney viral infection in urine samples would be more practical as a noninvasive way to evaluate SARS-CoV-2 infection during the evolution of COVID-19-associated kidney disease.


Subject(s)
COVID-19/virology , Kidney Diseases/virology , Kidney/virology , SARS-CoV-2/pathogenicity , Animals , Biopsy , COVID-19/complications , COVID-19/diagnosis , COVID-19/mortality , COVID-19 Testing , Host-Pathogen Interactions , Humans , Kidney Diseases/diagnosis , Kidney Diseases/mortality , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors
16.
J Clin Med ; 10(8)2021 Apr 08.
Article in English | MEDLINE | ID: covidwho-1526823

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to 5% to 16% hospitalization in intensive care units (ICU) and is associated with 23% to 75% of kidney impairments, including acute kidney injury (AKI). The current work aims to precisely characterize the renal impairment associated to SARS-CoV-2 in ICU patients. Forty-two patients consecutively admitted to the ICU of a French university hospital who tested positive for SARS-CoV-2 between 25 March 2020, and 29 April 2020, were included and classified in categories according to their renal function. Complete renal profiles and evolution during ICU stay were fully characterized in 34 patients. Univariate analyses were performed to determine risk factors associated with AKI. In a second step, we conducted a logistic regression model with inverse probability of treatment weighting (IPTW) analyses to assess major comorbidities as predictors of AKI. Thirty-two patients (94.1%) met diagnostic criteria for intrinsic renal injury with a mixed pattern of tubular and glomerular injuries within the first week of ICU admission, which lasted upon discharge. During their ICU stay, 24 patients (57.1%) presented AKI which was associated with increased mortality (p = 0.007), hemodynamic failure (p = 0.022), and more altered clearance at hospital discharge (p = 0.001). AKI occurrence was associated with lower pH (p = 0.024), higher PaCO2 (CO2 partial pressure in the arterial blood) (p = 0.027), PEEP (positive end-expiratory pressure) (p = 0.027), procalcitonin (p = 0.015), and CRP (C-reactive protein) (p = 0.045) on ICU admission. AKI was found to be independently associated with chronic kidney disease (adjusted OR (odd ratio) 5.97 (2.1-19.69), p = 0.00149). Critical SARS-CoV-2 infection is associated with persistent intrinsic renal injury and AKI, which is a risk factor of mortality. Mechanical ventilation settings seem to be a critical factor of kidney impairment.

17.
Front Pharmacol ; 12: 652335, 2021.
Article in English | MEDLINE | ID: covidwho-1526785

ABSTRACT

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has a disastrous effect on mankind due to the contagious and rapid nature of its spread. Although vaccines for SARS-CoV-2 have been successfully developed, the proven, effective, and specific therapeutic molecules are yet to be identified for the treatment. The repurposing of existing drugs and recognition of new medicines are continuously in progress. Efforts are being made to single out plant-based novel therapeutic compounds. As a result, some of these biomolecules are in their testing phase. During these efforts, the whole-genome sequencing of SARS-CoV-2 has given the direction to explore the omics systems and approaches to overcome this unprecedented health challenge globally. Genome, proteome, and metagenome sequence analyses have helped identify virus nature, thereby assisting in understanding the molecular mechanism, structural understanding, and disease propagation. The multi-omics approaches offer various tools and strategies for identifying potential therapeutic biomolecules for COVID-19 and exploring the plants producing biomolecules that can be used as biopharmaceutical products. This review explores the available multi-omics approaches and their scope to investigate the therapeutic promises of plant-based biomolecules in treating SARS-CoV-2 infection.

