Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.298
Filter
1.
Int J Environ Res Public Health ; 17(9)2020 04 30.
Article in English | MEDLINE | ID: covidwho-1725596

ABSTRACT

COVID-19 was declared a pandemic by the World Health Organization, with a high fatality rate that may reach 8%. The disease is caused by SARS-CoV-2 which is one of the coronaviruses. Realizing the severity of outcomes associated with this disease and its high rate of transmission, dentists were instructed by regulatory authorities, such as the American Dental Association, to stop providing treatment to dental patients except those who have emergency complaints. This was mainly for protection of dental healthcare personnel, their families, contacts, and their patients from the transmission of virus, and also to preserve the much-needed supplies of personal protective equipment (PPE). Dentists at all times should competently follow cross-infection control protocols, but particularly during this critical time, they should do their best to decide on the emergency cases that are indicated for dental treatment. Dentists should also be updated on how this pandemic is related to their profession in order to be well oriented and prepared. This overview will address several issues concerned with the COVID-19 pandemic that directly relate to dental practice in terms of prevention, treatment, and orofacial clinical manifestations.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Dental Care/organization & administration , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , COVID-19 , Dental Care/trends , Forecasting , Humans , Infection Control , Practice Guidelines as Topic
2.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: covidwho-1723544

ABSTRACT

Genetic variability across the three major histocompatibility complex (MHC) class I genes (human leukocyte antigen A [HLA-A], -B, and -C genes) may affect susceptibility to and severity of the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19). We performed a comprehensive in silico analysis of viral peptide-MHC class I binding affinity across 145 HLA-A, -B, and -C genotypes for all SARS-CoV-2 peptides. We further explored the potential for cross-protective immunity conferred by prior exposure to four common human coronaviruses. The SARS-CoV-2 proteome was successfully sampled and was represented by a diversity of HLA alleles. However, we found that HLA-B*46:01 had the fewest predicted binding peptides for SARS-CoV-2, suggesting that individuals with this allele may be particularly vulnerable to COVID-19, as they were previously shown to be for SARS (M. Lin, H.-T. Tseng, J. A. Trejaut, H.-L. Lee, et al., BMC Med Genet 4:9, 2003, https://bmcmedgenet.biomedcentral.com/articles/10.1186/1471-2350-4-9). Conversely, we found that HLA-B*15:03 showed the greatest capacity to present highly conserved SARS-CoV-2 peptides that are shared among common human coronaviruses, suggesting that it could enable cross-protective T-cell-based immunity. Finally, we reported global distributions of HLA types with potential epidemiological ramifications in the setting of the current pandemic.IMPORTANCE Individual genetic variation may help to explain different immune responses to a virus across a population. In particular, understanding how variation in HLA may affect the course of COVID-19 could help identify individuals at higher risk from the disease. HLA typing can be fast and inexpensive. Pairing HLA typing with COVID-19 testing where feasible could improve assessment of severity of viral disease in the population. Following the development of a vaccine against SARS-CoV-2, the virus that causes COVID-19, individuals with high-risk HLA types could be prioritized for vaccination.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/virology , Histocompatibility Testing/methods , Pneumonia, Viral/virology , Amino Acid Sequence , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Epitopes, T-Lymphocyte/immunology , Genetic Variation , Genotype , Haplotypes , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immunity, Innate/immunology , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2 , T-Lymphocytes/immunology
3.
Chin Med J (Engl) ; 133(9): 1039-1043, 2020 May 05.
Article in English | MEDLINE | ID: covidwho-1722619

