ABSTRACT
Transmission mechanics of infectious pathogen in various environments are of great complexity and has always been attracting many researchers' attention. As a cost-effective and powerful method, Computational Fluid Dynamics (CFD) plays an important role in numerically solving environmental fluid mechanics. Besides, with the development of computer science, an increasing number of researchers start to analyze pathogen transmission by using CFD methods. Inspired by the impact of COVID-19, this review summarizes research works of pathogen transmission based on CFD methods with different models and algorithms. Defining the pathogen as the particle or gaseous in CFD simulation is a common method and epidemic models are used in some investigations to rise the authenticity of calculation. Although it is not so difficult to describe the physical characteristics of pathogens, how to describe the biological characteristics of it is still a big challenge in the CFD simulation. A series of investigations which analyzed pathogen transmission in different environments (hospital, teaching building, etc) demonstrated the effect of airflow on pathogen transmission and emphasized the importance of reasonable ventilation. Finally, this review presented three advanced methods: LBM method, Porous Media method, and Web-based forecasting method. Although CFD methods mentioned in this review may not alleviate the current pandemic situation, it helps researchers realize the transmission mechanisms of pathogens like viruses and bacteria and provides guidelines for reducing infection risk in epidemic or pandemic situations.
Subject(s)
Coronavirus Infections , Hydrodynamics , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Computer Simulation , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , SARS-CoV-2 , VentilationABSTRACT
BACKGROUND: Decontaminating and reusing filtering facepiece respirators (FFRs) for healthcare workers is a potential solution to address inadequate FFR supply during a global pandemic. AIM: The objective of this review was to synthesize existing data on the effectiveness and safety of using chemical disinfectants to decontaminate N95 FFRs. METHODS: A systematic review was conducted on disinfectants to decontaminate N95 FFRs using Embase, Medline, Global Health, Google Scholar, WHO feed, and MedRxiv. Two reviewers independently determined study eligibility and extracted predefined data fields. Original research reporting on N95 FFR function, decontamination, safety, or FFR fit following decontamination with a disinfectant was included. FINDINGS AND CONCLUSION: A single cycle of vaporized hydrogen peroxide (H2O2) successfully removes viral pathogens without affecting airflow resistance or fit, and maintains an initial filter penetration of <5%, with little change in FFR appearance. Residual hydrogen peroxide levels following decontamination were within safe limits. More than one decontamination cycle of vaporized H2O2 may be possible but further information is required on how multiple cycles would affect FFR fit in a real-world setting before the upper limit can be established. Although immersion in liquid H2O2 does not appear to adversely affect FFR function, there is no available data on its ability to remove infectious pathogens from FFRs or its impact on FFR fit. Sodium hypochlorite, ethanol, isopropyl alcohol, and ethylene oxide are not recommended due to safety concerns or negative effects on FFR function.