Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.072
Filter
1.
Int J Environ Res Public Health ; 17(9)2020 04 30.
Article in English | MEDLINE | ID: covidwho-1725596

ABSTRACT

COVID-19 was declared a pandemic by the World Health Organization, with a high fatality rate that may reach 8%. The disease is caused by SARS-CoV-2 which is one of the coronaviruses. Realizing the severity of outcomes associated with this disease and its high rate of transmission, dentists were instructed by regulatory authorities, such as the American Dental Association, to stop providing treatment to dental patients except those who have emergency complaints. This was mainly for protection of dental healthcare personnel, their families, contacts, and their patients from the transmission of virus, and also to preserve the much-needed supplies of personal protective equipment (PPE). Dentists at all times should competently follow cross-infection control protocols, but particularly during this critical time, they should do their best to decide on the emergency cases that are indicated for dental treatment. Dentists should also be updated on how this pandemic is related to their profession in order to be well oriented and prepared. This overview will address several issues concerned with the COVID-19 pandemic that directly relate to dental practice in terms of prevention, treatment, and orofacial clinical manifestations.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Dental Care/organization & administration , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , COVID-19 , Dental Care/trends , Forecasting , Humans , Infection Control , Practice Guidelines as Topic
2.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: covidwho-1723544

ABSTRACT

Genetic variability across the three major histocompatibility complex (MHC) class I genes (human leukocyte antigen A [HLA-A], -B, and -C genes) may affect susceptibility to and severity of the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19). We performed a comprehensive in silico analysis of viral peptide-MHC class I binding affinity across 145 HLA-A, -B, and -C genotypes for all SARS-CoV-2 peptides. We further explored the potential for cross-protective immunity conferred by prior exposure to four common human coronaviruses. The SARS-CoV-2 proteome was successfully sampled and was represented by a diversity of HLA alleles. However, we found that HLA-B*46:01 had the fewest predicted binding peptides for SARS-CoV-2, suggesting that individuals with this allele may be particularly vulnerable to COVID-19, as they were previously shown to be for SARS (M. Lin, H.-T. Tseng, J. A. Trejaut, H.-L. Lee, et al., BMC Med Genet 4:9, 2003, https://bmcmedgenet.biomedcentral.com/articles/10.1186/1471-2350-4-9). Conversely, we found that HLA-B*15:03 showed the greatest capacity to present highly conserved SARS-CoV-2 peptides that are shared among common human coronaviruses, suggesting that it could enable cross-protective T-cell-based immunity. Finally, we reported global distributions of HLA types with potential epidemiological ramifications in the setting of the current pandemic.IMPORTANCE Individual genetic variation may help to explain different immune responses to a virus across a population. In particular, understanding how variation in HLA may affect the course of COVID-19 could help identify individuals at higher risk from the disease. HLA typing can be fast and inexpensive. Pairing HLA typing with COVID-19 testing where feasible could improve assessment of severity of viral disease in the population. Following the development of a vaccine against SARS-CoV-2, the virus that causes COVID-19, individuals with high-risk HLA types could be prioritized for vaccination.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/virology , Histocompatibility Testing/methods , Pneumonia, Viral/virology , Amino Acid Sequence , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Epitopes, T-Lymphocyte/immunology , Genetic Variation , Genotype , Haplotypes , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immunity, Innate/immunology , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2 , T-Lymphocytes/immunology
3.
Clin Infect Dis ; 74(2): 199-209, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1662119