ABSTRACT

BACKGROUND: A patient's infectivity is determined by the presence of the virus in different body fluids, secretions, and excreta. The persistence and clearance of viral RNA from different specimens of patients with 2019 novel coronavirus disease (COVID-19) remain unclear. This study analyzed the clearance time and factors influencing 2019 novel coronavirus (2019-nCoV) RNA in different samples from patients with COVID-19, providing further evidence to improve the management of patients during convalescence. METHODS: The clinical data and laboratory test results of convalescent patients with COVID-19 who were admitted to from January 20, 2020 to February 10, 2020 were collected retrospectively. The reverse transcription polymerase chain reaction (RT-PCR) results for patients' oropharyngeal swab, stool, urine, and serum samples were collected and analyzed. Convalescent patients refer to recovered non-febrile patients without respiratory symptoms who had two successive (minimum 24 h sampling interval) negative RT-PCR results for viral RNA from oropharyngeal swabs. The effects of cluster of differentiation 4 (CD4)+ T lymphocytes, inflammatory indicators, and glucocorticoid treatment on viral nucleic acid clearance were analyzed. RESULTS: In the 292 confirmed cases, 66 patients recovered after treatment and were included in our study. In total, 28 (42.4%) women and 38 men (57.6%) with a median age of 44.0 (34.0-62.0) years were analyzed. After in-hospital treatment, patients' inflammatory indicators decreased with improved clinical condition. The median time from the onset of symptoms to first negative RT-PCR results for oropharyngeal swabs in convalescent patients was 9.5 (6.0-11.0) days. By February 10, 2020, 11 convalescent patients (16.7%) still tested positive for viral RNA from stool specimens and the other 55 patients' stool specimens were negative for 2019-nCoV following a median duration of 11.0 (9.0-16.0) days after symptom onset. Among these 55 patients, 43 had a longer duration until stool specimens were negative for viral RNA than for throat swabs, with a median delay of 2.0 (1.0-4.0) days. Results for only four (6.9%) urine samples were positive for viral nucleic acid out of 58 cases; viral RNA was still present in three patients' urine specimens after throat swabs were negative. Using a multiple linear regression model (F = 2.669, P = 0.044, and adjusted R = 0.122), the analysis showed that the CD4+ T lymphocyte count may help predict the duration of viral RNA detection in patients' stools (t = -2.699, P = 0.010). The duration of viral RNA detection from oropharyngeal swabs and fecal samples in the glucocorticoid treatment group was longer than that in the non-glucocorticoid treatment group (15 days vs. 8.0 days, respectively; t = 2.550, P = 0.013) and the duration of viral RNA detection in fecal samples in the glucocorticoid treatment group was longer than that in the non-glucocorticoid treatment group (20 days vs. 11 days, respectively; t = 4.631, P < 0.001). There was no statistically significant difference in inflammatory indicators between patients with positive fecal viral RNA test results and those with negative results (P > 0.05). CONCLUSIONS: In brief, as the clearance of viral RNA in patients' stools was delayed compared to that in oropharyngeal swabs, it is important to identify viral RNA in feces during convalescence. Because of the delayed clearance of viral RNA in the glucocorticoid treatment group, glucocorticoids are not recommended in the treatment of COVID-19, especially for mild disease. The duration of RNA detection may relate to host cell immunity.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/genetics , Pneumonia, Viral/genetics , RNA, Viral/genetics , Adult , Aged , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/rehabilitation , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/rehabilitation , Real-Time Polymerase Chain Reaction , Retrospective Studies , SARS-CoV-2
4.
Brain Behav Immun ; 87: 34-39, 2020 07.
Article in English | MEDLINE | ID: covidwho-1719335

ABSTRACT

The coronavirus disease 19 (COVID-19) pandemic is a significant psychological stressor in addition to its tremendous impact on every facet of individuals' lives and organizations in virtually all social and economic sectors worldwide. Fear of illness and uncertainty about the future precipitate anxiety- and stress-related disorders, and several groups have rightfully called for the creation and dissemination of robust mental health screening and treatment programs for the general public and front-line healthcare workers. However, in addition to pandemic-associated psychological distress, the direct effects of the virus itself (several acute respiratory syndrome coronavirus; SARS-CoV-2), and the subsequent host immunologic response, on the human central nervous system (CNS) and related outcomes are unknown. We discuss currently available evidence of COVID-19 related neuropsychiatric sequelae while drawing parallels to past viral pandemic-related outcomes. Past pandemics have demonstrated that diverse types of neuropsychiatric symptoms, such as encephalopathy, mood changes, psychosis, neuromuscular dysfunction, or demyelinating processes, may accompany acute viral infection, or may follow infection by weeks, months, or longer in recovered patients. The potential mechanisms are also discussed, including viral and immunological underpinnings. Therefore, prospective neuropsychiatric monitoring of individuals exposed to SARS-CoV-2 at various points in the life course, as well as their neuroimmune status, are needed to fully understand the long-term impact of COVID-19, and to establish a framework for integrating psychoneuroimmunology into epidemiologic studies of pandemics.