18.
Mini Rev Med Chem ; 21(17): 2530-2543, 2021.
Article in English | MEDLINE | ID: covidwho-1504184

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus strain and the causative agent of COVID-19 was emerged in Wuhan, China, in December 2019 [1]. This pandemic situation and magnitude of suffering have led to global effort to find out effective measures for discovery of new specific drugs and vaccines to combat this deadly disease. In addition to many initiatives to develop vaccines for protective immunity against SARS-CoV-2, some of which are at various stages of clinical trials, researchers worldwide are currently using available conventional therapeutic drugs with the potential to combat the disease effectively in other viral infections and it is believed that these antiviral drugs could act as a promising immediate alternative. Remdesivir (RDV), a broad-spectrum anti-viral agent, initially developed for the treatment of Ebola virus (EBOV) and known to showed promising efficiency in in vitro and in vivo studies against SARS and MERS coronaviruses, is now being investigated against SARS-CoV-2. On May 1, 2020, The U.S. Food and Drug Administration (FDA) granted Emergency Use Authorization (EUA) for RDV to treat COVID- 19 patients [2]. A number of multicentre clinical trials are on-going to check the safety and efficacy of RDV for the treatment of COVID-19. Results of published double blind, and placebo-controlled trial on RDV against SARS-CoV-2, showed that RDV administration led to faster clinical improvement in severe COVID-19 patients compared to placebo. This review highlights the available knowledge about RDV as a therapeutic drug for coronaviruses and its preclinical and clinical trials against COVID-19.

19.
Mayo Clin Proc ; 95(7): 1354-1368, 2020 07.
Article in English | MEDLINE | ID: covidwho-1500136

ABSTRACT

OBJECTIVE: To explore the transcriptomic differences between patients with hypertrophic cardiomyopathy (HCM) and controls. PATIENTS AND METHODS: RNA was extracted from cardiac tissue flash frozen at therapeutic surgical septal myectomy for 106 patients with HCM and 39 healthy donor hearts. Expression profiling of 37,846 genes was performed using the Illumina Human HT-12v3 Expression BeadChip. All patients with HCM were genotyped for pathogenic variants causing HCM. Technical validation was performed using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. This study was started on January 1, 1999, and final analysis was completed on April 20, 2020. RESULTS: Overall, 22% of the transcriptome (8443 of 37,846 genes) was expressed differentially between HCM and control tissues. Analysis by genotype revealed that gene expression changes were similar among genotypic subgroups of HCM, with only 4% (1502 of 37,846) to 6% (2336 of 37,846) of the transcriptome exhibiting differential expression between genotypic subgroups. The qRT-PCR confirmed differential expression in 92% (11 of 12 genes) of tested transcripts. Notably, in the context of coronavirus disease 2019 (COVID-19), the transcript for angiotensin I converting enzyme 2 (ACE2), a negative regulator of the angiotensin system, was the single most up-regulated gene in HCM (fold-change, 3.53; q-value =1.30×10-23), which was confirmed by qRT-PCR in triplicate (fold change, 3.78; P=5.22×10-4), and Western blot confirmed greater than 5-fold overexpression of ACE2 protein (fold change, 5.34; P=1.66×10-6). CONCLUSION: More than 20% of the transcriptome is expressed differentially between HCM and control tissues. Importantly, ACE2 was the most up-regulated gene in HCM, indicating perhaps the heart's compensatory effort to mount an antihypertrophic, antifibrotic response. However, given that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 for viral entry, this 5-fold increase in ACE2 protein may confer increased risk for COVID-19 manifestations and outcomes in patients with increased ACE2 transcript expression and protein levels in the heart.


Subject(s)
Betacoronavirus , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/virology , Coronavirus Infections/complications , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/complications , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2 , COVID-19 , Cardiomyopathy, Hypertrophic/metabolism , Case-Control Studies , Child , Genotype , Humans , Middle Aged , Myocardium/metabolism , Pandemics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Young Adult
20.
IEEE Rev Biomed Eng ; 14: 16-29, 2021.
Article in English | MEDLINE | ID: covidwho-1501334

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading rapidly around the world, resulting in a massive death toll. Lung infection or pneumonia is the common complication of COVID-19, and imaging techniques, especially computed tomography (CT), have played an important role in diagnosis and treatment assessment of the disease. Herein, we review the imaging characteristics and computing models that have been applied for the management of COVID-19. CT, positron emission tomography - CT (PET/CT), lung ultrasound, and magnetic resonance imaging (MRI) have been used for detection, treatment, and follow-up. The quantitative analysis of imaging data using artificial intelligence (AI) is also explored. Our findings indicate that typical imaging characteristics and their changes can play crucial roles in the detection and management of COVID-19. In addition, AI or other quantitative image analysis methods are urgently needed to maximize the value of imaging in the management of COVID-19.


Subject(s)
COVID-19/diagnosis , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Lung/virology , Positron Emission Tomography Computed Tomography/methods , SARS-CoV-2/pathogenicity , Tomography, X-Ray Computed/methods , Ultrasonography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...