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to threaten public health globally. Patients with severe COVID-19 disease progress to acute respiratory distress syndrome, with respiratory and multiple organ failure. It is believed that dysregulated production of proinflammatory cytokines and endothelial dysfunction contribute to the pathogenesis of severe diseases. However, the mechanisms of SARS-CoV-2 pathogenesis and the role of endothelial cells are poorly understood. METHODS: Well-differentiated human airway epithelial cells were used to explore cytokine and chemokine production after SARS-CoV-2 infection. We measured the susceptibility to infection, immune response, and expression of adhesion molecules in human pulmonary microvascular endothelial cells (HPMVECs) exposed to conditioned medium from infected epithelial cells. The effect of imatinib on HPMVECs exposed to conditioned medium was evaluated. RESULTS: We demonstrated the production of interleukin-6, interferon gamma-induced protein-10, and monocyte chemoattractant protein-1 from the infected human airway cells after infection with SARS-CoV-2. Although HPMVECs did not support productive replication of SARS-CoV-2, treatment of HPMVECs with conditioned medium collected from infected airway cells induced an upregulation of proinflammatory cytokines, chemokines, and vascular adhesion molecules. Imatinib inhibited the upregulation of these cytokines, chemokines, and adhesion molecules in HPMVECs treated with conditioned medium. CONCLUSIONS: We evaluated the role of endothelial cells in the development of clinical disease caused by SARS-CoV-2 and the importance of endothelial cell-epithelial cell interaction in the pathogenesis of human COVID-19 diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Cell Communication , Endothelial Cells , Epithelial Cells , Humans
4.
Signal Transduct Target Ther ; 6(1): 167, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1585891

ABSTRACT

The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , NF-kappa B/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Signal Transduction , A549 Cells , Acrylates/pharmacology , Animals , COVID-19/drug therapy , COVID-19/pathology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Phosphoproteins/metabolism , Vero Cells
5.
Curr Pediatr Rev ; 17(3): 162-171, 2021.
Article in English | MEDLINE | ID: covidwho-1581513

ABSTRACT

BACKGROUND: In December 2019, a local outbreak of pneumonia was presented in Wuhan (China) and quickly identified to be caused by a novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The disease caused by SARS-CoV-2 was named COVID-19 and was soon declared a pandemic because of the millions of infections and thousands of deaths worldwide. Children infected with SARS-CoV-2 usually develop the asymptomatic or mild type of disease compared to adults. They are also more likely to have atypical and non-specific clinical manifestations than adults. METHODS: A literature search was performed through PubMed and Scopus to summarize the extrapulmonary manifestations of SARS-CoV-2 infection in children since the beginning of the pandemic. Peer-reviewed papers in English were retrieved using the following keywords and combinations: 'pediatric,' 'child,' 'infant,' 'neonate,' 'novel coronavirus,' 'SARS-CoV-2,' 'COVID 19' and 'gastrointestinal,' 'renal,' 'cardiac,' 'dermatologic' or 'ophthalmologic'. We included published case series and case reports providing clinical symptoms and signs in SARS-CoV2 pediatric patients. RESULTS: Although fever and symptoms of upper respiratory infection are the most frequently presented, a variety of other atypical presentations has also been reported. The clinical spectrum includes dermatological, ophthalmological, neurological, cardiovascular, renal, reproductive, and gastrointestinal presentations. In addition, a rare multi-inflammatory syndrome associated with SARS-- CoV-2 infection has been reported in children, often leading to shock and requiring inotropic support and mechanical ventilation. CONCLUSION: Clinicians need to be aware of the wider range of extrapulmonary atypical manifestations of SARS-CoV-2 infection in children, so that appropriate testing, treatment, and public health measures can be implemented rapidly.


Subject(s)
COVID-19 , Adult , Child , Humans , Infant , Infant, Newborn , Pandemics , RNA, Viral , SARS-CoV-2
6.
Waste Biomass Valorization ; 12(10): 5329-5346, 2021.
Article in English | MEDLINE | ID: covidwho-1575803