Subject(s)
Coronavirus Infections/psychology , Cytokine Release Syndrome/psychology , Mental Disorders/psychology , Nervous System Diseases/psychology , Pneumonia, Viral/psychology , Acute Disease , Anxiety/etiology , Anxiety/immunology , Anxiety/psychology , Bacterial Translocation , Betacoronavirus , COVID-19 , Chronic Disease , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Demyelinating Diseases/etiology , Demyelinating Diseases/immunology , Demyelinating Diseases/physiopathology , Demyelinating Diseases/psychology , Depression/etiology , Depression/immunology , Depression/psychology , Humans , Immunologic Factors/adverse effects , Mental Disorders/etiology , Mental Disorders/immunology , Mental Health , Nervous System Diseases/etiology , Nervous System Diseases/immunology , Nervous System Diseases/physiopathology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/psychology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Psychoneuroimmunology , Psychotic Disorders/etiology , Psychotic Disorders/immunology , Psychotic Disorders/psychology , Public Health , SARS-CoV-2 , Stress Disorders, Post-Traumatic/etiology , Stress Disorders, Post-Traumatic/immunology , Stress Disorders, Post-Traumatic/psychology
5.
Clin Infect Dis ; 74(2): 199-209, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1662119

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to threaten public health globally. Patients with severe COVID-19 disease progress to acute respiratory distress syndrome, with respiratory and multiple organ failure. It is believed that dysregulated production of proinflammatory cytokines and endothelial dysfunction contribute to the pathogenesis of severe diseases. However, the mechanisms of SARS-CoV-2 pathogenesis and the role of endothelial cells are poorly understood. METHODS: Well-differentiated human airway epithelial cells were used to explore cytokine and chemokine production after SARS-CoV-2 infection. We measured the susceptibility to infection, immune response, and expression of adhesion molecules in human pulmonary microvascular endothelial cells (HPMVECs) exposed to conditioned medium from infected epithelial cells. The effect of imatinib on HPMVECs exposed to conditioned medium was evaluated. RESULTS: We demonstrated the production of interleukin-6, interferon gamma-induced protein-10, and monocyte chemoattractant protein-1 from the infected human airway cells after infection with SARS-CoV-2. Although HPMVECs did not support productive replication of SARS-CoV-2, treatment of HPMVECs with conditioned medium collected from infected airway cells induced an upregulation of proinflammatory cytokines, chemokines, and vascular adhesion molecules. Imatinib inhibited the upregulation of these cytokines, chemokines, and adhesion molecules in HPMVECs treated with conditioned medium. CONCLUSIONS: We evaluated the role of endothelial cells in the development of clinical disease caused by SARS-CoV-2 and the importance of endothelial cell-epithelial cell interaction in the pathogenesis of human COVID-19 diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Cell Communication , Endothelial Cells , Epithelial Cells , Humans
6.
Br J Nutr ; 127(6): 896-903, 2022 03 28.
Article in English | MEDLINE | ID: covidwho-1651089

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused mild illness in children, until the emergence of the novel hyperinflammatory condition paediatric inflammatory multisystem syndrome temporally associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PIMS-TS). PIMS-TS is thought to be a post-SARS-CoV-2 immune dysregulation with excessive inflammatory cytokine release. We studied 25 hydroxyvitamin D (25OHD) concentrations in children with PIMS-TS, admitted to a tertiary paediatric hospital in the UK, due to its postulated role in cytokine regulation and immune response. Eighteen children (median (range) age 8·9 (0·3-14·6) years, male = 10) met the case definition. The majority were of Black, Asian and Minority Ethnic (BAME) origin (89 %, 16/18). Positive SARS-CoV-2 IgG antibodies were present in 94 % (17/18) and RNA by PCR in 6 % (1/18). Seventy-eight percentage of the cohort were vitamin D deficient (< 30 nmol/l). The mean 25OHD concentration was significantly lower when compared with the population mean from the 2015/16 National Diet and Nutrition Survey (children aged 4-10 years) (24 v. 54 nmol/l (95 % CI -38·6, -19·7); P < 0·001). The paediatric intensive care unit (PICU) group had lower mean 25OHD concentrations compared with the non-PICU group, but this was not statistically significant (19·5 v. 31·9 nmol/l; P = 0·11). The higher susceptibility of BAME children to PIMS-TS and also vitamin D deficiency merits contemplation. Whilst any link between vitamin D deficiency and the severity of COVID-19 and related conditions including PIMS-TS requires further evidence, public health measures to improve vitamin D status of the UK BAME population have been long overdue.


Subject(s)
COVID-19 , COVID-19/complications , Child , Child, Preschool , Humans , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Vitamin D
7.
J Leukoc Biol ; 111(1): 269-281, 2022 01.
Article in English | MEDLINE | ID: covidwho-1591653

ABSTRACT

The immune system plays a crucial role in the response against severe acute respiratory syndrome coronavirus 2 with significant differences among patients. The study investigated the relationships between lymphocyte subsets, cytokines, and disease outcomes in patients with coronavirus disease 2019 (COVID-19). The measurements of peripheral blood lymphocytes subsets and cytokine levels were performed by flow cytometry for 57 COVID-19 patients. Patients were categorized into two groups according to the severity of the disease (nonsevere vs. severe). Total lymphocytes, T cells, CD4+ T cells, CD8+ T cells, B cells, and natural killer cells were decreased in COVID-19 patients and statistical differences were found among different severity of illness and survival states (P ˂ 0.01). The levels of IL-6 and IL-10 were significantly higher in severe and death groups and negatively correlated with lymphocyte subsets counts. The percentages of Th17 in the peripheral blood of patients were higher than those of healthy controls whereas the percentages of Th2 were lower. For the severe cases, the area under receiver operating characteristic (ROC) curve of IL-6 was the largest among all the immune parameters (0.964; 95% confidence interval: 0.927-1.000, P < 0.0001). In addition, the preoperative IL-6 concentration of 77.38 pg/ml was the optimal cutoff value (sensitivity: 84.6%, specificity: 100%). Using multivariate logistic regression analysis and ROC curves, IL-6 > 106.44 pg/ml and CD8+ T cell counts <150 cells/µl were found to be associated with mortality. Measuring the immune parameters and defining a risk threshold can segregate patients who develop a severe disease from those with a mild pathology. The identification of these parameters may help clinicians to predict the outcome of the patients with high risk of unfavorable progress of the disease.


Subject(s)
COVID-19/blood , COVID-19/mortality , Interleukin-6/blood , Severity of Illness Index , Africa, Northern , Aged , Biomarkers/blood , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cytokines/metabolism , Female , Humans , Kaplan-Meier Estimate , Lymphocyte Count , Lymphocyte Subsets/immunology , Male , Middle Aged , Multivariate Analysis , Prognosis , Treatment Outcome
8.
Signal Transduct Target Ther ; 6(1): 167, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1585891

ABSTRACT

The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , NF-kappa B/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Signal Transduction , A549 Cells , Acrylates/pharmacology , Animals , COVID-19/drug therapy , COVID-19/pathology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Phosphoproteins/metabolism , Vero Cells
9.
Curr Pediatr Rev ; 17(3): 162-171, 2021.
Article in English | MEDLINE | ID: covidwho-1581513

ABSTRACT

BACKGROUND: In December 2019, a local outbreak of pneumonia was presented in Wuhan (China) and quickly identified to be caused by a novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The disease caused by SARS-CoV-2 was named COVID-19 and was soon declared a pandemic because of the millions of infections and thousands of deaths worldwide. Children infected with SARS-CoV-2 usually develop the asymptomatic or mild type of disease compared to adults. They are also more likely to have atypical and non-specific clinical manifestations than adults. METHODS: A literature search was performed through PubMed and Scopus to summarize the extrapulmonary manifestations of SARS-CoV-2 infection in children since the beginning of the pandemic. Peer-reviewed papers in English were retrieved using the following keywords and combinations: 'pediatric,' 'child,' 'infant,' 'neonate,' 'novel coronavirus,' 'SARS-CoV-2,' 'COVID 19' and 'gastrointestinal,' 'renal,' 'cardiac,' 'dermatologic' or 'ophthalmologic'. We included published case series and case reports providing clinical symptoms and signs in SARS-CoV2 pediatric patients. RESULTS: Although fever and symptoms of upper respiratory infection are the most frequently presented, a variety of other atypical presentations has also been reported. The clinical spectrum includes dermatological, ophthalmological, neurological, cardiovascular, renal, reproductive, and gastrointestinal presentations. In addition, a rare multi-inflammatory syndrome associated with SARS-- CoV-2 infection has been reported in children, often leading to shock and requiring inotropic support and mechanical ventilation. CONCLUSION: Clinicians need to be aware of the wider range of extrapulmonary atypical manifestations of SARS-CoV-2 infection in children, so that appropriate testing, treatment, and public health measures can be implemented rapidly.