ABSTRACT

ABSTRACT: Olive leaf as an agricultural waste contains valuable bioactive compounds that are mainly used for pharmaceutical and cosmetic industries. Lately the major component, oleuropein, has gained extra attention due to the anti-viral activity against SARS-CoV-2 that causes Coronavirus disease (Covid-19). In this study, extraction of the bioactive compounds from olive leaves was conducted using a non-conventional and green method. New generation green solvents, natural deep eutectic solvents (NADES) were used in combination with ultrasound assisted extraction. Screening of NADES type, temperature, and particle size were investigated using one-pot-at-a-time method while, NADES amount and liquid-to-solid ratio were optimized using experimental design. The results were evaluated in terms of total polyphenol yield (YTP), total flavonoid yield (YTF) and antiradical activity (AAR). At the optimized conditions, the highest total polyphenol yield and the highest total flavonoid yield were achieved with choline chloride-fructose-water (CFW) (5:2:5) as 187.31 ± 10.3 mg gallic acid equivalent g-1 dw and 12.75 ± 0.6 mg apigenin equivalent g-1 dw, respectively. The extracts were also analyzed for oleuropein, caffeic acid and luteolin contents. The highest amount of oleuropein and caffeic acid were extracted by glucose-fructose-water (GFW) (1:1:11) as 1630.80 mg kg-1 dw and 112.77 mg kg-1 dw, respectively. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s12649-021-01411-3) contains supplementary material, which is available to authorized users.

7.
Front Vet Sci ; 8: 572012, 2021.
Article in English | MEDLINE | ID: covidwho-1574919

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused great harm to global public health, resulting in a large number of infections among the population. However, the epidemiology of coronavirus has not been fully understood, especially the mechanism of aerosol transmission. Many respiratory viruses can spread via contact and droplet transmission, but increasing epidemiological data have shown that viral aerosol is an essential transmission route of coronavirus and influenza virus due to its ability to spread rapidly and high infectiousness. Aerosols have the characteristics of small particle size, long-time suspension and long-distance transmission, and easy access to the deep respiratory tract, leading to a high infection risk and posing a great threat to public health. In this review, the characteristics of viral aerosol generation, transmission, and infection as well as the current advances in the aerosol transmission of zoonotic coronavirus and influenza virus are summarized. The aim of the review is to strengthen the understanding of viral aerosol transmission and provide a scientific basis for the prevention and control of these diseases.

8.
Pan Afr Med J ; 38: 55, 2021.
Article in French | MEDLINE | ID: covidwho-1547713

ABSTRACT

The first outbreak of epidemic respiratory disease due to unknown etiology was reported in the Chinese city of Wuhan December 2019. The World Health Organization (WHO) firstly used the term "new coronavirus 2019" on December 29, 2019. This pandemic, which is currently called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a disease caused by SARS-CoV-2. It was subsequently called coronavirus disease 2019 (COVID-19) by the WHO. The purpose of this study was to determine the prevalence of antibodies against SARS-CoV-2 in all employees of the Nouakchott National Hospital Center (CHN). The study was conducted during the week 20/05/2020 to 27/05/2020. It involved 853 employees of all ranks (doctors, pharmacists, nurses, secretaries, security personnel, administrators...) of whom 504 were male and 331 were female, with a sex ratio of 1,52 with an average age of 39 years, ranging from 20 to 60 years. The screening for IgG and IgM antibodies to SARS-CoV-2 was performed using Biotime (Xiamen Biotime Biotechnology Co., Ltd.) immunochromatographic technique. Out of 835 employees included in our study, 14 were positive (1.67%) of whom 12 had IgM and IgG anti-SARS-CoV-2 antibodies and 2 had isolated IgM. Nasopharyngeal swab polymerase chain reaction (PCR) was performed in these 14 patients and was positive in six. While PCR is the gold standard for the diagnosis of SARS-CoV-2, serological tests for SARS-CoV-2 antibodies, in particular rapid tests (RDTs) are a diagnostic complement to COVID-19. They have the advantage of being easy to realize, of being safe both in the laboratories and outside the laboratories. RDTs enabled us to detect asymptomatic SARS-CoV-2 carriers within CHN employees. This allowed for patients management and isolation to protect patients and their environments.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Health Personnel , SARS-CoV-2/isolation & purification , Adult , Antibodies, Viral/blood , COVID-19/epidemiology , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Mauritania/epidemiology , Middle Aged , Serologic Tests/methods , Young Adult
9.
Clin J Am Soc Nephrol ; 16(11): 1755-1765, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526737

ABSTRACT

Despite evidence of multiorgan tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients with coronavirus disease 2019 (COVID-19), direct viral kidney invasion has been difficult to demonstrate. The question of whether SARS-CoV2 can directly infect the kidney is relevant to the understanding of pathogenesis of AKI and collapsing glomerulopathy in patients with COVID-19. Methodologies to document SARS-CoV-2 infection that have been used include immunohistochemistry, immunofluorescence, RT-PCR, in situ hybridization, and electron microscopy. In our review of studies to date, we found that SARS-CoV-2 in the kidneys of patients with COVID-19 was detected in 18 of 94 (19%) by immunohistochemistry, 71 of 144 (49%) by RT-PCR, and 11 of 84 (13%) by in situ hybridization. In a smaller number of patients with COVID-19 examined by immunofluorescence, SARS-CoV-2 was detected in 10 of 13 (77%). In total, in kidneys from 102 of 235 patients (43%), the presence of SARS-CoV-2 was suggested by at least one of the methods used. Despite these positive findings, caution is needed because many other studies have been negative for SARS-CoV-2 and it should be noted that when detected, it was only in kidneys obtained at autopsy. There is a clear need for studies from kidney biopsies, including those performed at early stages of the COVID-19-associated kidney disease. Development of tests to detect kidney viral infection in urine samples would be more practical as a noninvasive way to evaluate SARS-CoV-2 infection during the evolution of COVID-19-associated kidney disease.


Subject(s)
COVID-19/virology , Kidney Diseases/virology , Kidney/virology , SARS-CoV-2/pathogenicity , Animals , Biopsy , COVID-19/complications , COVID-19/diagnosis , COVID-19/mortality , COVID-19 Testing , Host-Pathogen Interactions , Humans , Kidney Diseases/diagnosis , Kidney Diseases/mortality , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors
10.
Libyan J Med ; 16(1): 1910195, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1526148

ABSTRACT

The outbreak of corona virus disease (COVID-19) caused by the new severe acute respiratory syndrome corona virus 2 began in Wuhan, China, resulting in respiratory disorders. In January of 2020, the World Health Organization declared the outbreak a pandemic owing to its global spread. Because no studies have investigated COVID-19 in Saudi Arabia, this study investigated similarities and differences between demographic data during the COVID-19 and Middle East respiratory syndrome (MERS) outbreaks in Saudi Arabia. A retrospective trend analysis was performed to assess demographic data of all laboratory-confirmed MERS and COVID-19 cases. Patients' charts were reviewed for data on demographics, mortality, citizenship, sex ratio, and age groups with descriptive and comparative statistics; the data were analyzed using a non-parametric binomial test and chi-square test. Of all COVID-19 patients in Saudi Arabia,78%were male patients and 22% were female patients. This proportion of male COVID-19 patients was similar to that of male MERS patients, which also affected male patients more frequently than female patients. The number of COVID-19-positive Saudi cases was lower than that of non-Saudi cases, which were in contrast to that of MERS; COVID-19 appeared to be remarkably similar to MERS with respect to recovered cases. However, the numbers of critical and dead COVID-19 patients have been much lower than those of MERS patients. The largest proportion of COVID-19 and MERS cases (44.05% and 40.8%, respectively) were recorded in the Western region. MERS and COVID-19 exhibited similar threats to the lives of adults and the elderly, despite lower mortality rates during the COVID-19 epidemic. Targeted prevention of and interventions against MERS should be allocated populations according to the areas where they inhabit. However, much more information regarding the dynamics and epidemiology of COVID-19 in Saudi Arabia is needed.Abbrevation : MERS: Middle East Respiratory syndrome; COVID-19: Corona Virus Disease 2019.