Subject(s)
COVID-19 , Adult , Child , Humans , Infant , Infant, Newborn , Pandemics , RNA, Viral , SARS-CoV-2
10.
AIDS Rev ; 23(3): 153-163, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1579385

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious RNA coronavirus responsible for the pandemic of the coronavirus disease 2019 (COVID-19). Recent advances in virology, epidemiology, diagnosis, and clinical management of COVID-19 have contributed to the control and prevention of this disease, but re-positivity of SARS-CoV-2 in recovered COVID-19 patients has brought a new challenge for this worldwide anti-viral battle. Reverse transcription polymerase chain reaction (RT-PCR) tests of the SARS-CoV-2 pathogen is widely used in clinical diagnosis, but a positive RT-PCR result may be multifactorial, including false positive, SARS-CoV-2 RNA fragment shedding, reinfection of SARS-CoV-2, or re-activation of COVID-19. Re-infection of SARS-CoV-2 or re-activation of COVID-19 is an indicator of live viral carriers and isolation/treatment is needed, but SARS-CoV-2 RNA fragment shedding is not. SARS-CoV-2 RNA is recently reported to integrate into the host genome, but the far-reaching outcome is currently unclear. Therefore, it is critical for appropriate manipulation and prevention of COVID-19 to distinguish these causal factors of SARS-CoV-2 re-positivity. In this review article, we updated the current knowledge of SARS-CoV-2 re-positivity in discharged COVID-19 patients with a focus on re-infection and re-activation. We proposed a hypothetical flowchart for handling of the SARS-CoV-2 re-positive cases.


Subject(s)
COVID-19/pathology , RNA, Viral/analysis , Reinfection/virology , SARS-CoV-2/genetics , Virus Activation/genetics , Adaptive Immunity/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/diagnosis , Child , Child, Preschool , False Positive Reactions , Female , Humans , Infant , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
11.
Waste Biomass Valorization ; 12(10): 5329-5346, 2021.
Article in English | MEDLINE | ID: covidwho-1575803

ABSTRACT

ABSTRACT: Olive leaf as an agricultural waste contains valuable bioactive compounds that are mainly used for pharmaceutical and cosmetic industries. Lately the major component, oleuropein, has gained extra attention due to the anti-viral activity against SARS-CoV-2 that causes Coronavirus disease (Covid-19). In this study, extraction of the bioactive compounds from olive leaves was conducted using a non-conventional and green method. New generation green solvents, natural deep eutectic solvents (NADES) were used in combination with ultrasound assisted extraction. Screening of NADES type, temperature, and particle size were investigated using one-pot-at-a-time method while, NADES amount and liquid-to-solid ratio were optimized using experimental design. The results were evaluated in terms of total polyphenol yield (YTP), total flavonoid yield (YTF) and antiradical activity (AAR). At the optimized conditions, the highest total polyphenol yield and the highest total flavonoid yield were achieved with choline chloride-fructose-water (CFW) (5:2:5) as 187.31 ± 10.3 mg gallic acid equivalent g-1 dw and 12.75 ± 0.6 mg apigenin equivalent g-1 dw, respectively. The extracts were also analyzed for oleuropein, caffeic acid and luteolin contents. The highest amount of oleuropein and caffeic acid were extracted by glucose-fructose-water (GFW) (1:1:11) as 1630.80 mg kg-1 dw and 112.77 mg kg-1 dw, respectively. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s12649-021-01411-3) contains supplementary material, which is available to authorized users.

12.
Front Vet Sci ; 8: 572012, 2021.
Article in English | MEDLINE | ID: covidwho-1574919

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused great harm to global public health, resulting in a large number of infections among the population. However, the epidemiology of coronavirus has not been fully understood, especially the mechanism of aerosol transmission. Many respiratory viruses can spread via contact and droplet transmission, but increasing epidemiological data have shown that viral aerosol is an essential transmission route of coronavirus and influenza virus due to its ability to spread rapidly and high infectiousness. Aerosols have the characteristics of small particle size, long-time suspension and long-distance transmission, and easy access to the deep respiratory tract, leading to a high infection risk and posing a great threat to public health. In this review, the characteristics of viral aerosol generation, transmission, and infection as well as the current advances in the aerosol transmission of zoonotic coronavirus and influenza virus are summarized. The aim of the review is to strengthen the understanding of viral aerosol transmission and provide a scientific basis for the prevention and control of these diseases.