Subject(s)
COVID-19/epidemiology , Coronavirus Infections/epidemiology , Disease Outbreaks , SARS-CoV-2 , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/etiology , Child , Child, Preschool , Coronavirus Infections/etiology , Demography , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Retrospective Studies , Saudi Arabia/epidemiology , Sex Factors , Young Adult
12.
J Clin Med ; 10(8)2021 Apr 19.
Article in English | MEDLINE | ID: covidwho-1526843

ABSTRACT

There is limited data on the effect of the novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) on pediatric rheumatology. We examined the prevalence of antibodies against SARS-CoV-2 in children with juvenile idiopathic arthritis (JIA) and a negative history of COVID-19 and the correlation of the presence of these antibodies with disease activity measured by juvenile arthritis disease activity score (JADAS). In total, 62 patients diagnosed with JIA, under treatment with various antirheumatic drugs, and 32 healthy children (control group) were included. Serum samples were analyzed for inflammatory markers and antibodies and their state evaluated with the juvenile arthritis disease activity score (JADAS). JIA patients do not have a higher seroprevalence of anti-SARS-CoV-2 antibodies than healthy subjects. We found anti-SARS-CoV-2 antibodies in JIA patients who did not have a history of COVID-19. The study showed no unequivocal correlation between the presence of SARS-CoV-2 antibodies and JIA activity; therefore, this relationship requires further observation. We also identified a possible link between patients' humoral immune response and disease-modifying antirheumatic treatment, which will be confirmed in follow-up studies.

13.
Histol Histopathol ; 36(9): 947-965, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1513241

ABSTRACT

Infection by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) leads to multi-organ failure associated with a cytokine storm and septic shock. The virus evades the mitochondrial production of interferons through its N protein and, from that moment on, it hijacks the functions of these organelles. The aim of this study was to show how the virus kidnaps the mitochondrial machinery for its benefit and survival, leading to alterations of serum parameters and to nitrosative stress (NSS). In a prospective cohort of 15 postmortem patients who died from COVID-19, six markers of mitochondrial function (COX II, COX IV, MnSOD, nitrotyrosine, Bcl-2 and caspase-9) were analyzed by the immune colloidal gold technique in samples from the lung, heart, and liver. Biometric laboratory results from these patients showed alterations in hemoglobin, platelets, creatinine, urea nitrogen, glucose, C-reactive protein, albumin, D-dimer, ferritin, fibrinogen, Ca²âº, K⁺, lactate and troponin. These changes were associated with alterations in the mitochondrial structure and function. The multi-organ dysfunction present in COVID-19 patients may be caused, in part, by damage to the mitochondria that results in an inflammatory state that contributes to NSS, which activates the sepsis cascade and results in increased mortality in COVID-19 patients.


Subject(s)
COVID-19/pathology , Mitochondria/pathology , Nitrosative Stress/physiology , Aged , Female , Humans , Male , Middle Aged , SARS-CoV-2
14.
Infect Disord Drug Targets ; 21(4): 541-552, 2021.
Article in English | MEDLINE | ID: covidwho-1496791