13.
Pan Afr Med J ; 38: 55, 2021.
Article in French | MEDLINE | ID: covidwho-1547713

ABSTRACT

The first outbreak of epidemic respiratory disease due to unknown etiology was reported in the Chinese city of Wuhan December 2019. The World Health Organization (WHO) firstly used the term "new coronavirus 2019" on December 29, 2019. This pandemic, which is currently called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a disease caused by SARS-CoV-2. It was subsequently called coronavirus disease 2019 (COVID-19) by the WHO. The purpose of this study was to determine the prevalence of antibodies against SARS-CoV-2 in all employees of the Nouakchott National Hospital Center (CHN). The study was conducted during the week 20/05/2020 to 27/05/2020. It involved 853 employees of all ranks (doctors, pharmacists, nurses, secretaries, security personnel, administrators...) of whom 504 were male and 331 were female, with a sex ratio of 1,52 with an average age of 39 years, ranging from 20 to 60 years. The screening for IgG and IgM antibodies to SARS-CoV-2 was performed using Biotime (Xiamen Biotime Biotechnology Co., Ltd.) immunochromatographic technique. Out of 835 employees included in our study, 14 were positive (1.67%) of whom 12 had IgM and IgG anti-SARS-CoV-2 antibodies and 2 had isolated IgM. Nasopharyngeal swab polymerase chain reaction (PCR) was performed in these 14 patients and was positive in six. While PCR is the gold standard for the diagnosis of SARS-CoV-2, serological tests for SARS-CoV-2 antibodies, in particular rapid tests (RDTs) are a diagnostic complement to COVID-19. They have the advantage of being easy to realize, of being safe both in the laboratories and outside the laboratories. RDTs enabled us to detect asymptomatic SARS-CoV-2 carriers within CHN employees. This allowed for patients management and isolation to protect patients and their environments.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Health Personnel , SARS-CoV-2/isolation & purification , Adult , Antibodies, Viral/blood , COVID-19/epidemiology , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Mauritania/epidemiology , Middle Aged , Serologic Tests/methods , Young Adult
14.
Clin J Am Soc Nephrol ; 16(11): 1755-1765, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526737

ABSTRACT

Despite evidence of multiorgan tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients with coronavirus disease 2019 (COVID-19), direct viral kidney invasion has been difficult to demonstrate. The question of whether SARS-CoV2 can directly infect the kidney is relevant to the understanding of pathogenesis of AKI and collapsing glomerulopathy in patients with COVID-19. Methodologies to document SARS-CoV-2 infection that have been used include immunohistochemistry, immunofluorescence, RT-PCR, in situ hybridization, and electron microscopy. In our review of studies to date, we found that SARS-CoV-2 in the kidneys of patients with COVID-19 was detected in 18 of 94 (19%) by immunohistochemistry, 71 of 144 (49%) by RT-PCR, and 11 of 84 (13%) by in situ hybridization. In a smaller number of patients with COVID-19 examined by immunofluorescence, SARS-CoV-2 was detected in 10 of 13 (77%). In total, in kidneys from 102 of 235 patients (43%), the presence of SARS-CoV-2 was suggested by at least one of the methods used. Despite these positive findings, caution is needed because many other studies have been negative for SARS-CoV-2 and it should be noted that when detected, it was only in kidneys obtained at autopsy. There is a clear need for studies from kidney biopsies, including those performed at early stages of the COVID-19-associated kidney disease. Development of tests to detect kidney viral infection in urine samples would be more practical as a noninvasive way to evaluate SARS-CoV-2 infection during the evolution of COVID-19-associated kidney disease.


Subject(s)
COVID-19/virology , Kidney Diseases/virology , Kidney/virology , SARS-CoV-2/pathogenicity , Animals , Biopsy , COVID-19/complications , COVID-19/diagnosis , COVID-19/mortality , COVID-19 Testing , Host-Pathogen Interactions , Humans , Kidney Diseases/diagnosis , Kidney Diseases/mortality , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors
15.
Libyan J Med ; 16(1): 1910195, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1526148

ABSTRACT

The outbreak of corona virus disease (COVID-19) caused by the new severe acute respiratory syndrome corona virus 2 began in Wuhan, China, resulting in respiratory disorders. In January of 2020, the World Health Organization declared the outbreak a pandemic owing to its global spread. Because no studies have investigated COVID-19 in Saudi Arabia, this study investigated similarities and differences between demographic data during the COVID-19 and Middle East respiratory syndrome (MERS) outbreaks in Saudi Arabia. A retrospective trend analysis was performed to assess demographic data of all laboratory-confirmed MERS and COVID-19 cases. Patients' charts were reviewed for data on demographics, mortality, citizenship, sex ratio, and age groups with descriptive and comparative statistics; the data were analyzed using a non-parametric binomial test and chi-square test. Of all COVID-19 patients in Saudi Arabia,78%were male patients and 22% were female patients. This proportion of male COVID-19 patients was similar to that of male MERS patients, which also affected male patients more frequently than female patients. The number of COVID-19-positive Saudi cases was lower than that of non-Saudi cases, which were in contrast to that of MERS; COVID-19 appeared to be remarkably similar to MERS with respect to recovered cases. However, the numbers of critical and dead COVID-19 patients have been much lower than those of MERS patients. The largest proportion of COVID-19 and MERS cases (44.05% and 40.8%, respectively) were recorded in the Western region. MERS and COVID-19 exhibited similar threats to the lives of adults and the elderly, despite lower mortality rates during the COVID-19 epidemic. Targeted prevention of and interventions against MERS should be allocated populations according to the areas where they inhabit. However, much more information regarding the dynamics and epidemiology of COVID-19 in Saudi Arabia is needed.Abbrevation : MERS: Middle East Respiratory syndrome; COVID-19: Corona Virus Disease 2019.


Subject(s)
COVID-19/epidemiology , Coronavirus Infections/epidemiology , Disease Outbreaks , SARS-CoV-2 , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/etiology , Child , Child, Preschool , Coronavirus Infections/etiology , Demography , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Retrospective Studies , Saudi Arabia/epidemiology , Sex Factors , Young Adult
17.
J Clin Med ; 10(8)2021 Apr 19.
Article in English | MEDLINE | ID: covidwho-1526843

ABSTRACT

There is limited data on the effect of the novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) on pediatric rheumatology. We examined the prevalence of antibodies against SARS-CoV-2 in children with juvenile idiopathic arthritis (JIA) and a negative history of COVID-19 and the correlation of the presence of these antibodies with disease activity measured by juvenile arthritis disease activity score (JADAS). In total, 62 patients diagnosed with JIA, under treatment with various antirheumatic drugs, and 32 healthy children (control group) were included. Serum samples were analyzed for inflammatory markers and antibodies and their state evaluated with the juvenile arthritis disease activity score (JADAS). JIA patients do not have a higher seroprevalence of anti-SARS-CoV-2 antibodies than healthy subjects. We found anti-SARS-CoV-2 antibodies in JIA patients who did not have a history of COVID-19. The study showed no unequivocal correlation between the presence of SARS-CoV-2 antibodies and JIA activity; therefore, this relationship requires further observation. We also identified a possible link between patients' humoral immune response and disease-modifying antirheumatic treatment, which will be confirmed in follow-up studies.

18.
Histol Histopathol ; 36(9): 947-965, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1513241

ABSTRACT

Infection by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) leads to multi-organ failure associated with a cytokine storm and septic shock. The virus evades the mitochondrial production of interferons through its N protein and, from that moment on, it hijacks the functions of these organelles. The aim of this study was to show how the virus kidnaps the mitochondrial machinery for its benefit and survival, leading to alterations of serum parameters and to nitrosative stress (NSS). In a prospective cohort of 15 postmortem patients who died from COVID-19, six markers of mitochondrial function (COX II, COX IV, MnSOD, nitrotyrosine, Bcl-2 and caspase-9) were analyzed by the immune colloidal gold technique in samples from the lung, heart, and liver. Biometric laboratory results from these patients showed alterations in hemoglobin, platelets, creatinine, urea nitrogen, glucose, C-reactive protein, albumin, D-dimer, ferritin, fibrinogen, Ca²âº, K⁺, lactate and troponin. These changes were associated with alterations in the mitochondrial structure and function. The multi-organ dysfunction present in COVID-19 patients may be caused, in part, by damage to the mitochondria that results in an inflammatory state that contributes to NSS, which activates the sepsis cascade and results in increased mortality in COVID-19 patients.