ABSTRACT

BACKGROUND: Since December 2019, a novel coronavirus, SARS-CoV-2, has caused global public health issues after being reported for the first time in Wuhan province of China. So far, there have been approximately 14.8 million confirmed cases and 0.614 million deaths due to the SARS-CoV-2 infection globally, and still, numbers are increasing. Although the virus has caused a global public health concern, no effective treatment has been developed. OBJECTIVE: One of the strategies to combat the COVID-19 disease caused by SARS-CoV-2 is the development of vaccines that can make humans immune to these infections. Considering this approach, in this study, an attempt has been made to design epitope-based vaccine for combatting COVID-19 disease by analyzing the complete proteome of the virus by using immuno-informatics tools. METHODS: The protein sequence of the SARS-CoV-2 was retrieved and the individual proteins were checked for their allergic potential. Then, from non-allergen proteins, antigenic epitopes were identified that could bind with MHCII molecules. The epitopes were modeled and docked to predict the interaction with MHCII molecules. The stability of the epitope-MHCII complex was further analyzed by performing a molecular dynamics simulation study. The selected vaccine candidates were also analyzed for their global population coverage and conservancy among SARS-related coronavirus species. RESULTS: The study has predicted 5 peptide molecules that can act as potential candidates for epitope- based vaccine development. Among the 5 selected epitopes, the peptide LRARSVSPK can be the most potent epitope because of its high geometric shape complementarity score, low ACE and very high response towards it by the world population (81.81% global population coverage). Further, molecular dynamic simulation analysis indicated the formation of a stable epitope-MHCII complex. The epitope LRARSVSPK was also found to be highly conserved among the SARS-CoV- -2 isolated from different countries. CONCLUSION: The study has predicted T-cell epitopes that can elicit a robust immune response in the global human population and act as potential vaccine candidates. However, the ability of these epitopes to act as vaccine candidate needs to be validated in wet lab studies.


Subject(s)
COVID-19 , Vaccines , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
15.
Biomol NMR Assign ; 15(2): 335-340, 2021 10.
Article in English | MEDLINE | ID: covidwho-1442184

ABSTRACT

The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5'-untranslated region (5'-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.


Subject(s)
5' Untranslated Regions , Nuclear Magnetic Resonance, Biomolecular , SARS-CoV-2/genetics , Inverted Repeat Sequences/genetics
16.
Ghana Med J ; 54(4 Suppl): 97-99, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1436200

ABSTRACT

Computed Tomography (CT) scan of the chest plays an important role in the diagnosis and management of Coronavirus disease 2019 (COVID-19), the disease caused by the novel coronavirus SARS-CoV-2. COVID-19 pneumonia shows typical CT Scan features which can aid diagnoses and therefore help in the early detection and isolation of infected patients. CT scanners are readily available in many parts of Ghana. It is able to show findings typical for COVID-19 infection of the chest, even in instances where Reverse Transcription Polymerase Chain Reaction (RTPCR) misses the diagnosis. Little is known about the diagnostic potential of chest CT scan and COVID-19 among physicians even though CT scan offers a high diagnostic accuracy.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnostic imaging , Lung/diagnostic imaging , Symptom Assessment/methods , Tomography, X-Ray Computed , Adult , Aged , COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Testing/statistics & numerical data , Early Diagnosis , Female , Ghana , Humans , Lung/virology , Male , Middle Aged , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity
17.
Glycobiology ; 31(9): 1080-1092, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1434394

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), started in 2019 in China and quickly spread into a global pandemic. Nucleocapsid protein (N protein) is highly conserved and is the most abundant protein in coronaviruses and is thus a potential target for both vaccine and point-of-care diagnostics. N Protein has been suggested in the literature as having posttranslational modifications (PTMs), and accurately defining these PTMs is critical for its potential use in medicine. Reports of phosphorylation of N protein have failed to provide detailed site-specific information. We have performed comprehensive glycomics, glycoproteomics and proteomics experiments on two different N protein preparations. Both were expressed in HEK293 cells; one was in-house expressed and purified without a signal peptide (SP) sequence, and the other was commercially produced with a SP channeling it through the secretory pathway. Our results show completely different PTMs on the two N protein preparations. The commercial product contained extensive N- and O-linked glycosylation as well as O-phosphorylation on site Thr393. Conversely, the native N Protein model had O-phosphorylation at Ser176 and no glycosylation, highlighting the importance of knowing the provenance of any commercial protein to be used for scientific or clinical studies. Recent studies have indicated that N protein can serve as an important diagnostic marker for COVID-19 and as a major immunogen by priming protective immune responses. Thus, detailed structural characterization of N protein may provide useful insights for understanding the roles of PTMs on viral pathogenesis, vaccine design and development of point-of-care diagnostics.


Subject(s)
Coronavirus Nucleocapsid Proteins/metabolism , Protein Processing, Post-Translational/physiology , SARS-CoV-2/metabolism , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Coronavirus Nucleocapsid Proteins/chemistry , Glycosylation , HEK293 Cells , Humans , Phosphorylation , SARS-CoV-2/chemistry
18.
Med Pr ; 72(3): 327-334, 2021 Jun 30.
Article in Polish | MEDLINE | ID: covidwho-1413301

ABSTRACT

Generally, COVID-19 is an acute contagious disease caused by the SARS­CoV-2 virus. The main route of human-to-human transmission is through contact with infectious secretions from the respiratory tract. Clinical manifestations vary from mild non-specific symptoms to life-threatening conditions. Since WHO declared COVID-19 a pandemic in March 2020, it has affected many medical, legal, social and economic aspects of everyday life in countries around the world. In this article, the authors present a summary of recommendations for taking care of otorhinolaryngology patients in outpatient settings and the legal basis referring to a risk of infection in doctor's office. In the selection of articles, the authors used English- and Polish-language online medical databases, typing the following keywords: SARS­CoV-2, COVID-19, otolaryngology, endoscopy, personal protective equipment, and legal responsibility of the physician. The mucosa of the upper respiratory tract is a potential site of virus replication. The specificity of an ear, nose and throat (ENT) examination and a direct patient-doctor contact favor the transmission of the infection. The authors discussed the elements of self-protection of medical personnel and the legal aspects a risk of the patient contracting the infection in the otolaryngology office. In the case of a direct contact with the patient, the following medical personal protective equipment is required: a cap, a mask with an FFP-2 filter, goggles, an apron and gloves. If, during the visit, exposure to secretions or aerosol from the respiratory tract is expected, the personnel should additionally wear a visor and a waterproof apron. The patient's visit in the clinic should be preceded by telemedicine consultation. Patients should be screened prior to having a direct contact with a physician, using a short patient questionnaire. The questionnaire may consist of simple questions about the characteristic symptoms of the SARS­CoV-2 infection and exposure to a sick person in the past 14 days. The question of staying in the areas of a high infection risk appears of little importance in view of the whole of Poland being perceived as constituting such an area. Due to the spread of the SARS­CoV-2 virus, new procedures for providing medical services have been introduced. In the case of claims on the part of the patient, the only protection the medical personnel or facility can provide is confirmation of scrupulous compliance with medical procedures . Med Pr. 2021;72(3):327-34.


Subject(s)
COVID-19/prevention & control , Infection Control/standards , Otolaryngology/standards , COVID-19/transmission , Health Personnel , Humans , Infection Control/legislation & jurisprudence , Otolaryngology/legislation & jurisprudence , Personal Protective Equipment
19.
Med Pr ; 72(3): 321-325, 2021 Jun 30.
Article in Polish | MEDLINE | ID: covidwho-1413233

ABSTRACT

In 2019, COVID-19, the disease caused by the SARS-CoV-2 virus, evolved into a pandemic which is still going on. The basic clinical symptoms of the SARS-CoV-2 infection are: fever, dry cough, fatigue, muscle pain, respiratory problems, and the loss of smell or taste. Other symptoms, including those related to hearing and balance organs (hearing loss, tinnitus, dizziness), are reported less frequently by patients. They are especially rarely reported as the first symptoms of this infection. In order to answer the question of whether SARS-CoV-2 can cause hearing and balance damage, the authors reviewed the literature sources from 2019-2020 included in EMBASE and PubMed, entering the following words: "hearing loss," "COVID-19," "coronavirus," "sensorineural hearing loss," "vertigo," and "dizziness." Ultimately, 9 studies on the possible relationship between hearing impairment and SARS-CoV-2, and 4 studies on the possible relationship between damage to the balance and SARS-CoV-2, were qualified for the study. The results of the analysis suggest a possible relationship between COVID-19 and hearing loss, with no evidence of a similar relationship between this virus and the balance system. The possible existence of such a relationship should be especially remembered by hospital emergency room doctors, otolaryngologists and audiologists, especially as regards the possibility of a sudden sensironeural hearing loss as the first symptom of COVID-19. This also applies to doctors of other specialties. The authors indicate the need for further, intensive and multifaceted research on this issue. Med Pr. 2021;72(3):321-5.


Subject(s)
COVID-19/complications , Hearing Disorders/etiology , Hearing , Postural Balance , Vestibular Diseases/etiology , Adult , COVID-19/epidemiology , COVID-19/physiopathology , Female , Hearing Loss/etiology , Humans , Male , Middle Aged , Tinnitus/etiology , Vertigo/etiology , Young Adult
20.
Anesth Analg ; 133(4): 876-890, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1412364

ABSTRACT

The coronavirus disease 2019 (COVID-19) disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), often results in severe hypoxemia requiring airway management. Because SARS-CoV-2 virus is spread via respiratory droplets, bag-mask ventilation, intubation, and extubation may place health care workers (HCW) at risk. While existing recommendations address airway management in patients with COVID-19, no guidance exists specifically for difficult airway management. Some strategies normally recommended for difficult airway management may not be ideal in the setting of COVID-19 infection. To address this issue, the Society for Airway Management (SAM) created a task force to review existing literature and current practice guidelines for difficult airway management by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. The SAM task force created recommendations for the management of known or suspected difficult airway in the setting of known or suspected COVID-19 infection. The goal of the task force was to optimize successful airway management while minimizing exposure risk. Each member conducted a literature review on specific clinical practice section utilizing standard search engines (PubMed, Ovid, Google Scholar). Existing recommendations and evidence for difficult airway management in the COVID-19 context were developed. Each specific recommendation was discussed among task force members and modified until unanimously approved by all task force members. Elements of Appraisal of Guidelines Research and Evaluation (AGREE) Reporting Checklist for dissemination of clinical practice guidelines were utilized to develop this statement. Airway management in the COVID-19 patient increases HCW exposure risk. Difficult airway management often takes longer and may involve multiple procedures with aerosolization potential, and strict adherence to personal protective equipment (PPE) protocols is mandatory to reduce risk to providers. When a patient's airway risk assessment suggests that awake tracheal intubation is an appropriate choice of technique, and procedures that may cause increased aerosolization of secretions should be avoided. Optimal preoxygenation before induction with a tight seal facemask may be performed to reduce the risk of hypoxemia. Unless the patient is experiencing oxygen desaturation, positive pressure bag-mask ventilation after induction may be avoided to reduce aerosolization. For optimal intubating conditions, patients should be anesthetized with full muscle relaxation. Videolaryngoscopy is recommended as a first-line strategy for airway management. If emergent invasive airway access is indicated, then we recommend a surgical technique such as scalpel-bougie-tube, rather than an aerosolizing generating procedure, such as transtracheal jet ventilation. This statement represents recommendations by the SAM task force for the difficult airway management of adults with COVID-19 with the goal to optimize successful airway management while minimizing the risk of clinician exposure.


Subject(s)
Airway Management/standards , COVID-19/prevention & control , Health Personnel/standards , Infection Control/standards , Personal Protective Equipment/standards , Societies, Medical/standards , Adult , Advisory Committees/standards , Airway Extubation/methods , Airway Extubation/standards , Airway Management/methods , COVID-19/epidemiology , Humans , Infection Control/methods , Intubation, Intratracheal/methods , Intubation, Intratracheal/standards , Practice Guidelines as Topic/standards
SELECTION OF CITATIONS
SEARCH DETAIL