Subject(s)
COVID-19/pathology , Mitochondria/pathology , Nitrosative Stress/physiology , Aged , Female , Humans , Male , Middle Aged , SARS-CoV-2
19.
Mini Rev Med Chem ; 21(17): 2530-2543, 2021.
Article in English | MEDLINE | ID: covidwho-1504184

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus strain and the causative agent of COVID-19 was emerged in Wuhan, China, in December 2019 [1]. This pandemic situation and magnitude of suffering have led to global effort to find out effective measures for discovery of new specific drugs and vaccines to combat this deadly disease. In addition to many initiatives to develop vaccines for protective immunity against SARS-CoV-2, some of which are at various stages of clinical trials, researchers worldwide are currently using available conventional therapeutic drugs with the potential to combat the disease effectively in other viral infections and it is believed that these antiviral drugs could act as a promising immediate alternative. Remdesivir (RDV), a broad-spectrum anti-viral agent, initially developed for the treatment of Ebola virus (EBOV) and known to showed promising efficiency in in vitro and in vivo studies against SARS and MERS coronaviruses, is now being investigated against SARS-CoV-2. On May 1, 2020, The U.S. Food and Drug Administration (FDA) granted Emergency Use Authorization (EUA) for RDV to treat COVID- 19 patients [2]. A number of multicentre clinical trials are on-going to check the safety and efficacy of RDV for the treatment of COVID-19. Results of published double blind, and placebo-controlled trial on RDV against SARS-CoV-2, showed that RDV administration led to faster clinical improvement in severe COVID-19 patients compared to placebo. This review highlights the available knowledge about RDV as a therapeutic drug for coronaviruses and its preclinical and clinical trials against COVID-19.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/drug therapy , SARS-CoV-2/drug effects , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/adverse effects , Alanine/pharmacology , Alanine/therapeutic use , Animals , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Humans , Randomized Controlled Trials as Topic
20.
Infect Disord Drug Targets ; 21(4): 541-552, 2021.
Article in English | MEDLINE | ID: covidwho-1496791

ABSTRACT

BACKGROUND: Since December 2019, a novel coronavirus, SARS-CoV-2, has caused global public health issues after being reported for the first time in Wuhan province of China. So far, there have been approximately 14.8 million confirmed cases and 0.614 million deaths due to the SARS-CoV-2 infection globally, and still, numbers are increasing. Although the virus has caused a global public health concern, no effective treatment has been developed. OBJECTIVE: One of the strategies to combat the COVID-19 disease caused by SARS-CoV-2 is the development of vaccines that can make humans immune to these infections. Considering this approach, in this study, an attempt has been made to design epitope-based vaccine for combatting COVID-19 disease by analyzing the complete proteome of the virus by using immuno-informatics tools. METHODS: The protein sequence of the SARS-CoV-2 was retrieved and the individual proteins were checked for their allergic potential. Then, from non-allergen proteins, antigenic epitopes were identified that could bind with MHCII molecules. The epitopes were modeled and docked to predict the interaction with MHCII molecules. The stability of the epitope-MHCII complex was further analyzed by performing a molecular dynamics simulation study. The selected vaccine candidates were also analyzed for their global population coverage and conservancy among SARS-related coronavirus species. RESULTS: The study has predicted 5 peptide molecules that can act as potential candidates for epitope- based vaccine development. Among the 5 selected epitopes, the peptide LRARSVSPK can be the most potent epitope because of its high geometric shape complementarity score, low ACE and very high response towards it by the world population (81.81% global population coverage). Further, molecular dynamic simulation analysis indicated the formation of a stable epitope-MHCII complex. The epitope LRARSVSPK was also found to be highly conserved among the SARS-CoV- -2 isolated from different countries. CONCLUSION: The study has predicted T-cell epitopes that can elicit a robust immune response in the global human population and act as potential vaccine candidates. However, the ability of these epitopes to act as vaccine candidate needs to be validated in wet lab studies.


Subject(s)
COVID-19 , Vaccines , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL